scispace - formally typeset
Search or ask a question

Showing papers by "Vardha N. Bennert published in 2011"


Journal ArticleDOI
TL;DR: In this paper, the authors combine the Hubble Space Telescope images from the Great Observatories Origins Deep Survey with archival Very Large Telescope and Keck spectra of a sample of 11 X-ray-selected broad-line active galactic nuclei in the redshift range 1 < z < 2 to study the black-hole-mass-stellar-mass relation out to a look-back time of 10Gyr.
Abstract: We combine Hubble Space Telescope images from the Great Observatories Origins Deep Survey with archival Very Large Telescope and Keck spectra of a sample of 11 X-ray-selected broad-line active galactic nuclei in the redshift range 1 < z < 2 to study the black-hole-mass-stellar-mass relation out to a look-back time of 10Gyr. Stellar masses of the spheroidal component (M sph,*) are derived from multi-filter surface photometry. Black hole masses (MBH) are estimated from the width of the broad MgII emission line and the 3000 A nuclear luminosity. Comparing with a uniformly measured local sample and taking into account selection effects, we find evolution in the form MBH/Msph,*(1 + z) 1.96 ± 0.55, in agreement with our earlier studies based on spheroid luminosity. However, this result is more accurate because it does not require a correction for luminosity evolution and therefore avoids the related and dominant systematic uncertainty. We also measure total stellar masses (Mhost,*). Combining our sample with data from the literature, we find M BH/Mhost,*(1 + z) 1.15 ±0.15, consistent with the hypothesis that black holes (in the range MBH ∼108-9 M⊙) pre-date the formation of their host galaxies. Roughly, one-third of our objects reside in spiral galaxies; none of the host galaxies reveal signs of interaction or major merger activity. Combined with the slower evolution in host stellar masses compared to spheroid stellar masses, our results indicate that secular evolution or minor mergers play a non-negligible role in growing both BHs and spheroids. © 2011. The American Astronomical Society. All rights reserved.

190 citations


Journal ArticleDOI
TL;DR: The Lick AGN Monitoring Project 2011 observing campaign was carried out over the course of 11 weeks in spring 2011, and the first results from this program, a measurement of the broad-line reverberation lag in the Seyfert 1 galaxy Mrk 50, were presented in this paper.
Abstract: The Lick AGN Monitoring Project 2011 observing campaign was carried out over the course of 11 weeks in spring 2011. Here we present the first results from this program, a measurement of the broad-line reverberation lag in the Seyfert 1 galaxy Mrk 50. Combining our data with supplemental observations obtained prior to the start of the main observing campaign, our data set covers a total duration of 4.5 months. During this time, Mrk 50 was highly variable, exhibiting a maximum variability amplitude of a factor of ~4 in the U-band continuum and a factor of ~2 in the Hβ line. Using standard cross-correlation techniques, we find that Hβ and Hγ lag the V-band continuum by τ_(cen) = 10.64^(+0.82)_(–0.93) and 8.43^(+1.30)_(–1.28) days, respectively, while the lag of He II λ4686 is unresolved. The Hβ line exhibits a symmetric velocity-resolved reverberation signature with shorter lags in the high-velocity wings than in the line core, consistent with an origin in a broad-line region (BLR) dominated by orbital motion rather than infall or outflow. Assuming a virial normalization factor of f = 5.25, the virial estimate of the black hole mass is (3.2 ± 0.5) × 10^7 M_☉. These observations demonstrate that Mrk 50 is among the most promising nearby active galaxies for detailed investigations of BLR structure and dynamics.

