scispace - formally typeset
Search or ask a question
Institution

ASRC Aerospace Corporation

About: ASRC Aerospace Corporation is a based out in . It is known for research contribution in the topics: In situ resource utilization & Propulsion. The organization has 194 authors who have published 404 publications receiving 4748 citations.


Papers
More filters
Proceedings ArticleDOI
21 Jul 2008
TL;DR: In this article, the authors report on additional testing with sub-cooled LOX as part of NASA s continuing cryogenic LAD development program, and provide insight into factors affecting predicting LAD bubble point pressures.
Abstract: When transferring propellant in space, it is most efficient to transfer single phase liquid from a propellant tank to an engine. In earth s gravity field or under acceleration, propellant transfer is fairly simple. However, in low gravity, withdrawing single-phase fluid becomes a challenge. A variety of propellant management devices (PMD) are used to ensure single-phase flow. One type of PMD, a liquid acquisition device (LAD) takes advantage of capillary flow and surface tension to acquire liquid. Previous experimental test programs conducted at NASA have collected LAD data for a number of cryogenic fluids, including: liquid nitrogen (LN2), liquid oxygen (LOX), liquid hydrogen (LH2), and liquid methane (LCH4). The present work reports on additional testing with sub-cooled LOX as part of NASA s continuing cryogenic LAD development program. Test results extend the range of LOX fluid conditions examined, and provide insight into factors affecting predicting LAD bubble point pressures.

26 citations

Journal ArticleDOI
TL;DR: In this article, a thermomechanical hysteresis model for a high-temperature shape memory alloy (HTSMA) actuator material is presented, which is capable of predicting strain output of a tensile-loaded HTSMA when excited by arbitrary temperature-stress inputs for the purpose of actuator and controls design.
Abstract: A thermomechanical hysteresis model for a high-temperature shape memory alloy (HTSMA) actuator material is presented. The model is capable of predicting strain output of a tensile-loaded HTSMA when excited by arbitrary temperature-stress inputs for the purpose of actuator and controls design. Common quasi-static generalized Preisach hysteresis models available in the literature require large sets of experimental data for model identification at a particular operating point, and substantially more data for multiple operating points. The novel algorithm introduced here proposes an alternate approach to Preisach methods that is better suited for research-stage alloys, such as recently-developed HTSMAs, for which a complete database is not yet available. A detailed description of the minor loop hysteresis model is presented in this paper, as well as a methodology for determination of model parameters. The model is then qualitatively evaluated with respect to well-established Preisach properties and against a set of low-temperature cycled loading data using a modified form of the one-dimensional Brinson constitutive equation. The computationally efficient algorithm demonstrates adherence to Preisach properties and excellent agreement to the validation data set.

25 citations

01 Jun 2010
TL;DR: In this article, the authors report the results of an experimental study establishing a high-fidelity, full-scale, iced-airfoil aerodynamic performance database, which was conducted as a part of a larger program with the goal of developing subscale aerodynamic simulation methods for iced airfoils.
Abstract: The simulation of ice accretion on a wing or other surface is often required for aerodynamic evaluation, particularly at small scale or low-Reynolds number. While there are commonly accepted practices for ice simulation, there are no established and validated guidelines. The purpose of this article is to report the results of an experimental study establishing a high-fidelity, full-scale, iced-airfoil aerodynamic performance database. This research was conducted as a part of a larger program with the goal of developing subscale aerodynamic simulation methods for iced airfoils. Airfoil performance testing was carried out at the ONERA F1 pressurized wind tunnel using a 72-in. (1828.8-mm) chord NACA 23012 airfoil over a Reynolds number range of 4.5x10(exp 6) to 16.0 10(exp 6) and a Mach number range of 0.10 to 0.28. The high-fidelity, ice-casting simulations had a significant impact on the aerodynamic performance. A spanwise-ridge ice shape resulted in a maximum lift coefficient of 0.56 compared to the clean value of 1.85 at Re = 15.9x10(exp 6) and M = 0.20. Two roughness and streamwise shapes yielded maximum lift values in the range of 1.09 to 1.28, which was a relatively small variation compared to the differences in the ice geometry. The stalling characteristics of the two roughness and one streamwise ice simulation maintained the abrupt leading-edge stall type of the clean NACA 23012 airfoil, despite the significant decrease in maximum lift. Changes in Reynolds and Mach number over the large range tested had little effect on the iced-airfoil performance.

