scispace - formally typeset
Search or ask a question

Showing papers by "Tuukka Petäjä published in 2023"


Journal ArticleDOI
TL;DR: In this article , an intelligent sensors calibration method that facilitates correcting air quality low-cost sensors (LCSs) measurements accurately and detecting the calibrators' drift is proposed, which uses Bayesian framework to establish white-box and black-box calibrators.
Abstract: Air quality low-cost sensors (LCSs) are affordable and can be deployed in massive scale in order to enable high-resolution spatio-temporal air pollution information. However, they often suffer from sensing accuracy, in particular, when they are used for capturing extreme events. We propose an intelligent sensors calibration method that facilitates correcting LCSs measurements accurately and detecting the calibrators’ drift. The proposed calibration method uses Bayesian framework to establish white-box and black-box calibrators. We evaluate the method in a controlled experiment under different types of smoking events. The calibration results show that the method accurately estimates the aerosol mass concentration during the smoking events. We show that black-box calibrators are more accurate than white-box calibrators. However, black-box calibrators may drift easily when a new smoking event occurs, while white-box calibrators remain robust. Therefore, we implement both of the calibrators in parallel to extract both calibrators’ strengths and also enable drifting monitoring for calibration models. We also discuss that our method is implementable for other types of LCSs suffered from sensing accuracy.

7 citations


Journal ArticleDOI
TL;DR: In this article , the authors investigated the annual cycle in the aerosol particle number distribution (PNSD), particle number concentration (PNC), and black carbon mass concentration in the central Arctic during the MOSAiC expedition.
Abstract: Abstract. The Arctic environment is rapidly changing due to accelerated warming in the region. The warming trend is driving a decline in sea ice extent, which thereby enhances feedback loops in the surface energy budget in the Arctic. Arctic aerosols play an important role in the radiative balance and hence the climate response in the region, yet direct observations of aerosols over the Arctic Ocean are limited. In this study, we investigate the annual cycle in the aerosol particle number size distribution (PNSD), particle number concentration (PNC), and black carbon (BC) mass concentration in the central Arctic during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition. This is the first continuous, year-long data set of aerosol PNSD ever collected over the sea ice in the central Arctic Ocean. We use a k-means cluster analysis, FLEXPART simulations, and inverse modeling to evaluate seasonal patterns and the influence of different source regions on the Arctic aerosol population. Furthermore, we compare the aerosol observations to land-based sites across the Arctic, using both long-term measurements and observations during the year of the MOSAiC expedition (2019–2020), to investigate interannual variability and to give context to the aerosol characteristics from within the central Arctic. Our analysis identifies that, overall, the central Arctic exhibits typical seasonal patterns of aerosols, including anthropogenic influence from Arctic haze in winter and secondary aerosol processes in summer. The seasonal pattern corresponds to the global radiation, surface air temperature, and timing of sea ice melting/freezing, which drive changes in transport patterns and secondary aerosol processes. In winter, the Norilsk region in Russia/Siberia was the dominant source of Arctic haze signals in the PNSD and BC observations, which contributed to higher accumulation-mode PNC and BC mass concentrations in the central Arctic than at land-based observatories. We also show that the wintertime Arctic Oscillation (AO) phenomenon, which was reported to achieve a record-breaking positive phase during January–March 2020, explains the unusual timing and magnitude of Arctic haze across the Arctic region compared to longer-term observations. In summer, the aerosol PNCs of the nucleation and Aitken modes are enhanced; however, concentrations were notably lower in the central Arctic over the ice pack than at land-based sites further south. The analysis presented herein provides a current snapshot of Arctic aerosol processes in an environment that is characterized by rapid changes, which will be crucial for improving climate model predictions, understanding linkages between different environmental processes, and investigating the impacts of climate change in future Arctic aerosol studies.

4 citations


Journal ArticleDOI
TL;DR: The 2017-2019 hourly particle number size distributions (PNSD) from 26 sites in Europe and 1 in the US were evaluated focusing on 16 urban background (UB) and 6 traffic (TR) sites in the framework of Research Infrastructures services reinforcing air quality monitoring capacities in European URBAN & industrial areaS (RI-URBANS) project as mentioned in this paper .
Abstract: The 2017-2019 hourly particle number size distributions (PNSD) from 26 sites in Europe and 1 in the US were evaluated focusing on 16 urban background (UB) and 6 traffic (TR) sites in the framework of Research Infrastructures services reinforcing air quality monitoring capacities in European URBAN & industrial areaS (RI-URBANS) project. The main objective was to describe the phenomenology of urban ultrafine particles (UFP) in Europe with a significant air quality focus. The varying lower size detection limits made it difficult to compare PN concentrations (PNC), particularly PN10-25, from different cities. PNCs follow a TR > UB > Suburban (SUB) order. PNC and Black Carbon (BC) progressively increase from Northern Europe to Southern Europe and from Western to Eastern Europe. At the UB sites, typical traffic rush hour PNC peaks are evident, many also showing midday-morning PNC peaks anti-correlated with BC. These peaks result from increased PN10-25, suggesting significant PNC contributions from nucleation, fumigation and shipping. Site types to be identified by daily and seasonal PNC and BC patterns are: (i) PNC mainly driven by traffic emissions, with marked correlations with BC on different time scales; (ii) marked midday/morning PNC peaks and a seasonal anti-correlation with PNC/BC; (iii) both traffic peaks and midday peaks without marked seasonal patterns. Groups (ii) and (iii) included cities with high insolation. PNC, especially PN25-800, was positively correlated with BC, NO2, CO and PM for several sites. The variable correlation of PNSD with different urban pollutants demonstrates that these do not reflect the variability of UFP in urban environments. Specific monitoring of PNSD is needed if nanoparticles and their associated health impacts are to be assessed. Implementation of the CEN-ACTRIS recommendations for PNSD measurements would provide comparable measurements, and measurements of <10 nm PNC are needed for full evaluation of the health effects of this size fraction.