131 citations


Journal ArticleDOI
TL;DR: In this paper, the authors presented high-quality Keck/LRIS long-slit spectroscopy of a pilot sample of 25 local active galaxies selected from the SDSS (0.02 { 10{sup 7} M{sub sun}) to study the relations between black hole mass (M{sub BH}) and host-galaxy properties.
Abstract: We present high-quality Keck/LRIS long-slit spectroscopy of a pilot sample of 25 local active galaxies selected from the SDSS (0.02 { 10{sup 7} M{sub sun}) to study the relations between black hole mass (M{sub BH}) and host-galaxy properties. We determine stellar kinematics of the host galaxy, deriving stellar-velocity dispersion profiles and rotation curves from three spectral regions (including CaH and K, MgIb triplet, and Ca II triplet). In addition, we perform surface photometry on SDSS images, using a newly developed code for joint multi-band analysis. BH masses are estimated from the width of the H{beta} emission line and the host-galaxy free 5100 A active galactic nucleus (AGN) luminosity. Combining results from spectroscopy and imaging allows us to study four M{sub BH} scaling relations: M{sub BH}-{sigma}, M{sub BH}-L{sub sph}, M{sub BH}-M{sub sph,*}, and M{sub BH}-M{sub sph,dyn}. We find the following results. First, stellar-velocity dispersions determined from aperture spectra (e.g., SDSS fiber spectra or unresolved data from distant galaxies) can be biased, depending on aperture size, AGN contamination, and host-galaxy morphology. However, such a bias cannot explain the offset seen in the M{sub BH}-{sigma} relation at higher redshifts. Second, while the CaT region is the cleanest to determine stellar-velocitymore » dispersions, both the MgIb region, corrected for Fe II emission, and the CaHK region, although often swamped by the AGN power-law continuum and emission lines, can give results accurate to within a few percent. Third, the M{sub BH} scaling relations of our pilot sample agree in slope and scatter with those of other local active and inactive galaxies. In the next papers of the series we will quantify the scaling relations, exploiting the full sample of {approx}100 objects.« less

126 citations


Journal ArticleDOI
TL;DR: The Lick AGN Monitoring Project 2011 observing campaign was carried out over the course of 11 weeks in Spring 2011 as discussed by the authors, with the first results from this program, a measurement of the broad-line reverberation lag in the Seyfert 1 galaxy Mrk 50.
Abstract: The Lick AGN Monitoring Project 2011 observing campaign was carried out over the course of 11 weeks in Spring 2011. Here we present the first results from this program, a measurement of the broad-line reverberation lag in the Seyfert 1 galaxy Mrk 50. Combining our data with supplemental observations obtained prior to the start of the main observing campaign, our dataset covers a total duration of 4.5 months. During this time, Mrk 50 was highly variable, exhibiting a maximum variability amplitude of a factor of 4 in the U-band continuum and a factor of 2 in the H-beta line. Using standard cross-correlation techniques, we find that H-beta and H-gamma lag the V-band continuum by tau_cen = 10.64(-0.93,+0.82) and 8.43(-1.28,+1.30) days, respectively, while the lag of He II 4686 is unresolved. The H-beta line exhibits a symmetric velocity-resolved reverberation signature with shorter lags in the high-velocity wings than in the line core, consistent with an origin in a broad-line region dominated by orbital motion rather than infall or outflow. Assuming a virial normalization factor of f=5.25, the virial estimate of the black hole mass is (3.2+-0.5)*10^7 solar masses. These observations demonstrate that Mrk 50 is among the most promising nearby active galaxies for detailed investigations of broad-line region structure and dynamics.

