scispace - formally typeset
V

Vinayak P. Dravid

Researcher at Northwestern University

Publications -  883
Citations -  53139

Vinayak P. Dravid is an academic researcher from Northwestern University. The author has contributed to research in topics: Thermoelectric effect & Thermoelectric materials. The author has an hindex of 103, co-authored 817 publications receiving 43612 citations. Previous affiliations of Vinayak P. Dravid include Tianjin University of Technology & International Institute of Minnesota.

Papers
More filters
Journal ArticleDOI

Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals

TL;DR: An unprecedented ZT of 2.6 ± 0.3 at 923 K is reported in SnSe single crystals measured along the b axis of the room-temperature orthorhombic unit cell, which highlights alternative strategies to nanostructuring for achieving high thermoelectric performance.
Journal ArticleDOI

High-performance bulk thermoelectrics with all-scale hierarchical architectures

TL;DR: It is shown that heat-carrying phonons with long mean free paths can be scattered by controlling and fine-tuning the mesoscale architecture of nanostructured thermoelectric materials, and an increase in ZT beyond the threshold of 2 highlights the role of, and need for, multiscale hierarchical architecture in controlling phonon scattering in bulk thermoeLECTrics.
Journal ArticleDOI

Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe

TL;DR: A record high ZTdev ∼1.34, with ZT ranging from 0.7 to 2.0 at 300 to 773 kelvin, realized in hole-doped tin selenide (SnSe) crystals, arises from the ultrahigh power factor, which comes from a high electrical conductivity and a strongly enhanced Seebeck coefficient enabled by the contribution of multiple electronic valence bands present in SnSe.
Journal ArticleDOI

Sensing behavior of atomically thin-layered MoS2 transistors

TL;DR: The results show that, compared to the single-layer counterpart, transistors of few MoS2 layers exhibit excellent sensitivity, recovery, and ability to be manipulated by gate bias and green light, and ab initio DFT calculations show that the charge transfer is the reason for the decrease in resistance in the presence of applied field.
Journal ArticleDOI

Hysteresis in single-layer MoS2 field effect transistors.

TL;DR: Uniform encapsulation of MoS(2) transistor structures with silicon nitride grown by plasma-enhanced chemical vapor deposition is effective in minimizing the hysteresis, while the device mobility is improved by over 1 order of magnitude.