4 citations


Journal ArticleDOI
TL;DR: In this article , the authors present ecosystem-scale eddy covariance (EC) fluxes of isoprene, MT, SQT, and diterpenes from a boreal fen in southern Finland.
Abstract: Abstract. Wetlands cover only 3 % of the global land surface area, but boreal wetlands are experiencing an unprecedented warming of four times the global average. These wetlands emit isoprene and terpenes (including monoterpenes (MT), sesquiterpenes (SQT), and diterpenes (DT)), which are climate-relevant highly reactive biogenic volatile organic compounds (BVOCs) with an exponential dependence on temperature. In this study, we present ecosystem-scale eddy covariance (EC) fluxes of isoprene, MT, SQT, and DT (hereafter referred to together as terpenes) at Siikaneva, a boreal fen in southern Finland, from the start to the peak of the growing season of 2021 (19 May 2021 to 28 June 2021). These are the first EC fluxes reported using the novel state-of-the-art Vocus proton transfer reaction mass spectrometer (Vocus-PTR) and the first-ever fluxes reported for DTs from a wetland. Isoprene was the dominant compound emitted by the wetland, followed by MTs, SQTs, and DTs, and they all exhibited a strong exponential temperature dependence. The Q10 values, the factor by which terpene emissions increases for every 10 ∘C rise in temperature, were up to five times higher than those used in most BVOC models. During the campaign, the air temperature peaked above 31 ∘C on 21–22 June 2021, which is abnormally high for boreal environments, and the maximum flux for all terpenes coincided with this period. We observed that terpene emissions were elevated after this abnormally “high-temperature stress period”, indicating that past temperatures alter emissions significantly. The standardized emission factor (EF) of the fen for isoprene (EFiso) was 11.1 ± 0.3 nmol m−2 s−1, which is at least two times higher than in previous studies and as high as the emission factors typical for broadleaf and other forests in the lower latitudes. We observed EFMT of 2.4 ± 0.1 nmol m−2 s−1, EFSQT of 1.3 ± 0.03 nmol m−2 s−1, higher than typical for needle leaf and broadleaf tree functional types, and EFDT of 0.011 ± 0.001 nmol m−2 s−1. We also compared the landscape average emissions to the model of emissions of gases and aerosols from nature (MEGAN) v2.1 and found that the emissions were underestimated by over 9 times for isoprene, over 300 times for MTs, and 800 times for SQTs. Our results show that due to very high EFs and high sensitivity to increasing temperatures, these high-latitude ecosystems can be a large source of terpenes to the atmosphere, and anthropogenic global warming could induce much higher BVOC emissions from wetlands in the future.

2 citations


Journal ArticleDOI
TL;DR: In this paper , the authors discuss the importance of turbulence for atmospheric phenomena and feedbacks in different environments and discuss how boundary-layer dynamics links to aerosols and air pollution, and present a roadmap from deep understanding to practical solutions.
Abstract: Abstract Turbulence is the key process transporting material and energy in the atmosphere. Furthermore, turbulence causes concentration fluctuations, influencing different atmospheric processes such as deposition, chemical reactions, formation of low-volatile vapours, formation of new aerosol particles and their growth in the atmosphere, and the effect of aerosol particles on boundary-layer meteorology. In order to analyse the connections, interactions and feedbacks relating those different processes require a deep understanding of atmospheric turbulence mechanisms, atmospheric chemistry and aerosol dynamics. All these processes will further influence air pollution and climate. The better we understand these processes and their interactions and associated feedback, the more effectively we can mitigate air pollution as well as mitigate climate forcers and adapt to climate change. We present several aspects on the importance of turbulence including how turbulence is crucial for atmospheric phenomena and feedbacks in different environments. Furthermore, we discuss how boundary-layer dynamics links to aerosols and air pollution. Here, we present also a roadmap from deep understanding to practical solutions.

2 citations


Journal ArticleDOI
TL;DR: In this article , the authors show that low NO can enhance HOM production by modulating the RO2 loss and favoring the formation of alkoxy radicals that can continue to autoxidize through isomerization.
Abstract: The interaction between nitrogen monoxide (NO) and organic peroxy radicals (RO2) greatly impacts the formation of highly oxygenated organic molecules (HOM), the key precursors of secondary organic aerosols. It has been thought that HOM production can be significantly suppressed by NO even at low concentrations. Here, we perform dedicated experiments focusing on HOM formation from monoterpenes at low NO concentrations (0 - 82 pptv). We demonstrate that such low NO can enhance HOM production by modulating the RO2 loss and favoring the formation of alkoxy radicals that can continue to autoxidize through isomerization. These insights suggest that HOM yields from typical boreal forest emissions can vary between 2.5%-6.5%, and HOM formation will not be completely inhibited even at high NO concentrations. Our findings challenge the notion that NO monotonically reduces HOM yields by extending the knowledge of RO2-NO interactions to the low-NO regime. This represents a major advance towards an accurate assessment of HOM budgets, especially in low-NO environments, which prevails in the pre-industrial atmosphere, pristine areas, and the upper boundary layer.

1 citations


Posted ContentDOI
21 Mar 2023
TL;DR: Wang et al. as discussed by the authors conducted a longterm comprehensive observation of gaseous iodine oxoacids and sulfuric acid in Beijing from January 2019 to October 2021 and also in Nanjing from March 2019 to February 2020, and investigated the contribution of HIOx to UFP number concentration in urban environments.
Abstract: Abstract. New particle formation processes contribute significantly to the number concentration of ultrafine particles (UFP), and have great impacts on human health and global climate. Iodine oxoacids (HIOx, including iodic acid, HIO3 and iodous acid, HIO2) have been observed in pristine regions and proved to dominate NPF events at some sites. However, the knowledge of HIOx in polluted urban areas is rather limited. Here, we conducted a long-term comprehensive observation of gaseous iodine oxoacids and sulfuric acid in Beijing from January 2019 to October 2021 and also in Nanjing from March 2019 to February 2020, and investigated the contribution of HIOx to UFP number concentration in urban environments. HIO3 concentration is highest in summer, up to 2.85×106 cm-3 and 2.78×106 cm-3 in Beijing and Nanjing, respectively, and is lowest in winter, with a more prominent seasonal variation than H2SO4. HIO3 concentration shows a clear diurnal pattern at both sites with a daily maximum at around noontime, similar to the atmospheric temperature, radiation and ozone (O3) levels. HIO2 concentration has the same diurnal and seasonal trend as HIO3 but is overall about one order of magnitude lower than HIO3 concentration. Back trajectory analysis suggests that the sources for inland iodine species could be a mix of marine and terrestrial origins, both having peak iodine emission in warm seasons. While the contribution of HIO2 to particle growth is marginal in Beijing and Nanjing, our results demonstrate that HIO3 enhances the particle survival probability of sub-3 nm particles by about 40 % (median) and occasionally by more than 100 % in NPF events, suggesting HIOx are non-negligible contributor to UFPs in polluted urban areas. As the growth contribution from HIO3 and H2SO4 is similar on a per-molecule basis, we propose that the sum of HIO3 and H2SO4 could be used to estimate sub-3 nm particle growth of inorganic acid origin, in the polluted atmospheres with a significant amount of HIOx.