112 citations


Journal ArticleDOI
TL;DR: In this paper, the authors presented ultraviolet (UV) and optical observations of SN 2009ig, starting about 1 day after explosion until around maximum brightness, and provided a precise measurement of 17.13 +/- 0.07 days for the SN rise time.
Abstract: Supernova (SN) 2009ig was discovered 17 hours after explosion by the Lick Observatory Supernova Search, promptly classified as a normal Type Ia SN (SN Ia), peaked at V = 13.5 mag, and was equatorial, making it one of the foremost supernovae for intensive study in the last decade. Here, we present ultraviolet (UV) and optical observations of SN 2009ig, starting about 1 day after explosion until around maximum brightness. Our data include excellent UV and optical light curves, 25 premaximum optical spectra, and 8 UV spectra, including the earliest UV spectrum ever obtained of a SN Ia. SN 2009ig is a relatively normal SN Ia, but does display high-velocity ejecta - the ejecta velocity measured in our earliest spectra (v ~ -23,000 km/s for Si II 6355) is the highest yet measured in a SN Ia. The spectral evolution is very dramatic at times earlier than 12 days before maximum brightness, but slows after that time. The early-time data provide a precise measurement of 17.13 +/- 0.07 days for the SN rise time. The optical color curves and early-time spectra are significantly different from template light curves and spectra used for light-curve fitting and K-corrections, indicating that the template light curves and spectra do not properly represent all Type Ia supernovae at very early times. In the age of wide-angle sky surveys, SNe like SN 2009ig that are nearby, bright, well positioned, and promptly discovered will still be rare. As shown with SN 2009ig, detailed studies of single events can provide significantly more information for testing systematic uncertainties related to SN Ia distance estimates and constraining progenitor and explosion models than large samples of more distant SNe.

106 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used the Kast Spectrograph at the Lick 3 m telescope and the Katzman Automatic Imaging Telescope at Lick Observatory and with the 0.9 m telescope at the Brigham Young University West Mountain Observatory over the same period to determine the black hole mass in Zw 229-015 from Hβ reverberation mapping.
Abstract: The Seyfert 1 galaxy Zw 229-015 is among the brightest active galaxies being monitored by the Kepler mission. In order to determine the black hole mass in Zw 229-015 from Hβ reverberation mapping, we have carried out nightly observations with the Kast Spectrograph at the Lick 3 m telescope during the dark runs from 2010 June through December, obtaining 54 spectroscopic observations in total. We have also obtained nightly V-band imaging with the Katzman Automatic Imaging Telescope at Lick Observatory and with the 0.9 m telescope at the Brigham Young University West Mountain Observatory over the same period. We detect strong variability in the source, which exhibited more than a factor of two change in broad Hβ flux. From cross-correlation measurements, we find that the Hβ light curve has a rest-frame lag of 3.86+0.69 –0.90 days with respect to the V-band continuum variations. We also measure reverberation lags for Hα and Hγ and find an upper limit to the Hδ lag. Combining the Hβ lag measurement with a broad Hβ width of σline = 1590 ± 47 km s–1 measured from the rms variability spectrum, we obtain a virial estimate of M BH = 1.00+0.19 –0.24 × 107 M ☉ for the black hole in Zw 229-015. As a Kepler target, Zw 229-015 will eventually have one of the highest-quality optical light curves ever measured for any active galaxy, and the black hole mass determined from reverberation mapping will serve as a benchmark for testing relationships between black hole mass and continuum variability characteristics in active galactic nuclei.

97 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used the Kast Spectrograph at the Lick 3m telescope during the dark runs from June through December 2010, obtaining 54 spectroscopic observations in total.
Abstract: The Seyfert 1 galaxy Zw 229-015 is among the brightest active galaxies being monitored by the Kepler mission. In order to determine the black hole mass in Zw 229-015 from H-beta reverberation mapping, we have carried out nightly observations with the Kast Spectrograph at the Lick 3m telescope during the dark runs from June through December 2010, obtaining 54 spectroscopic observations in total. We have also obtained nightly V-band imaging with the Katzman Automatic Imaging Telescope at Lick Observatory and with the 0.9m telescope at the Brigham Young University West Mountain Observatory over the same period. We detect strong variability in the source, which exhibited more than a factor of 2 change in broad H-beta flux. From cross-correlation measurements, we find that the H-beta light curve has a rest-frame lag of 3.86(+0.69,-0.90) days with respect to the V-band continuum variations. We also measure reverberation lags for H-alpha and H-gamma and find an upper limit to the H-delta lag. Combining the H-beta lag measurement with a broad H-beta width of sigma = 1590+/-47 km/s measured from the root-mean-square variability spectrum, we obtain a virial estimate of M_BH = 1.00(-0.24,+0.19)*10^7 solar masses for the black hole in Zw 229-015. As a Kepler target, Zw 229-015 will eventually have one of the highest-quality optical light curves ever measured for any active galaxy, and the black hole mass determined from reverberation mapping will serve as a benchmark for testing relationships between black hole mass and continuum variability characteristics in active galactic nuclei.

