scispace - formally typeset
Search or ask a question
Institution

Amazon.com

CompanySeattle, Washington, United States
About: Amazon.com is a company organization based out in Seattle, Washington, United States. It is known for research contribution in the topics: Computer science & Service (business). The organization has 13363 authors who have published 17317 publications receiving 266589 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the above-ground dry biomass of living trees including palms was estimated in 65 1 ha plots spanning a 1000 km 2 landscape in central Amazonia, where the study area was located on heavily weathered, nutrient-poor soils that are widespread in the Amazon region.

399 citations

Posted Content
TL;DR: The increasing popularity of unrolled deep networks is due, in part, to their potential in developing efficient, high-performance (yet interpretable) network architectures from reasonably sized training sets.
Abstract: Deep neural networks provide unprecedented performance gains in many real world problems in signal and image processing. Despite these gains, future development and practical deployment of deep networks is hindered by their blackbox nature, i.e., lack of interpretability, and by the need for very large training sets. An emerging technique called algorithm unrolling or unfolding offers promise in eliminating these issues by providing a concrete and systematic connection between iterative algorithms that are used widely in signal processing and deep neural networks. Unrolling methods were first proposed to develop fast neural network approximations for sparse coding. More recently, this direction has attracted enormous attention and is rapidly growing both in theoretic investigations and practical applications. The growing popularity of unrolled deep networks is due in part to their potential in developing efficient, high-performance and yet interpretable network architectures from reasonable size training sets. In this article, we review algorithm unrolling for signal and image processing. We extensively cover popular techniques for algorithm unrolling in various domains of signal and image processing including imaging, vision and recognition, and speech processing. By reviewing previous works, we reveal the connections between iterative algorithms and neural networks and present recent theoretical results. Finally, we provide a discussion on current limitations of unrolling and suggest possible future research directions.

398 citations

Proceedings Article
01 Jan 2018
TL;DR: A novel approach to probabilistic time series forecasting that combines state space models with deep learning by parametrizing a per-time-series linear state space model with a jointly-learned recurrent neural network, which compares favorably to the state-of-the-art.
Abstract: We present a novel approach to probabilistic time series forecasting that combines state space models with deep learning By parametrizing a per-time-series linear state space model with a jointly-learned recurrent neural network, our method retains desired properties of state space models such as data efficiency and interpretability, while making use of the ability to learn complex patterns from raw data offered by deep learning approaches Our method scales gracefully from regimes where little training data is available to regimes where data from millions of time series can be leveraged to learn accurate models We provide qualitative as well as quantitative results with the proposed method, showing that it compares favorably to the state-of-the-art

392 citations

Posted Content
TL;DR: Born-Again Networks (BANs) as mentioned in this paper outperform their teachers significantly, both on computer vision and language modeling tasks, and demonstrate state-of-the-art performance on both predicted and non-predicted classes.
Abstract: Knowledge distillation (KD) consists of transferring knowledge from one machine learning model (the teacher}) to another (the student). Commonly, the teacher is a high-capacity model with formidable performance, while the student is more compact. By transferring knowledge, one hopes to benefit from the student's compactness. %we desire a compact model with performance close to the teacher's. We study KD from a new perspective: rather than compressing models, we train students parameterized identically to their teachers. Surprisingly, these {Born-Again Networks (BANs), outperform their teachers significantly, both on computer vision and language modeling tasks. Our experiments with BANs based on DenseNets demonstrate state-of-the-art performance on the CIFAR-10 (3.5%) and CIFAR-100 (15.5%) datasets, by validation error. Additional experiments explore two distillation objectives: (i) Confidence-Weighted by Teacher Max (CWTM) and (ii) Dark Knowledge with Permuted Predictions (DKPP). Both methods elucidate the essential components of KD, demonstrating a role of the teacher outputs on both predicted and non-predicted classes. We present experiments with students of various capacities, focusing on the under-explored case where students overpower teachers. Our experiments show significant advantages from transferring knowledge between DenseNets and ResNets in either direction.

392 citations

Journal ArticleDOI
01 Jun 2015
TL;DR: A quick introduction to scikit-learn as well as to machine-learning basics are given.
Abstract: Machine learning is a pervasive development at the intersection of statistics and computer science. While it can benefit many data-related applications, the technical nature of the research literature and the corresponding algorithms slows down its adoption. Scikit-learn is an open-source software project that aims at making machine learning accessible to all, whether it be in academia or in industry. It benefits from the general-purpose Python language, which is both broadly adopted in the scientific world, and supported by a thriving ecosystem of contributors. Here we give a quick introduction to scikit-learn as well as to machine-learning basics.

391 citations


Authors

Showing all 13498 results

NameH-indexPapersCitations
Jiawei Han1681233143427
Bernhard Schölkopf1481092149492
Christos Faloutsos12778977746
Alexander J. Smola122434110222
Rama Chellappa120103162865
William F. Laurance11847056464
Andrew McCallum11347278240
Michael J. Black11242951810
David Heckerman10948362668
Larry S. Davis10769349714
Chris M. Wood10279543076
Pietro Perona10241494870
Guido W. Imbens9735264430
W. Bruce Croft9742639918
Chunhua Shen9368137468
Network Information
Related Institutions (5)
Microsoft
86.9K papers, 4.1M citations

89% related

Google
39.8K papers, 2.1M citations

88% related

Carnegie Mellon University
104.3K papers, 5.9M citations

87% related

ETH Zurich
122.4K papers, 5.1M citations

82% related

University of Maryland, College Park
155.9K papers, 7.2M citations

82% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20234
2022168
20212,015
20202,596
20192,002
20181,189