1 citations


Journal ArticleDOI
TL;DR: In this paper , the authors investigated the effect of the boreal forest environment on cloud-related properties during the growing season and found that the properties of air masses with short land transport times, thereby less influenced by the forest, differed from those exposed to the forest environment for a longer period.
Abstract: Abstract. Boreal forests cover vast areas of land in the high latitudes of the Northern Hemisphere, which are under amplified climate warming. The interactions between the forests and the atmosphere are known to generate a complex set of feedback processes. One feedback process, potentially producing a cooling effect, is associated with an increased reflectance of clouds due to aerosol–cloud interactions. Here, we investigate the effect that the boreal forest environment can have on cloud-related properties during the growing season. The site investigated was the SMEAR II station in Hyytiälä, Finland. Air mass back trajectories were the basis of the analysis and were used to estimate the time each air mass had spent over land prior to its arrival at the station. This enabled tracking the changes occurring in originally marine air masses as they travelled across the forested land. Only air masses arriving from the northwestern sector were investigated, as these areas have a relatively uniform forest cover and relatively little anthropogenic interference. We connected the air mass analysis with comprehensive in situ and remote-sensing data sets covering up to 11 growing seasons. We found that the properties of air masses with short land transport times, thereby less influenced by the forest, differed from those exposed to the forest environment for a longer period. The fraction of air masses with cloud condensation nuclei concentrations (at 0.2 % supersaturation) above the median value of 180 cm−3 of the analysed air masses increased from approximately 10 % to 80 % after 55 h of exposure to boreal forest, while the fraction of air masses with specific humidity above the median value of 5 g kg−1 increased from roughly 25 % to 65 %. Signs of possible resulting changes in the cloud layer were also observed from satellite measurements. Lastly, precipitation frequency increased from the average of approximately 7 % to about 12 % after a threshold of 50 h of land transport. Most of the variables showed an increase with an increasing land transport time until approximately 50–55 h, after which a balance with little further variation seemed to have been reached. This appears to be the approximate timescale in which the forest–cloud interactions take effect and the air masses adjust to the local forest environment.

1 citations


TL;DR: The SMEAR (Station for measuring Earth surface - Atmosphere relations) concept as mentioned in this paper was proposed to meet global grand challenges (climate change; biodiversity loss; environmental pollution; scarcity of water, food and energy supplies; acidification; deforestation; chemicalization; pandemics), which all are closely interlinked with each other.
Abstract: . To be able to meet global grand challenges (climate change; biodiversity loss; environmental pollution; scarcity of water, food and energy supplies; acidification; deforestation; chemicalization; pandemics), which all are closely interlinked with each other, we need comprehensive open data with proper metadata. The large data sets from ground-base in situ observations, ground and satellite remote sensing and multiscale modelling need to be utilized seamlessly. In this opinion 25 paper, we describe the SMEAR (Station for Measuring Earth surface – Atmosphere Relations) concept. We also demonstrate

1 citations


Journal ArticleDOI
TL;DR: In this article , the authors used real-time, molecular measurements of both the gas and particle phase to provide a mechanistic understanding of the effect of high relative humidity (RH) on the partitioning of biogenic oxidized organic molecules (from α-pinene and isoprene) at low temperatures (243 and 263 K).
Abstract: The mechanistic pathway by which high relative humidity (RH) affects gas-particle partitioning remains poorly understood, although many studies report increased secondary organic aerosol (SOA) yields at high RH. Here, we use real-time, molecular measurements of both the gas and particle phase to provide a mechanistic understanding of the effect of RH on the partitioning of biogenic oxidized organic molecules (from α-pinene and isoprene) at low temperatures (243 and 263 K) at the CLOUD chamber at CERN. We observe increases in SOA mass of 45 and 85% with increasing RH from 10-20 to 60-80% at 243 and 263 K, respectively, and attribute it to the increased partitioning of semi-volatile compounds. At 263 K, we measure an increase of a factor 2-4 in the concentration of C10H16O2-3, while the particle-phase concentrations of low-volatility species, such as C10H16O6-8, remain almost constant. This results in a substantial shift in the chemical composition and volatility distribution toward less oxygenated and more volatile species at higher RH (e.g., at 263 K, O/C ratio = 0.55 and 0.40, at RH = 10 and 80%, respectively). By modeling particle growth using an aerosol growth model, which accounts for kinetic limitations, we can explain the enhancement in the semi-volatile fraction through the complementary effect of decreased compound activity and increased bulk-phase diffusivity. Our results highlight the importance of particle water content as a diluting agent and a plasticizer for organic aerosol growth.

1 citations


Journal ArticleDOI
01 Mar 2023-MethodsX
TL;DR: In this paper , a method to measure atmospheric primary nanoparticles, secondary nanoparticles and microparticles data is presented, which allows researchers to collect, measure, store and characterize atmospheric nanoparticles properties including their electric charge.