25 citations

Journal ArticleDOI
TL;DR: A new objective technique to verify predictions of the sea-breeze phenomenon over eastcentral Florida by the Regional Atmospheric Modeling System (RAMS) NWP model is presented, which improves upon traditional objective verification techniques and previously used subjective verification methodologies and provides verification contour maps and simple statistical parameters for easy interpretation.
Abstract: An ongoing challenge in mesoscale numerical weather prediction (NWP) is to determine the ideal method for verifying the performance of high-resolution, detailed forecasts. Traditional objective techniques that evaluate NWP model performance based on point error statistics may not be positively correlated with the value of forecast information for certain applications of mesoscale NWP, and subjective evaluation techniques are often costly and time consuming. As a result, objective event-based verification methodologies are required in order to determine the added value of high-resolution NWP models. This paper presents a new objective technique to verify predictions of the sea-breeze phenomenon over eastcentral Florida by the Regional Atmospheric Modeling System (RAMS) NWP model. The contour error map (CEM) technique identifies sea-breeze transition times in objectively analyzed grids of observed and forecast wind, verifies the forecast sea-breeze transition times against the observed times, and computes the mean postsea-breeze wind direction and wind speed to compare the observed and forecast winds behind the sea-breeze front. The CEM technique improves upon traditional objective verification techniques and previously used subjective verification methodologies because it is automated, accounts for both spatial and temporal variations, correctly identifies and verifies the sea-breeze transition times, and provides verification contour maps and simple statistical parameters for easy interpretation. The CEM algorithm details are presented and validated against independent meteorological assessments of the sea-breeze transition times and results from a previously published subjective evaluation.

25 citations

01 Jan 2007
TL;DR: The results from flametube tests of a 9-injection point LDI fuel/air mixer tested at inlet pressures up to 5500 kPa are described in this paper.
Abstract: In collaboration with U.S. aircraft engine companies, NASA Glenn Research Center has contributed to the advancement of low emissions combustion systems. For the High Speed Research Program (HSR), a 90% reduction in nitrogen oxides (NOx) emissions (relative to the then-current state of the art) has been demonstrated in sector rig testing at General Electric Aircraft Engines (GEAE). For the Advanced Subsonic Technology Program (AST), a 50% reduction in NOx emissions relative to the 1996 International Civil Aviation Organization (ICAO) standards has been at demonstrated in sector rigs at both GEAE and Pratt & Whitney (P&W). During the Ultra Efficient Engine Technology Program (UEET), a 70% reduction in NOx emissions, relative to the 1996 ICAO standards, was achieved in sector rig testing at Glenn in the world class Advanced Subsonic Combustion Rig (ASCR) and at contractor facilities. Low NOx combustor development continues under the Fundamental Aeronautics Program. To achieve these reductions, experimental and analytical research has been conducted to advance the understanding of emissions formation in combustion processes. Lean direct injection (LDI) concept development uses advanced laser-based non-intrusive diagnostics and analytical work to complement the emissions measurements and to provide guidance for concept improvement. This paper describes emissions results from flametube tests of a 9- injection-point LDI fuel/air mixer tested at inlet pressures up to 5500 kPa. Sample results from CFD and laser diagnostics are also discussed.

25 citations


Authors

Showing all 194 results

Network Information
Related Institutions (5)
Dow Corning
7.2K papers, 135.3K citations

66% related

Charles Stark Draper Laboratory
4.9K papers, 105K citations

66% related

Wright-Patterson Air Force Base
9.1K papers, 292.5K citations

65% related

General Motors
63.1K papers, 986K citations

65% related

University of Dayton Research Institute
2.6K papers, 66.2K citations

65% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20211
20192
20184
20174
20162
20142