scispace - formally typeset
Search or ask a question
Institution

Amazon.com

CompanySeattle, Washington, United States
About: Amazon.com is a company organization based out in Seattle, Washington, United States. It is known for research contribution in the topics: Computer science & Service (business). The organization has 13363 authors who have published 17317 publications receiving 266589 citations.


Papers
More filters
Patent
24 Aug 2015
TL;DR: In this article, the authors propose a master failover protocol, usable when a replica attempts to become the master replica for a replica group of which it is a member, by acquiring a lock associated with the replica group, and gathering state information from the other replicas in the group.
Abstract: A system that implements a data storage service may store data on behalf of storage service clients. The system may maintain data in multiple replicas of various partitions that are stored on respective computing nodes in the system. The system may employ a single master failover protocol, usable when a replica attempts to become the master replica for a replica group of which it is a member. Attempting to become the master replica may include acquiring a lock associated with the replica group, and gathering state information from the other replicas in the group. The state information may indicate whether another replica supports the attempt (in which case it is included in a failover quorum) or stores more recent data or metadata than the replica attempting to become the master (in which case synchronization may be required). If the failover quorum includes enough replicas, the replica may become the master.

75 citations

Patent
14 Sep 2012
TL;DR: In this paper, a user can select to have an amount or rate of capacity dedicated to that user, where the user has priority to that capacity but other users can utilize the excess capacity during other periods.
Abstract: Usage of shared resources can be managed by enabling users to obtain different types of guarantees at different times for various types and/or levels of resource capacity. A user can select to have an amount or rate of capacity dedicated to that user. A user can also select reserved capacity for at least a portion of the requests, tasks, or program execution for that user, where the user has priority to that capacity but other users can utilize the excess capacity during other periods. Users can alternatively specify to use the excess capacity or other variable, non-guaranteed capacity. The capacity can be for any appropriate functional aspect of a resource, such as computational capacity, throughput, latency, bandwidth, and storage. Users can submit bids for various types and combinations of excess capacity, and winning bids can receive dedicated use of the excess capacity for at least a period of time.

75 citations

Patent
02 Dec 2015
TL;DR: In this article, a system detects audio and determines if a first sound is included in the audio, then processes further incoming audio to detect a second sound. If the second sound is not detected within a time threshold, the system executes a command.
Abstract: A system is configured to execute audio-initiated commands. The system detects audio and determines if a first sound is included in the audio. The system then processes further incoming audio to detect a second sound. If the second sound is not detected within a time threshold, the system executes a command. The command may include delivering a message, outputting audio corresponding to synthesized speech, or some other executable command.

75 citations

Patent
15 Dec 2010
TL;DR: In this paper, a hierarchical distributed routing architecture including at least two levels, or layers, for receiving, processing and forwarding data packets between network components is provided, where the core level router components receive an incoming packet from a network component and identify a distribution level router component based on processing a subset of the destination address associated with the received packet.
Abstract: A hierarchical distributed routing architecture including at least two levels, or layers, for receiving, processing and forwarding data packets between network components is provided. The core level router components receive an incoming packet from a network component and identify a distribution level router component based on processing a subset of the destination address associated with the received packet. The distribution level router components receive a forwarded packet and forward the packet to a respective network. The mapping, or other assignment, of portions of the FIB associated with the distributed routing environment is managed by a router management component.

75 citations


Authors

Showing all 13498 results

NameH-indexPapersCitations
Jiawei Han1681233143427
Bernhard Schölkopf1481092149492
Christos Faloutsos12778977746
Alexander J. Smola122434110222
Rama Chellappa120103162865
William F. Laurance11847056464
Andrew McCallum11347278240
Michael J. Black11242951810
David Heckerman10948362668
Larry S. Davis10769349714
Chris M. Wood10279543076
Pietro Perona10241494870
Guido W. Imbens9735264430
W. Bruce Croft9742639918
Chunhua Shen9368137468
Network Information
Related Institutions (5)
Microsoft
86.9K papers, 4.1M citations

89% related

Google
39.8K papers, 2.1M citations

88% related

Carnegie Mellon University
104.3K papers, 5.9M citations

87% related

ETH Zurich
122.4K papers, 5.1M citations

82% related

University of Maryland, College Park
155.9K papers, 7.2M citations

82% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20234
2022168
20212,015
20202,596
20192,002
20181,189