Journal ArticleDOI
TL;DR: In this article , a modified Airmodus A20 (A20) with a significantly higher aerosol optics flow rate compared to conventional ultrafine particle size spectrometers can greatly enhance the counting statistics in the sub-10nm range.
Abstract: Abstract. Differential mobility particle size spectrometers (DMPSs) are widely used to measure the aerosol number size distribution. Especially during new particle formation (NPF), the dynamics of the ultrafine size distribution determine the significance of the newly formed particles within the atmospheric system. A precision quantification of the size distribution and derived quantities such as new particle formation and growth rates is therefore essential. However, size-distribution measurements in the sub-10 nm range suffer from high particle losses and are often derived from only a few counts in the DMPS system, making them subject to very high counting uncertainties. Here we show that a CPC (modified Airmodus A20) with a significantly higher aerosol optics flow rate compared to conventional ultrafine CPCs can greatly enhance the counting statistics in that size range. Using Monte Carlo uncertainty estimates, we show that the uncertainties of the derived formation and growth rates can be reduced from 10 %–20 % down to 1 % by deployment of the high statistics CPC on a strong NPF event day. For weaker events and hence lower number concentrations, the counting statistics can result in a complete breakdown of the growth rate estimate with relative uncertainties as high as 40 %, while the improved DMPS still provides reasonable results at 10 % relative accuracy. In addition, we show that other sources of uncertainty are present in CPC measurements, which might become more important when the uncertainty from the counting statistics is less dominant. Altogether, our study shows that the analysis of NPF events could be greatly improved by the availability of higher counting statistics in the used aerosol detector of DMPS systems.

Posted ContentDOI
21 Feb 2023
TL;DR: In this article , a suite of CPM simulations initialized with a comprehensive set of concurrent aerosol observations collected in the boreal forest of Finland during Spring 2014 is performed, and the authors highlight the potential significance of co-condensation in pristine boreal environments close to sources of fresh ultrafine particles.
Abstract: Abstract. Accounting for the condensation of organic vapors along with water vapor (co-condensation) has been shown in adiabatic cloud parcel model (CPM) simulations to enhance the number of aerosol particles that activate to form cloud droplets. The boreal forest is an important source of biogenic organic vapors, but the role of these vapors in co-condensation has not been systematically investigated. In this work, the environmental conditions under which strong co-condensation -driven cloud droplet number enhancements would be expected over the boreal biome are identified. Recent measurement technology, specifically the Filter Inlet for Gases and AEROsols (FIGAERO) coupled to an iodide-adduct Chemical Ionization Mass Spectrometer (I-CIMS), is utilized to construct a volatility distribution of the boreal atmospheric organics. Then, a suite of CPM simulations initialized with a comprehensive set of concurrent aerosol observations collected in the boreal forest of Finland during Spring 2014 is performed. The degree to which co-condensation impacts droplet formation in the model is shown to be dependent on the initialization of the updraft velocity, aerosol size distribution, organic vapor concentration and the volatility distribution. The predicted median enhancement in cloud droplet number concentration (CDNC) due to accounting for the co-condensation of water and organics is 20 % (interquartile range 29–14 %). This corresponds to activating particles 12–16 nm smaller in dry diameter, that would otherwise remain as interstitial aerosol. The highest CDNC enhancements (ΔCDNC) are predicted in the presence of a nascent ultrafine aerosol mode with a geometric mean diameter of ~40 nm and no clear Hoppel minimum, indicative of pristine environments with a source of ultrafine particles (e.g., via new particle formation processes). Such aerosol size distributions are observed 30–40 % of the time in the studied boreal forest environment in spring and fall when new particle formation frequency is the highest (six years of statistics). Five years of UK Earth System Model (UKESM1) simulations are further used to evaluate the frequencies to which such distributions are experienced by an Earth System Model over the whole boreal biome. The frequencies are substantially lower than those observed at the boreal forest measurement site (< 6 % of the time) and the positive values, peaking in spring, are modeled only over Fennoscandia and western parts of Siberia. For the aerosol size distribution regime simulated by UKESM1, offline simulations with the adiabatic parcel model reveal the ΔCDNC to be sensitive to the concentrations of semi-volatile and some intermediate-volatility organic compounds (SVOCs and IVOCs). The magnitudes of ΔCDNC remain less affected by the more volatile vapors such as formic acid and extremely low and low volatility organic compounds (ELVOCs and LVOCs) in the CPM simulations. The reasons for this are that most volatile organic vapors condense inefficiently due to their high volatility below cloud base and the concentrations of LVOCs and ELVOCs are too low to gain significant concentrations of soluble mass to reduce critical supersaturations needed for droplet activation. Suppression of the critical supersaturation caused by organic condensation is the main driver of the modeled ΔCDNC. The results highlight the potential significance of co-condensation in pristine boreal environments close to sources of fresh ultrafine particles. For accurate predictions of co-condensation effects on CDNC, the representation of the aerosol size distribution is of essence. Further studies targeted at finding observational evidence and constraints for co-condensation in the field are encouraged.

