scispace - formally typeset
Search or ask a question
Institution

ASRC Aerospace Corporation

About: ASRC Aerospace Corporation is a based out in . It is known for research contribution in the topics: In situ resource utilization & Propulsion. The organization has 194 authors who have published 404 publications receiving 4748 citations.


Papers
More filters
01 Apr 2012
TL;DR: In this paper, an enhanced design methodology for minimizing the error in on-line Kalman filter-based aircraft engine performance estimation applications is presented, which specifically addresses the under-determined estimation problem, in which there are more unknown parameters than available sensor measurements.
Abstract: An enhanced design methodology for minimizing the error in on-line Kalman filter-based aircraft engine performance estimation applications is presented in this paper. It specific-ally addresses the under-determined estimation problem, in which there are more unknown parameters than available sensor measurements. This work builds upon an existing technique for systematically selecting a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. While the existing technique was optimized for open-loop engine operation at a fixed design point, in this paper an alternative formulation is presented that enables the technique to be optimized for an engine operating under closed-loop control throughout the flight envelope. The theoretical Kalman filter mean squared estimation error at a steady-state closed-loop operating point is derived, and the tuner selection approach applied to minimize this error is discussed. A technique for constructing a globally optimal tuning parameter vector, which enables full-envelope application of the technology, is also presented, along with design steps for adjusting the dynamic response of the Kalman filter state estimates. Results from the application of the technique to linear and nonlinear aircraft engine simulations are presented and compared to the conventional approach of tuner selection. The new methodology is shown to yield a significant improvement in on-line Kalman filter estimation accuracy.
01 Sep 2005
TL;DR: The Emerging Communication Technology (ECT) project investigated three First Mile communication technologies in support of NASA s Second Generation Reusable Launch Vehicle (2nd Gen RLV), Orbital Space Plane, Advanced Range Technology Working Group (ARTWG) and the Advanced Spaceport Technology Working group (ASTWG).
Abstract: The Emerging Communication Technology (ECT) project investigated three First Mile communication technologies in support of NASA s Crew Exploration Vehicle (CEV), Advanced Range Technology Working Group (ARTWG), and the Advanced Spaceport Technology Working Group (ASTWG). These First Mile technologies have the purpose of interconnecting mobile users with existing Range Communication infrastructures on a 24/7 basis. ECT is a continuation of the Range Information System Management (RISM) task started in 2002. This is the fourth year of the project.
Proceedings ArticleDOI
TL;DR: In this article, the first objective was to model mathematically the competition between linearly polarized (LP) modes and modal distribution using the solutions of Bessel equations for the fibers with and without the gratings.
Abstract: Fiber Bragg gratings (FBGs) embedded in conventional fibers may serve as temperature sensors over a wide temperature range and withstand temperatures around 1200 K. A variety of linearly polarized (LP) modes for the wavelengths between 400 and 700 nm may be sustained in fibers with and without FBGs. The composition of the LP modes and their competition is instrumental for understanding physics of thermo-optics and thermal expansion effects in silica-based fibers. The first objective of this work was to model mathematically the competition between LP modes and modal distribution using the solutions of Bessel equations for the fibers with and without the gratings. Computer generated modes were constructed and the cut-off V-numbers (and Eigen values W and U ) were determined. Theoretical results then were compared with experimental observations of LP modes for two separate ranges of temperatures: 77– 300 K and 300-1200 K. To study the formation of LP modes over the first temperature range, liquid nitrogen was used to cool down the fiber and a thermocouple was used to monitor the temperature of the fiber. Real time recording of the modal structure was performed using digital imaging and data acquisition instrumentation. To study LP modes between 300– 1200 K, the fibers were inserted into a tube furnace with temperature control. The wavelength of the infrared radiation was reflected by a FBG and detected by an optical spectrum analyzer. Radiation at the visible wavelength propagated through the fibers, and transmitted visible light was collected, analyzed and recorded with a CCD camera to monitor distribution of the LP modes in the samples with and without the FBGs.

Authors

Showing all 194 results

Network Information
Related Institutions (5)
Dow Corning
7.2K papers, 135.3K citations

66% related

Charles Stark Draper Laboratory
4.9K papers, 105K citations

66% related

Wright-Patterson Air Force Base
9.1K papers, 292.5K citations

65% related

General Motors
63.1K papers, 986K citations

65% related

University of Dayton Research Institute
2.6K papers, 66.2K citations

65% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20211
20192
20184
20174
20162
20142