94 citations


Journal ArticleDOI
TL;DR: In this paper, the mass of a supermassive black hole in an active galactic nucleus (Arp 151) was estimated based on the motion of the gas responsible for the broad emission lines.
Abstract: Supermassive black holes are believed to be ubiquitous at the centers of galaxies. Measuring their masses is extremely challenging yet essential for understanding their role in the formation and evolution of cosmic structure. We present a direct measurement of the mass of a black hole in an active galactic nucleus (Arp 151) based on the motion of the gas responsible for the broad emission lines. By analyzing and modeling spectroscopic and photometric time series, we find that the gas is well described by a disk or torus with an average radius of 3.99 ± 1.25 light days and an opening angle of 68.9+21.4 – 17.2 deg, viewed at an inclination angle of 67.8 ± 7.8 deg (that is, closer to face-on than edge-on). The black hole mass is inferred to be 106.51 ± 0.28 M ☉. The method is fully general and can be used to determine the masses of black holes at arbitrary distances, enabling studies of their evolution over cosmic time.

86 citations


Journal ArticleDOI
TL;DR: In this article, the authors measured quasar-to-host galaxy light contributions via semi-automated two-dimensional light profile fits of point-spread-function-subtracted images.
Abstract: We present images of 29 post-starburst quasars (PSQs) from a Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) Wide Field Channel Snapshot program. These broadlined active galactic nuclei (AGNs) possess the spectral signatures of massive (M burst ~ 1010 M ☉), moderate-aged stellar populations (hundreds of Myr). Thus, their composite nature provides insight into the AGN-starburst connection. We measure quasar-to-host galaxy light contributions via semi-automated two-dimensional light profile fits of point-spread-function-subtracted images. We examine the host morphologies and model the separate bulge and disk components. The HST/ACS-F606W images reveal an equal number of spiral (13/29) and early-type (13/29) hosts, with the remaining three hosts having indeterminate classifications. AGNs hosted by early-type galaxies have on average greater luminosity than those hosted by spiral galaxies. Disturbances such as tidal tails, shells, star-forming knots, and asymmetries are seen as signposts of interaction/merger activity. Disturbances like these were found in 17 of the 29 objects and are evenly distributed among early-type and spiral galaxies. Two of these systems are clearly merging with their companions. Compared to other AGNs of similar luminosity and redshift, these PSQs have a higher fraction of early-type hosts and disturbances. Our most luminous objects with disturbed early-type host galaxies appear to be consistent with merger products. Thus, these luminous galaxies may represent a phase in an evolutionary scenario for merger-driven activity. Our less luminous objects appear to be consistent with Seyfert galaxies not requiring triggering by major mergers. Many of these Seyferts are barred spiral galaxies.