TL;DR: In this paper , an evaluation of the regional chemical transport model (CTM) WRF-CHIMERE (v2020r2) for the formation of biogenic secondary organic aerosol (BSOA) with a focus over the Finnish boreal forest is presented.
Abstract: . We present an evaluation of the regional chemical transport model (CTM) WRF-CHIMERE (v2020r2) for the formation of biogenic secondary organic aerosol (BSOA) with a focus over the Finnish boreal forest. Formation processes of biogenic aerosols are still affected by different sources of uncertainties, and model’s predictions largely varies depending on the levels of details of the adopted chemical and emissions schemes. In this study, air quality simulations were conducted for 15 the astronomical summer of the year 2019 using different organic aerosol (OA) schemes (as currently available in literature) to treat the formation of BSOA. First, we performed a set of simulations in the framework of the volatility basis set (VBS) scheme carrying different assumptions for the treatment of the aging processes of BSOA. The model results were compared against high-resolution (i.e., 1-hour) organic aerosol mass and size distribution measurements performed at the Station for Measuring Ecosystem–Atmosphere Relations (SMEAR-II) site located in Hyytiälä, in addition to other gas-phases species 20 such as ozone (O 3 ), nitrogen oxides (NO x ) and BVOCs measurements of isoprene (C 5 H 10 ) and monoterpenes. We show that WRF-CHIMERE could well reproduce the diurnal variation of the measured OA concentrations for all the investigated scenarios (along with standard meteorological parameters) as well as the increase in concentrations during specific heat waves episodes. However, the modeled OA concentrations largely varied between the schemes use to describe the aging processes of BSOA. Additionally, comparisons with isoprene and monoterpenes air concentrations revealed that the model captured the 25 observed monoterpenes concentrations, but isoprene was largely overestimated, a feature that was mainly attributed to the overstated biogenic emissions of isoprene. We investigated the potential consequences of such an overestimation by inhibiting isoprene emissions from the modeling system. Results indicated that the modeled BSOA concentrations generally increased compared to the base-case simulation with enabled isoprene emissions. We attributed the latest to a shift in the reactions of monoterpenes compounds against available radicals, as further suggested by the reduction in α-pinene modeled air 30 concentrations. Finally, we briefly analyze the differences in the modeled Cloud Liquid Water Content (clwc) among the simulations carrying different chemical scheme for the treatment of the aging processes of BSOA. Model’s results indicated

Posted ContentDOI
15 May 2023
TL;DR: In this paper , continuous measurements of various atmospheric constituents have been carried out at the Welgegund measurement station since May 2010 in close collaboration between North-West University, Finnish Meteorological Institute and University of Helsinki.
Abstract: Quality-controlled long-term measurements of atmospheric composition are central in identifying the sources and processes that are most important for air quality in a particular environment. In South Africa, continuous measurements of various atmospheric constituents have been carried out at the Welgegund measurement station since May 2010 in close collaboration between North-West University, Finnish Meteorological Institute and University of Helsinki. Welgegund is a regionally representative continental site approx. 100 km west of Johannesburg with no local sources. Before Welgegund, measurements were operated at Marikana village, which is an urban location with large industrial point sources in the vicinity. At both sites measurements included particulate matter smaller than 10 &#181;m in diameter (PM10), black carbon (BC) and trace gases (SO2, NO, NOx, O3, CO) among others.Numerous industrial point sources surrounding Johannesburg result in elevated NOx and SO2 levels in the region, but these concentrations remain below air quality standards. On the other hand, PM10 does exceed 50 &#181;g m3 rather frequently and more often at Marikana than at Welgegund. However, strong correlation with CO suggests that the periods of elevated PM10 are related to incomplete combustion rather than the industrial emissions at both locations. At Marikana the major source appears to be domestic heating during winter time, while at Welgegund landscape fires seem more important. Also, O3 exceeds air quality standards frequently at both sites and the highest O3 cases appear to be linked with landscape fires. Furthermore, our observations suggest that O3 formation is not NOx-limited but rather VOC-limited.

Journal ArticleDOI
TL;DR: The Airmodus nanoparticle diluter (AND) sampling system as mentioned in this paper is a diluter that can be used as an ion precipitator to remove small ions from the sampled air or to lower the relative humidity of sampled air.

Journal ArticleDOI
TL;DR: This case study demonstrates how easy-to-use data visualization tools, which allow efficient comparisons between datasets from multiple instruments, can help in identification of interesting phenomena in the measurements.
Abstract: Abstract. We present the SMEARcore data infrastructure framework: a collection of modular programs and processing workflows intended for measurement stations and campaigns as a real-time data analysis and management platform. SMEARcore enables new SMEAR (Station for Measuring Ecosystem–Atmosphere Relations) stations to be integrated in a way that is consistent with existing stations and transfers the existing data curation experience to the new station. It establishes robust data pipelines that allow easier diagnosis of problems. We show practical examples of how SMEARcore is utilized at operational measurement stations. This work differs from earlier similar concepts, such as those used at stations within ACTRIS (Aerosols, Clouds and Trace Gases Research Infrastructure) and ICOS (Integrated Carbon Observation System) networks, in three important aspects: firstly, by keeping all the processing under the control of the data owners; secondly, by providing tools for making data interoperable in general instead of harmonizing a particular set of instruments; and thirdly, by being extensible to new instruments. As such it is not meant as a replacement for these infrastructures but to be used in addition to them and to bring structured data curation to more measurement stations not yet using these practices.

Journal ArticleDOI
TL;DR: In this paper , the authors measured the compositions of negative cluster ions and neutral molecules using an atmospheric pressure interface high-resolution time-of-flight mass spectrometer (APi-TOF) and a chemical ionization mass analyzer in urban Beijing.
Abstract: Abstract. Atmospheric cluster ions are important constituents in the atmosphere, and their concentrations and compositions govern their role in atmospheric chemistry. However, there is currently limited quantitative research on atmospheric ion compositions, sources, and sinks, especially in the urban atmosphere where pollution levels and human populations are intense. In this study, we measured the compositions of negative cluster ions and neutral molecules using an atmospheric pressure interface high-resolution time-of-flight mass spectrometer (APi-TOF) and a chemical ionization mass spectrometer in urban Beijing. Quantitative analysis of cluster ions was performed by their comparison with condensation sink (CS), reagent ions, and neutral molecules. We demonstrate the feasibility of quantifying cluster ions with different compositions using in situ-measured ion mobility distributions from a neutral cluster and air ion spectrometer (NAIS). The median concentration of negative cluster ions was 85 (61–112 for 25 %–75 %) cm−3 during the measurement period, which was negatively correlated with CS. The negative cluster ions mainly consisted of inorganic nitrogen-containing ions, inorganic sulfur-containing ions, and organic ions in the form of adducts with NO3- or HSO4-. The CHON-related organic ions accounted for over 70 % of the total organic ions. Although the molecules clustered with NO3- and HSO4- had similar compositions, we found that HSO4- clustered more efficiently with CHO and CHONnonNPs species (CHON excluding nitrated phenols), while NO3- clustered more efficiently with nitrated phenols (CHONNPs). Additionally, most organic ions were positively correlated with neutral molecules, resulting in similar diurnal cycles of organic ions and neutral molecules. However, an exception was found for CHONNPs, the concentration of which is also significantly influenced by the reagent ions NO3-. The charge fractions are generally higher for molecules with higher molecular weight and a higher oxidation state, and the opposite diurnal variations in charging fractions between H2SO4 and organic species indicate a charging competition between them. Finally, we choose HSO4- and C3H3O4- as representatives to calculate the contribution of different formation and loss pathways. We found their losses are condensational loss onto aerosol particles (73 %–75 %), ion–molecule reaction losses (19 %), and ion–ion recombination losses (6 %–8 %).

