scispace - formally typeset
Search or ask a question

Showing papers by "Urmas Kõljalg published in 2013"


Journal ArticleDOI
TL;DR: All fungal species represented by at least two ITS sequences in the international nucleotide sequence databases are now given a unique, stable name of the accession number type, and the term ‘species hypothesis’ (SH) is introduced for the taxa discovered in clustering on different similarity thresholds.
Abstract: The nuclear ribosomal internal transcribed spacer (ITS) region is the formal fungal barcode and in most cases the marker of choice for the exploration of fungal diversity in environmental samples. Two problems are particularly acute in the pursuit of satisfactory taxonomic assignment of newly generated ITS sequences: (i) the lack of an inclusive, reliable public reference data set and (ii) the lack of means to refer to fungal species, for which no Latin name is available in a standardized stable way. Here, we report on progress in these regards through further development of the UNITE database (http://unite.ut.ee) for molecular identification of fungi. All fungal species represented by at least two ITS sequences in the international nucleotide sequence databases are now given a unique, stable name of the accession number type (e.g. Hymenoscyphus pseudoalbidus|GU586904|SH133781.05FU), and their taxonomic and ecological annotations were corrected as far as possible through a distributed, third-party annotation effort. We introduce the term ‘species hypothesis’ (SH) for the taxa discovered in clustering on different similarity thresholds (97–99%). An automatically or manually designated sequence is chosen to represent each such SH. These reference sequences are released (http://unite.ut.ee/repository.php) for use by the scientific community in, for example, local sequence similarity searches and in the QIIME pipeline. The system and the data will be updated automatically as the number of public fungal ITS sequences grows. We invite everybody in the position to improve the annotation or metadata associated with their particular fungal lineages of expertise to do so through the new Web-based sequence management system in UNITE.

2,605 citations


Journal ArticleDOI
TL;DR: Taking advantage of the collective experience of six research groups, the different stages involved in fungal community analysis are reviewed, from field sampling via laboratory procedures to bioinformatics and data interpretation, and potential pitfalls, alternatives, and solutions are discussed.
Abstract: Summary Novel high-throughput sequencing methods outperform earlier approaches in terms of resolution and magnitude. They enable identification and relative quantification of community members and offer new insights into fungal community ecology. These methods are currently taking over as the primary tool to assess fungal communities of plant-associated endophytes, pathogens, and mycorrhizal symbionts, as well as free-living saprotrophs. Taking advantage of the collective experience of six research groups, we here review the different stages involved in fungal community analysis, from field sampling via laboratory procedures to bioinformatics and data interpretation. We discuss potential pitfalls, alternatives, and solutions. Highlighted topics are challenges involved in: obtaining representative DNA/RNA samples and replicates that encompass the targeted variation in community composition, selection of marker regions and primers, options for amplification and multiplexing, handling of sequencing errors, and taxonomic identification. Without awareness of methodological biases, limitations of markers, and bioinformatics challenges, large-scale sequencing projects risk yielding artificial results and misleading conclusions.

768 citations


Journal ArticleDOI
TL;DR: The biogeography of ECM fungi is consistent with ancient host migration patterns from Eurasia to North America and from southern Europe to northern Europe after the last glacial maximum, indicating codispersal of hosts and their mycobionts.
Abstract: Summary Much of the macroecological information about microorganisms is confounded by the lack of standardized methodology, paucity of metadata and sampling effect of a particular substrate or interacting host taxa. This study aims to disentangle the relative effects of biological, geographical and edaphic variables on the distribution of Alnus-associated ectomycorrhizal (ECM) fungi at the global scale by using comparable sampling and analysis methods. Ribosomal DNA sequence analysis revealed 146 taxa of ECM fungi from 22 Alnus species across 96 sites worldwide. Use of spatial and phylogenetic eigenvectors along with environmental variables in model selection indicated that phylogenetic relations among host plants and geographical links explained 43 and 10%, respectively,in ECM fungal community composition, whereas soil calcium concentration positively influenced taxonomic richness. Intrageneric phylogenetic relations among host plants and regional processes largely account for the global biogeographic distribution of Alnus-associated ECM fungi. The biogeography of ECM fungi is consistent with ancient host migration patterns from Eurasia to North America and from southern Europe to northern Europe after the last glacial maximum, indicating codispersal of hosts and their mycobionts.

