scispace - formally typeset
Search or ask a question
Institution

ASRC Aerospace Corporation

About: ASRC Aerospace Corporation is a based out in . It is known for research contribution in the topics: In situ resource utilization & Propulsion. The organization has 194 authors who have published 404 publications receiving 4748 citations.


Papers
More filters
Proceedings ArticleDOI
25 Jul 2010
TL;DR: In this article, four design options were investigated: Chemical Return /solar electric propulsion (SEP) stage outbound, all-SEP, all chemical and chemical with aerobraking, and all SEP and chemical/aerobrake.
Abstract: The COMPASS Team was tasked with the design of a Mars Sample Return Vehicle. The current Mars sample return mission is a joint National Aeronautics and Space Administration (NASA) and European Space Agency (ESA) mission, with ESA contributing the launch vehicle for the Mars Sample Return Vehicle. The COMPASS Team ran a series of design trades for this Mars sample return vehicle. Four design options were investigated: Chemical Return /solar electric propulsion (SEP) stage outbound, all-SEP, all chemical and chemical with aerobraking. The all-SEP and Chemical with aerobraking were deemed the best choices for comparison. SEP can eliminate both the Earth flyby and the aerobraking maneuver (both considered high risk by the Mars Sample Return Project) required by the chemical propulsion option but also require long low thrust spiral times. However this is offset somewhat by the chemical/aerobrake missions use of an Earth flyby and aerobraking which also take many months. Cost and risk analyses are used to further differentiate the all-SEP and Chemical/Aerobrake options.

2 citations

Book
23 Jul 2013
TL;DR: In this article, the first stage of the NASA Low Speed Axial Compressor in configuration with smooth wall treatment over the first rotor is presented, which is used for analysis of the compressor flow behavior, and hopefully help with further improvements of compressor CFD codes.
Abstract: The report is a collection of experimental unsteady data acquired in the first stage of the NASA Low Speed Axial Compressor in configuration with smooth (solid) wall treatment over the first rotor. The aim of the report is to present a reliable experimental data base that can be used for analysis of the compressor flow behavior, and hopefully help with further improvements of compressor CFD codes. All data analysis is strictly restricted to verification of reliability of the experimental data reported. The report is divided into six main sections. First two sections cover the low speed axial compressor, the basic instrumentation, and the in-house developed methodology of unsteady velocity measurements using a thermo-anemometric split-fiber probe. The next two sections contain experimental data presented as averaged radial distributions for three compressor operation conditions, including the distribution of the total temperature rise over the first rotor, and ensemble averages of unsteady flow data based on a rotor blade passage period. Ensemble averages based on the rotor revolution period, and spectral analysis of unsteady flow parameters are presented in the last two sections. The report is completed with two appendices where performance and dynamic response of thermo-anemometric probes is discussed.

2 citations

10 May 2011
TL;DR: In this article, the Airframe Icing Technical Challenge (AITC) aims to achieve acceptance of experimental and computational icing simulation tools -Supercooled Large Droplet Icing (SLD) conditions -3D airframe components including swept wings, and to develop suitable means of recording and archiving fully 3D descriptions of experimental ice accretion geometry.
Abstract: (1) Main goal of the Airframe Icing Technical Challenge is to achieve acceptance of experimental and computational icing simulation tools -SupercooledLarge Droplet Icing (SLD) conditions -3D airframe components including swept wings; (2) It is necessary to develop suitable means of recording and archiving fully 3D descriptions of experimental ice accretion geometry; (3) Past research has shown that commercial laser scanners have the potential to be adapted to this task; and (4) A research plan has been developed to implement and validate the use of this technology for experimental ice accretions.

2 citations

Proceedings ArticleDOI
28 Jul 2008
TL;DR: The Extreme Temperature Electronics Program at the NASA Glenn Research Center as discussed by the authors focuses on development of electronics suitable for space exploration missions, and the effects of exposure to extreme temperatures and thermal cycling are being investigated for commercial-off-the-shelf components as well as for components specially developed for harsh environments.
Abstract: Electronic systems capable of extreme temperature operation are required for many future NASA space exploration missions where it is desirable to have smaller, lighter, and less expensive spacecraft and probes. Presently, spacecraft on-board electronics are maintained at about room temperature by use of thermal control systems. An Extreme Temperature Electronics Program at the NASA Glenn Research Center focuses on development of electronics suitable for space exploration missions. The effects of exposure to extreme temperatures and thermal cycling are being investigated for commercial-off-the-shelf components as well as for components specially developed for harsh environments. An overview of this program along with selected data is presented.

2 citations

08 May 2008
TL;DR: An overview of the NASA/GE Highly-Loaded Turbine Research Program at the NASA Glenn Research Center is presented in this article, along with their relationship to the higher-level program goals.
Abstract: An overview of the NASA/GE Highly-Loaded Turbine Research Program at the NASA Glenn Research Center is presented. The program is sponsored by the Subsonic Fixed Wing Project of the Fundamental Aeronautics Program. The goals of the turbine research program are presented along with their relationship to the higher-level program goals. Two turbine research programs are described; the highly-loaded, single-stage high pressure turbine (HPT) and the highly loaded low pressure turbine (LPT). The HPT program is centered on an extremely high pressure ratio single-stage turbine with an engine stage pressure ratio of 5.5. It was designed with a 33% increase in stage loading. It has shown performance levels 2 points better than current engines operating at the higher work level. Some advantages of the turbine include reduced weight and parts count. Optimization of the blade shape to reduce shock losses is described. The LPT program utilizes a four-stage low pressure turbine with an integral first stage vane/transition duct strut; counterrotation; low-solidity blading; fully optimized flowpath including vanes, blades, and endwalls; and a fluidically controlled turbine vane frame/exit guide vane. The implementation of the LPT into GE s and NASA s test facilities is described. A description of NASA s Single Spool Turbine Facility that is currently under renovation is given. The new, upgraded facility is compared to its predecessor. Renovation design requirements are outlined. Facility limits on pressures, temperatures, flow rates, rotational speeds, and power absorption are described. The current renovation status is given.

2 citations


Authors

Showing all 194 results

Network Information
Related Institutions (5)
Dow Corning
7.2K papers, 135.3K citations

66% related

Charles Stark Draper Laboratory
4.9K papers, 105K citations

66% related

Wright-Patterson Air Force Base
9.1K papers, 292.5K citations

65% related

General Motors
63.1K papers, 986K citations

65% related

University of Dayton Research Institute
2.6K papers, 66.2K citations

65% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20211
20192
20184
20174
20162
20142