Journal ArticleDOI
TL;DR: In this article , a research vision for virtual sensing that combines Artificial Intelligence (AI) and Internet of Things (IoT) to increase the coverage of air quality information is presented.
Abstract: The present article contributes a research vision for virtual sensing that combines Artificial Intelligence (AI) and Internet of Things (IoT) to increase the coverage of air quality information. Virtual sensors take advantage of correlations between different pollutants to estimate the concentrations of pollutants for which no affordable sensors are available. We cover key requirements and challenges, reflecting on the current state-of-the-art and identifying key research challenges. We also demonstrate the potential and feasibility of virtual sensing through experiments conducted with data from Helsinki, Finland, which show how standard $\text{PM}_{2.5}$ and temperature measurements can be used to provide reliable estimates of CO2 and black carbon concentrations. We also discuss potential applications that can benefit from the implementation of virtual air pollution sensors and establish a research roadmap for the path forward.

TL;DR: In this paper , the authors discuss the role of highly oxygenated organic molecules (HOMs) in secondary organic molecules, including HOMs, in the control of secondary organic.
Abstract: . Condensable vapors, including highly oxygenated organic molecules (HOM), govern secondary organic

Posted ContentDOI
15 May 2023
TL;DR: In this paper , the authors highlight key areas for Arctic research from the atmospheric, oceanic, cryospheric, and social perspectives, and summarize recent developments in a holistic understanding of the Arctic climate system carried out in in a frame of AASCO Arctic Science Collaboration project in 2020-2022.
Abstract: An improved understanding of the land - atmosphere - ocean feedbacks and interactions is needed for the future strategies for sustainable development of the Arctic region. An understading of the Arctic climate system and&#160; the implementation of the related processes in climate models are required to provide advice for policy actions.&#160; In this presenation, we highlight key areas for Arctic research from the atmospheric, oceanic, cryospheric, and social perspectives, and summarize recent developments in a holistic understanding of the Arctic climate system carried out in in a frame of AASCO Arctic Science Collaboration project in 2020-2022. We also provide an outlook of the links between research and its societal impacts.

Posted ContentDOI
24 May 2023
TL;DR: In this paper , an evaluation of the regional chemical transport model (CTM) WRF-CHIMERE (v2020r2) for the formation of biogenic secondary organic aerosol (BSOA) with a focus over the Finnish boreal forest is presented.
Abstract: Abstract. We present an evaluation of the regional chemical transport model (CTM) WRF-CHIMERE (v2020r2) for the formation of biogenic secondary organic aerosol (BSOA) with a focus over the Finnish boreal forest. Formation processes of biogenic aerosols are still affected by different sources of uncertainties, and model’s predictions largely varies depending on the levels of details of the adopted chemical and emissions schemes. In this study, air quality simulations were conducted for the astronomical summer of the year 2019 using different organic aerosol (OA) schemes (as currently available in literature) to treat the formation of BSOA. First, we performed a set of simulations in the framework of the volatility basis set (VBS) scheme carrying different assumptions for the treatment of the aging processes of BSOA. The model results were compared against high-resolution (i.e., 1-hour) organic aerosol mass and size distribution measurements performed at the Station for Measuring Ecosystem–Atmosphere Relations (SMEAR-II) site located in Hyytiälä, in addition to other gas-phases species such as ozone (O3), nitrogen oxides (NOx) and BVOCs measurements of isoprene (C5H10) and monoterpenes. We show that WRF-CHIMERE could well reproduce the diurnal variation of the measured OA concentrations for all the investigated scenarios (along with standard meteorological parameters) as well as the increase in concentrations during specific heat waves episodes. However, the modeled OA concentrations largely varied between the schemes use to describe the aging processes of BSOA. Additionally, comparisons with isoprene and monoterpenes air concentrations revealed that the model captured the observed monoterpenes concentrations, but isoprene was largely overestimated, a feature that was mainly attributed to the overstated biogenic emissions of isoprene. We investigated the potential consequences of such an overestimation by inhibiting isoprene emissions from the modeling system. Results indicated that the modeled BSOA concentrations generally increased compared to the base-case simulation with enabled isoprene emissions. We attributed the latest to a shift in the reactions of monoterpenes compounds against available radicals, as further suggested by the reduction in α-pinene modeled air concentrations. Finally, we briefly analyze the differences in the modeled Cloud Liquid Water Content (clwc) among the simulations carrying different chemical scheme for the treatment of the aging processes of BSOA. Model’s results indicated an increase in clwc values at the SMEAR-II site, for simulation with higher biogenic organic aerosol loads, likely as a results of the increased numbered of biogenic aerosol particles capable of activating cloud droplets.