50 citations


Journal ArticleDOI
TL;DR: In this paper, a new set of extended emission-line regions (EELRs) is identified, which trace both the illumination pattern of escaping radiation and its history over the light-travel time from the active galactic nuclei to the gas.
Abstract: Some active galactic nuclei (AGN) are surrounded by extended emission-line regions (EELRs), which trace both the illumination pattern of escaping radiation and its history over the light-travel time from the AGN to the gas. From a new set of such EELRs, we present evidence that the AGN in many Seyfert galaxies undergo luminous episodes 20,000-200,000 years in duration. Motivated by the discovery of the spectacular nebula known as Hanny's Voorwerp, ionized by a powerful AGN which has apparently faded dramatically within ~ 100,000 years, Galaxy Zoo volunteers have carried out both targeted and serendipitous searches for similar emission-line clouds around low-redshift galaxies.We present the resulting list of candidates and describe spectroscopy identifying 19 galaxies with AGN-ionized regions at projected radii > 10 kpc. This search recovered known EELRs and identified additional previously unknown cases, one with detected emission to r = 37 kpc. At least 14/19 are in interacting or merging systems; tidal tails are a prime source of extraplanar ionized gas. We see a mix of one- and two-sided structures, with observed cone angles from 23-112 degrees. We consider the energy balance in the ionized clouds, with lower and upper bounds on ionizing luminosity from recombination and ionization-parameter arguments, and estimate the luminosity of the core from the far-infrared data. The implied ratio of ionizing radiation seen by the clouds to that emitted by the nucleus, for a constant nuclear source, ranges from 0.02 to > 12; 7/19 exceed unity. Small values imply heavily obscured AGN. However, large values may require that the AGN has faded over tens of thousands of years, giving us several examples of systems in which such dramatic long-period variation has occurred; this is the only current technique for addressing these timescales in AGN history. (Abridged)

18 citations


Journal ArticleDOI
TL;DR: In this paper, a sample of 11 X-ray selected broad-line active galactic nuclei in the redshift range 1
Abstract: We combine Hubble Space Telescope images from the Great Observatories Origins Deep Survey with archival Very Large Telescope and Keck spectra of a sample of 11 X-ray selected broad-line active galactic nuclei in the redshift range 1

Journal ArticleDOI
TL;DR: In this article, the relation between H2O maser detection rate and nuclear obscuration was revisited for a sample of 114 Seyfert galaxies drawn from the CfA, 12 μm, and IRAS F25/F60 catalogs.
Abstract: We revisit the relation between H2O maser detection rate and nuclear obscuration for a sample of 114 Seyfert galaxies drawn from the CfA, 12 μm, and IRAS F25/F60 catalogs. These sources have mid-infrared spectra from the Spitzer Space Telescope and we search for accompanying X-ray and [O III] 5007 A fluxes from the literature. We use the strength of the [O IV] 25.9 μm emission line as a tracer of the intrinsic AGN strength. After the normalization by [O IV], the observed X-ray flux provides information about X-ray absorption. The distribution of X-ray/[O IV] flux ratios is significantly different for masers and non-masers: The maser detected Seyfert-2s (Sy 1.8–2.0) populate a distinct X-ray/[O IV] range, which is, on average, about a factor of four lower than the range of Seyfert-2 non-masers and about a factor of ten lower than the range of Seyfert-1s (Sy 1.0–1.5). Non-masers are almost equally distributed over the entire X-ray/[O IV] range. This provides evidence that high nuclear obscuration plays a crucial role in determining the probability of maser detection. Furthermore, after normalization with [O IV], we find a similar but weaker trend for the distribution of the maser detection rate with the absorption of the 7 μm dust continuum. This suggests that the obscuration of the 7 μm continuum occurs on larger spatial scales than that of the X-rays. Hence, in the AGN unified model, at moderate inclinations away from edge-on, the 7 μm dust absorption may occur without any proportionate X-ray absorption. The absorption of [O III] appears unrelated to maser detections. The failure to detect masers in obscured AGN is most likely due to insufficient observational sensitivity.