179 citations


Journal ArticleDOI
TL;DR: Spatial processes play a stronger role and over a greater scale in structuring local communities of ectomycorrhizal fungi than previously anticipated, particularly in ecosystems with greater vegetation age and closer to the equator, and the relatively strong latitude effect on distance decay of lineage-level community similarity suggests that climate affects large-scale spatial processes and may cause phylogenetic clustering of ectonic fungi at the global scale.
Abstract: Summary 1. Despite recent advances in understanding community ecology of ectomycorrhizal fungi, little is known about their spatial patterning and the underlying mechanisms driving these patterns across different ecosystems. 2. This meta-study aimed to elucidate the scale, rate and causes of spatial structure of ectomycorrhizal fungal communities in different ecosystems by analysing 16 and 55 sites at the local and global scales, respectively. We examined the distance decay of similarity relationship in species- and phylogenetic lineage-based communities in relation to sampling and environmental variables. 3. Tropical ectomycorrhizal fungal communities exhibited stronger distance-decay patterns compared to non-tropical communities. Distance from the equator and sampling area were the main determinants of the extent of distance decay in fungal communities. The rate of distance decay was negatively related to host density at the local scale. At the global scale, lineage-level community similarity decayed faster with latitude than with longitude. 4. Synthesis. Spatial processes play a stronger role and over a greater scale in structuring local communities of ectomycorrhizal fungi than previously anticipated, particularly in ecosystems with greater vegetation age and closer to the equator. Greater rate of distance decay occurs in ecosystems with lower host density that may stem from increasing dispersal and establishment limitation. The relatively strong latitude effect on distance decay of lineage-level community similarity suggests that climate affects large-scale spatial processes and may cause phylogenetic clustering of ectomycorrhizal fungi at the global scale.

130 citations


Journal ArticleDOI
TL;DR: The authors' analyses suggest that in general, autotrophic orchids form root symbiosis with available Ceratobasidiaceae isolates in soil and that Ectomycorrhiza-forming capability has evolved twice within the CeratOBasidi Families and it had a strong influence on the evolution of mycoheterotrophy and host specificity in certain orchid taxa.

80 citations


Journal ArticleDOI
TL;DR: The importance of habitat isolation and dispersal limitation of EcM fungi in their potential of host range expansion is demonstrated and the great number of shared and possibly compatible symbiotic species between exotic Pinaceae and local Fagales (Fagaceae and Betulaceae) may reflect their evolutionary adaptations and/or ancestral compatibility with one another.
Abstract: Introduction of exotic plants change soil microbial communities which may have detrimental ecological consequences for ecosystems. In this study, we examined the community structure and species richness of ectomycorrhizal (EcM) fungi associated with exotic pine plantations in relation to adjacent native ectomycorrhizal trees in Iran to elucidate the symbiont exchange between distantly related hosts, i.e. Fagales (Fagaceae and Betulaceae) and Pinaceae. The combination of morphological and molecular identification approaches revealed that 84.6 % of species with more than one occurrence (at least once on pines) were shared with native trees and only 5.9 % were found exclusively on pine root tips. The community diversity of ectomycorrhizal fungi in the pine plantations adjacent to native EcM trees was comparable to their adjacent native trees, but the isolated plantations hosted relatively a species-poor community. Specific mycobionts of conifers were dominant in the isolated plantation while rarely found in the plantations adjacent to native EcM trees. These data demonstrate the importance of habitat isolation and dispersal limitation of EcM fungi in their potential of host range expansion. The great number of shared and possibly compatible symbiotic species between exotic Pinaceae and local Fagales (Fagaceae and Betulaceae) may reflect their evolutionary adaptations and/or ancestral compatibility with one another.

67 citations


Journal ArticleDOI
TL;DR: The two Lenzitopsis species showed a more than 5% difference in internal transcribed spacer sequences, and this is the second genus of the order where mycorrhizal life style is unknown, besides of Amaurodon.

5 citations