Posted ContentDOI
14 Mar 2023
TL;DR: In this paper , the authors used a Lagrangian single-particle growth model to identify the cause of decreasing mode diameter (DMD) events in Hada al Sham, western Saudi Arabia during 2013-2015.
Abstract: Abstract. The majority of new particle formation (NPF) events observed in Hada al Sham, western Saudi Arabia during 2013–2015, showed an unusual progression where the diameter of a newly formed particle mode clearly started to decrease after the growth phase. Many previous studies refer to this phenomenon as aerosol shrinkage. We will opt to use the term decreasing mode diameter (DMD) event, as shrinkage bears the connotation of reduction in the sizes of individual particles, which does not have to be the case. While several previous studies speculate that ambient DMD events are caused by evaporation of semivolatile species, no concrete evidence has been provided, partly due to the rarity of the DMD events. The frequent occurrence and large number of DMD events in our observations allow us to perform statistically significant comparisons between the DMD and the typical NPF events that undergo continuous growth. In our analysis, we find no clear connection between DMD events and factors that might trigger particle evaporation at the measurement site. Instead, examination of air mass source areas and the horizontal distribution of anthropogenic emissions in the study region leads us to believe that the observed DMD events could be caused by advection of smaller, less-grown, particles to the measurement site after the more-grown ones. Using a Lagrangian single-particle growth model, we confirm that the observed particle size development, including the DMD events, can be reproduced by non-volatile condensation, and thus without evaporation. In fact, when considering increasing contributions from a semivolatile compound, we find deteriorating agreement between the measurements and the model. Based on these results, it seems unlikely that evaporation of semivolatile compounds would play a significant role in the DMD events at our measurement site. In the proposed non-volatile explanation, the DMD events are a result of the observed particles having spent an increasing fraction of their lifetime in a lower growth environment, mainly enabled by the lower precursor vapor concentrations further away from the measurement site combined with decreasing photochemical production of condensable vapors in the afternoon. The correct identification of the cause of the DMD events is important as the fate and the climate-relevance of the newly formed particles heavily depends on it — if the particles evaporated, their net contribution towards larger and climatically active particle sizes would be greatly reduced. Our findings highlight the importance of considering transport-related effects in NPF event analysis, which is an often overlooked factor in such studies.

Journal ArticleDOI
TL;DR: In this article , the authors show that soil-emitted compounds, together with nitrogen dioxide and carbon dioxide, contribute to environmental degradation in agricultural land at Qvidja in Southern Finland.
Abstract: Agriculture provides people with food, but causes environmental challenges. Via comprehensive observations on a agricultural land at Qvidja in Southern Finland, we were able to show that soil-emitted compounds, together...

DOI
TL;DR: This paper showed that downward mixing of sulfur dioxide from the residual layer aloft enhances ground level SO2, which in turn elevates sulfuric acid dimer after rapid SO2 oxidation in the polluted air.
Abstract: New particle formation (NPF) is a global phenomenon that significantly influences climate. NPF also contributes to haze, with pronounced negative impacts on human health. Theory and observations both show that nucleation is favored during clean days and inhibited during haze episodes due to a high pre‐existing condensation sink (CS). Here we show that the surprising occurrence of NPF during haze days in Beijing is associated with a high concentration of sulfuric acid dimers. With both field observations and model simulations, we demonstrate that downward mixing of sulfur dioxide (SO2) from the residual layer aloft enhances ground level SO2, which in turn elevates sulfuric acid dimer after rapid SO2 oxidation in the polluted air. Our results address a key gap between the source of SO2 and its atmospheric oxidation products during haze conditions in a megacity, Beijing, providing a missing link in a complete chain describing NPF in the polluted atmosphere.

Posted ContentDOI
05 Apr 2023
TL;DR: The Portable Ice Nucleation Chamber 2 (PINCii) as discussed by the authors is a continuous flow diffusion chamber (CFDC) for measuring ice nucleating particles (INPs), which is a vertically oriented parallel plate CFDC that has been engineered to improve upon limitations of previous generations of portable CFDCs.
Abstract: Abstract. The Portable Ice Nucleation Chamber 2 (PINCii) is a newly developed continuous flow diffusion chamber (CFDC) for measuring ice nucleating particles (INPs). PINCii is a vertically-oriented parallel plate CFDC that has been engineered to improve upon limitations of previous generations of portable CFDCs. This work presents a detailed description of the PINCii instrument and the upgrades that make it unique compared to other operational CFDCs. The PINCii design offers several possibilities for improved INP measurements. Notably, a specific icing procedure results in low background particle counts, which demonstrates the potential for PINCii to measure INPs in very low concentrations. High spatial resolution walltemperature mapping enables the identification of temperature inhomogeneities on the chamber walls. This feature is used to introduce and discuss a new method to analyze CFDC data. A temperature gradient can be maintained throughout the evaporation section in addition to the main chamber, which enables PINCii to be used to study droplet activation processes or to extend ice crystal growth. A series of both liquid droplet activation and ice nucleation experiments were conducted at temperature and saturation conditions that span the spectrum of PINCii’s operational conditions (−50 ≤ temperature ≤ −15 °C and 100 ≤ relative humidity with respect to ice ≤ 160 %) to demonstrate the capabilities of PINCii. In addition, typical sources of uncertainty in CFDCs, including particle background, particle loss, and variations in aerosol lamina temperature and relative humidity, are quantified and discussed for PINCii.

Journal ArticleDOI
TL;DR: In this article , the chemical composition of secondary organic aerosol nanoparticles from experimental studies of α-pinene ozonolysis was compared. But the results measured by different techniques are missing.
Abstract: Abstract. Currently, the complete chemical characterization of nanoparticles (< 100 nm) represents an analytical challenge, since these particles are abundant in number but have negligible mass. Several methods for particle-phase characterization have been recently developed to better detect and infer more accurately the sources and fates of sub-100 nm particles, but a detailed comparison of different approaches is missing. Here we report on the chemical composition of secondary organic aerosol (SOA) nanoparticles from experimental studies of α-pinene ozonolysis at −50, −30, and −10 ∘C and intercompare the results measured by different techniques. The experiments were performed at the Cosmics Leaving OUtdoor Droplets (CLOUD) chamber at the European Organization for Nuclear Research (CERN). The chemical composition was measured simultaneously by four different techniques: (1) thermal desorption–differential mobility analyzer (TD–DMA) coupled to a NO3- chemical ionization–atmospheric-pressure-interface–time-of-flight (CI–APi–TOF) mass spectrometer, (2) filter inlet for gases and aerosols (FIGAERO) coupled to an I− high-resolution time-of-flight chemical ionization mass spectrometer (HRToF-CIMS), (3) extractive electrospray Na+ ionization time-of-flight mass spectrometer (EESI-TOF), and (4) offline analysis of filters (FILTER) using ultra-high-performance liquid chromatography (UHPLC) and heated electrospray ionization (HESI) coupled to an Orbitrap high-resolution mass spectrometer (HRMS). Intercomparison was performed by contrasting the observed chemical composition as a function of oxidation state and carbon number, by estimating the volatility and comparing the fraction of volatility classes, and by comparing the thermal desorption behavior (for the thermal desorption techniques: TD–DMA and FIGAERO) and performing positive matrix factorization (PMF) analysis for the thermograms. We found that the methods generally agree on the most important compounds that are found in the nanoparticles. However, they do see different parts of the organic spectrum. We suggest potential explanations for these differences: thermal decomposition, aging, sampling artifacts, etc. We applied PMF analysis and found insights of thermal decomposition in the TD–DMA and the FIGAERO.

