scispace - formally typeset
Search or ask a question
Institution

ASRC Aerospace Corporation

About: ASRC Aerospace Corporation is a based out in . It is known for research contribution in the topics: In situ resource utilization & Propulsion. The organization has 194 authors who have published 404 publications receiving 4748 citations.


Papers
More filters
Proceedings ArticleDOI
02 Oct 2006
TL;DR: In this paper, the parent technology for the electrodynamic dust shield, developed in the 1970s, has been shown to lift and transport charged and uncharged particles using electrostatic and dielectrophoretic forces.
Abstract: The Apollo missions to the moon showed that lunar dust can hamper astronaut surface activities due to its ability to cling to most surfaces. NASA's Mars exploration landers and rovers have also shown that the problem is equally hard if not harder on Mars. In this paper, we report on our efforts to develop and electrodynamic dust shield to prevent the accumulation of dust on surfaces and to remove dust already adhering to those surfaces. The parent technology for the electrodynamic dust shield, developed in the 1970s, has been shown to lift and transport charged and uncharged particles using electrostatic and dielectrophoretic forces. This technology has never been applied for space applications on Mars or the moon due to electrostatic breakdown concerns. In this paper, we show that an appropriate design can prevent the electrostatic breakdown at the low Martian atmospheric pressures. We are also able to show that uncharged dust can be lifted and removed from surfaces under simulated Martian environmental conditions. This technology has many potential benefits for removing dust from visors, viewports and many other surfaces as well as from solar arrays. We have also been able to develop a version of the electrodynamic dust shield working under. hard vacuum conditions. This version should work well on the moon.

29 citations

Journal ArticleDOI
TL;DR: In this article, the thermal stability of Pt/TaSi x Ni/SiC ohmic contacts, which have been implemented in SiC-based gas sensors developed for applications in diesel engines and power plants, was investigated.
Abstract: We investigated the thermal stability of Pt/TaSi x /Ni/SiC ohmic contacts, which have been implemented in SiC-based gas sensors developed for applications in diesel engines and power plants. The contacts remained ohmic on lightly doped n-type (~1 × 1016 cm−3) 4H-SiC for over 1000 h in air at 300°C. Although a gradual increase in specific contact resistance from 3.4 × 10−4 Ω cm2 to 2.80 × 10−3 Ω cm2 was observed, the values appeared to stabilize after ~800 h of heating in air at 300°C. The contacts heated at 500°C and 600°C, however, showed larger increases in specific contact resistance followed by nonohmic behavior after 240 h and 36 h, respectively. Concentration profiles from Auger electron spectroscopy and electron energy-loss spectroscopy show that loss of ohmic behavior occurs when the entire tantalum silicide layer has oxidized.

29 citations

13 May 2008
TL;DR: In this article, the fabrication and long-term 500 degrees Centigrade operation of 6H-SiC integrated circuits based on epitaxial 6HSiC junction field effect transistors (JFETs) was reported.
Abstract: The NASA Glenn Research Center is developing very high temperature semiconductor integrated circuits (ICs) for use in the hot sections of aircraft engines and for Venus exploration where ambient temperatures are well above the approximately 300 degrees Centigrade effective limit of silicon-on-insulator IC technology. In order for beneficial technology insertion to occur, such transistor ICs must be capable of prolonged operation in such harsh environments. This paper reports on the fabrication and long-term 500 degrees Centigrade operation of 6H-SiC integrated circuits based on epitaxial 6H-SiC junction field effect transistors (JFETs). Simple analog amplifier and digital logic gate ICs have now demonstrated thousands of hours of continuous 500 degrees Centigrade operation in oxidizing air atmosphere with minimal changes in relevant electrical parameters. Electrical characterization and modeling of transistors and circuits at temperatures from 24 degrees Centigrade to 500 degrees Centigrade is also described. Desired analog and digital IC functionality spanning this temperature range was demonstrated without changing the input signals or power supply voltages.

29 citations

Journal ArticleDOI
TL;DR: In this article, the fabrication and testing of 6H-SiC junction field effect transistors (JFETs) and a simple differential amplifier integrated circuit that have demonstrated 2000 hours of electrical operation at 500 °C without degradation is described.
Abstract: This paper reports on the fabrication and testing of 6H-SiC junction field effect transistors (JFETs) and a simple differential amplifier integrated circuit that have demonstrated 2000 hours of electrical operation at 500 °C without degradation. The high-temperature ohmic contacts, dielectric passivation, and packaging technology that enabled such 500 °C durability are briefly described. Key JFET parameters of threshold voltage, on-state resistance, transconductance, and on-state current, as well as the gain of the differential amplifier integrated circuit, exhibited less than 7% change over the first 2000 hours of 500 °C operational testing.

27 citations

Proceedings ArticleDOI
25 Jun 2012
TL;DR: In this article, the authors developed a computational tool that can estimate whether there is a risk of ice accretion by tracking key parameters through the compression system blade rows at all engine operating points within the flight trajectory.
Abstract: The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that were attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was one or more of the following anomalies: degraded engine performance, engine roll back, compressor surge and stall, and flameout of the combustor. The main focus of this research is the development of a computational tool that can estimate whether there is a risk of ice accretion by tracking key parameters through the compression system blade rows at all engine operating points within the flight trajectory. The tool has an engine system thermodynamic cycle code, coupled with a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor blade rows. Assumptions are made to predict the complex physics involved in engine icing. Specifically, the code does not directly estimate ice accretion and does not have models for particle breakup or erosion. Two key parameters have been suggested as conditions that must be met at the same location for ice accretion to occur: the local wet-bulb temperature to be near freezing or below and the local melt ratio must be above 10%. These parameters were deduced from analyzing laboratory icing test data and are the criteria used to predict the possibility of ice accretion within an engine including the specific blade row where it could occur. Once the possibility of accretion is determined from these parameters, the degree of blockage due to ice accretion on the local stator vane can be estimated from an empirical model of ice growth rate and time spent at that operating point in the flight trajectory. The computational tool can be used to assess specific turbine engines to their susceptibility to ice accretion in an ice crystal environment.

27 citations


Authors

Showing all 194 results

Network Information
Related Institutions (5)
Dow Corning
7.2K papers, 135.3K citations

66% related

Charles Stark Draper Laboratory
4.9K papers, 105K citations

66% related

Wright-Patterson Air Force Base
9.1K papers, 292.5K citations

65% related

General Motors
63.1K papers, 986K citations

65% related

University of Dayton Research Institute
2.6K papers, 66.2K citations

65% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20211
20192
20184
20174
20162
20142