Journal ArticleDOI
TL;DR: In this article, the relation between H2O maser detection rate and nuclear obscuration was revisited for a sample of 114 Seyfert galaxies, drawn from the CfA, 12um and IRAS F25/F60 catalogs.
Abstract: We revisit the relation between H2O maser detection rate and nuclear obscuration for a sample of 114 Seyfert galaxies, drawn from the CfA, 12um and IRAS F25/F60 catalogs. These sources have mid-infrared spectra from the Spitzer Space Telescope and they are searched for X-ray and [O III], 5007Angstrom fluxes from the literature. We use the strength of the [O IV], 25.9um emission line as tracer for the intrinsic AGN strength. After normalization by [O IV] the observed X-ray flux provides information about X-ray absorption. The distribution of X-ray / [O IV] flux ratios is significantly different for masers and non-masers: The maser detected Seyfert-2s (Sy 1.8-2.0) populate a distinct X-ray / [O IV] range which is, on average, about a factor four lower than the range of Seyfert-2 non-masers and about a factor of ten lower than the range of Seyfert-1s (Sy 1.0-1.5). Non-masers are almost equally distributed over the entire X-ray / [O IV] range. This provides evidence that high nuclear obscuration plays a crucial role for the probability of maser detection. Furthermore, after normalization with [O IV], we find a similar but weaker trend for the distribution of the maser detection rate with the absorption of the 7um dust continuum. This suggests that the obscuration of the 7 um continuum occurs on larger spatial scales than that of the X-rays. Hence, in the AGN unified model, at moderate deviation from edge-on, the 7um dust absorption may occur without proportionate X-ray absorption. The absorption of [O III] appears unrelated to maser detections. The failure to detect masers in obscured AGN is most likely due to insufficient observational sensitivity.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the uncertainties of black hole mass estimates based on the single-epoch (SE) method, using homogeneous and high-quality multiepoch spectra obtained by the Lick Active Galactic Nucleus (AGN) Monitoring Project for 9 local Seyfert 1 galaxies with black hole masses < 10^8 M_sun.
Abstract: We investigate the calibration and uncertainties of black hole mass estimates based on the single-epoch (SE) method, using homogeneous and high-quality multi-epoch spectra obtained by the Lick Active Galactic Nucleus (AGN) Monitoring Project for 9 local Seyfert 1 galaxies with black hole masses < 10^8 M_sun. By decomposing the spectra into their AGN and stellar components, we study the variability of the single-epoch Hbeta line width (full width at half-maximum intensity, FWHM_Hbeta; or dispersion, sigma_Hbeta) and of the AGN continuum luminosity at 5100A (L_5100). From the distribution of the "virial products" (~ FWHM_Hbeta^2 L_5100^0.5 or sigma_Hbeta^2 L_5100^0.5) measured from SE spectra, we estimate the uncertainty due to the combined variability as ~ 0.05 dex (12%). This is subdominant with respect to the total uncertainty in SE mass estimates, which is dominated by uncertainties in the size-luminosity relation and virial coefficient, and is estimated to be ~ 0.46 dex (factor of ~ 3). By comparing the Hbeta line profile of the SE, mean, and root-mean-square (rms) spectra, we find that the Hbeta line is broader in the mean (and SE) spectra than in the rms spectra by ~ 0.1 dex (25%) for our sample with FWHM_Hbeta < 3000 km/s. This result is at variance with larger mass black holes where the difference is typically found to be much less than 0.1 dex. To correct for this systematic difference of the Hbeta line profile, we introduce a line-width dependent virial factor, resulting in a recalibration of SE black hole mass estimators for low-mass AGNs.

Journal ArticleDOI
TL;DR: In this paper, the mass of a supermassive black hole in an active galactic nucleus (Arp 151) was estimated based on the motion of the gas responsible for the broad emission lines.
Abstract: Supermassive black holes are believed to be ubiquitous at the centers of galaxies. Measuring their masses is extremely challenging yet essential for understanding their role in the formation and evolution of cosmic structure. We present a direct measurement of the mass of a black hole in an active galactic nucleus (Arp 151) based on the motion of the gas responsible for the broad emission lines. By analyzing and modeling spectroscopic and photometric time series, we find that the gas is well described by a disk or torus with an average radius of 3.99 +- 1.25 light days and an opening angle of 68.9 (+21.4, -17.2) degrees, viewed at an inclination angle of 67.8 +- 7.8 degrees (that is, closer to face-on than edge-on). The black hole mass is inferred to be 10^(6.51 +- 0.28) solar masses. The method is fully general and can be used to determine the masses of black holes at arbitrary distances, enabling studies of their evolution over cosmic time.