TL;DR: The Portable Ice Nucleation Chamber 2 (PINCii) as mentioned in this paper is a continuous flow diffusion chamber (CFDC) for measuring ice nucleating particles (INPs), which has been engineered to improve upon limitations of previous generations of portable CFDCs.
Abstract: The Portable Ice Nucleation Chamber 2 (PINCii) is a newly developed continuous flow diffusion chamber (CFDC) for measuring ice nucleating particles (INPs). PINCii is a vertically-oriented parallel plate CFDC that has been engineered to improve upon limitations of previous generations of portable CFDCs. This work presents a detailed description of the PINCii instrument and the upgrades that make it unique compared to other operational CFDCs. The PINCii design offers several possibilities for improved INP measurements. Notably, a specific icing procedure results in low background particle 5 counts, which demonstrates the potential for PINCii to measure INPs in very low concentrations. High spatial resolution walltemperature mapping enables the identification of temperature inhomogeneities on the chamber walls. This feature is used to introduce and discuss a new method to analyze CFDC data. A temperature gradient can be maintained throughout the evaporation section in addition to the main chamber, which enables PINCii to be used to study droplet activation processes or to extend ice crystal growth. A series of both liquid droplet activation and ice nucleation experiments were conducted at 10 temperature and saturation conditions that span the spectrum of PINCii’s operational conditions (-50 ≤ temperature ≤−15 ◦C and 100≤ relative humidity with respect to ice≤ 160 %) to demonstrate the capabilities of PINCii. In addition, typical sources of uncertainty in CFDCs, including particle background, particle loss, and variations in aerosol lamina temperature and relative humidity, are quantified and discussed for PINCii. 1 https://doi.org/10.5194/amt-2023-51 Preprint. Discussion started: 5 April 2023 c © Author(s) 2023. CC BY 4.0 License.

Posted ContentDOI
08 May 2023
TL;DR: In this article , the authors studied the HOM composition, measured with two nitrate-based chemical ionization mass spectrometers and analyzed using positive matrix factorization (PMF) during late spring at two locations in Helsinki, Finland.
Abstract: Abstract. Condensable vapors, including highly oxygenated organic molecules (HOM), govern secondary organic aerosol formation and thereby impact the amount, composition, and properties (e.g. toxicity) of aerosol particles. These vapors are mainly formed in the atmosphere through the oxidation of volatile organic compounds (VOCs). Urban environments contain a variety of VOCs from both anthropogenic and biogenic sources, as well as other species, for instance nitrogen oxides (NOx), that can greatly influence the formation pathways of condensable vapors like HOM. During the last decade, our understanding of HOM composition and formation has increased dramatically, with most experiments performed in forests or in heavily polluted urban areas. However, studies on the main sources for condensable vapors and secondary organic aerosols (SOA) in biogenically influenced urban areas, such as suburbs or small cities, has been limited. Here, we studied the HOM composition, measured with two nitrate-based chemical ionization mass spectrometers and analyzed using positive matrix factorization (PMF), during late spring at two locations in Helsinki, Finland. Comparing the measured concentrations at a street canyon site and a nearby urban background station, we found a strong influence of NOx on the HOM formation at both stations, in agreement with previous studies conducted in urban areas. Even though both stations are dominated by anthropogenic VOCs, most of the identified condensable vapors originated from biogenic precursors. This implies that in Helsinki anthropogenic activities mainly influence HOM formation by the effect of NOx on the biogenic VOC oxidation. At the urban background station, we found condensable vapors formed from two biogenic VOC groups (monoterpenes and sesquiterpenes), while at the street canyon, the only identified biogenic HOM precursor was monoterpenes. At the street canyon, we also observed oxidation products of aliphatic VOCs, which were not observed at the urban background station. The only factors that clearly correlate (temporally and composition-wise) between the two stations contained monoterpene-derived dimers. This suggests that HOM composition and formation mechanisms are strongly dependent on localized emissions and the oxidative environment in these biogenically influenced urban areas, and they can change considerably also within distances of one kilometer within the urban environment.

Journal ArticleDOI
TL;DR: In this article , the authors demonstrate the presence of Oxidized organic molecules (OOMs) produced from biogenic volatile organic compounds are believed to contribute to aerosol formation in the tropical free troposphere (FT), but without direct chemical observations.
Abstract: New particle formation (NPF) in the tropical free troposphere (FT) is a globally important source of cloud condensation nuclei, affecting cloud properties and climate. Oxidized organic molecules (OOMs) produced from biogenic volatile organic compounds are believed to contribute to aerosol formation in the tropical FT, but without direct chemical observations. We performed in-situ molecular-level OOMs measurements at the Bolivian station Chacaltaya at 5240 meters above sea level, on the western edge of Amazonia. For the first time, we demonstrate the presence of OOMs, mainly with 4-5 carbon atoms, in both gas-phase and particle-phase (in terms of mass contribution) measurements in tropical FT air from Amazonia. These observations, combined with air mass history analyses, indicate that the observed OOMs are linked to isoprene emitted from the rainforests hundreds of kilometers away. Based on particle-phase measurements, we find that these compounds can contribute to NPF, at least the growth of newly formed nanoparticles, in the tropical FT on a continental scale. Thus, our study is a fundamental and significant step in understanding the aerosol formation process in the tropical FT.