scispace - formally typeset
Search or ask a question
Institution

ASRC Aerospace Corporation

About: ASRC Aerospace Corporation is a based out in . It is known for research contribution in the topics: In situ resource utilization & Propulsion. The organization has 194 authors who have published 404 publications receiving 4748 citations.


Papers
More filters
01 Nov 2010
TL;DR: A series of electrically heated tube tests were performed at the NASA Glenn Research Center s Heated Tube Facility to investigate the use of RP-2 as a fuel for next generation regeneratively cooled hydrocarbon boost engines as mentioned in this paper.
Abstract: A series of electrically heated tube tests were performed at the NASA Glenn Research Center s Heated Tube Facility to investigate the use of RP-2 as a fuel for next generation regeneratively cooled hydrocarbon boost engines. The effect that test duration, operating condition and test piece material have on the overall thermal stability and materials compatibility characteristics of RP-2 were evaluated using copper and 304 stainless steel test sections. The copper tests were run at 1000 psia, heat flux up to 6.0 Btu/in.2-sec, and wall temperatures up to 1180 F. Preliminary results, using measured wall temperature as an indirect indicator of the carbon deposition process, show that in copper test pieces above approximately 850 F, RP-2 begins to undergo thermal decomposition resulting in local carbon deposits. Wall temperature traces show significant local temperature increases followed by near instantaneous drops which have been attributed to the carbon deposition/shedding process in previous investigations. Data reduction is currently underway for the stainless steel test sections and carbon deposition measurements will be performed in the future for all test sections used in this investigation. In conjunction with the existing thermal stability database, these findings give insight into the feasibility of cooling a long life, high performance, high-pressure liquid rocket combustor and nozzle with RP-2.

6 citations

01 Nov 2000
TL;DR: This work formalizes a new non-Markovian extension to the Petri net that captures both discrete and continuous timing in the same model, which has the added benefit in modeling fidelity stemming from the simultaneous capture of discrete- and continuous-time events.
Abstract: The Petri net formalism is useful in studying many discrete-state, discrete-event systems exhibiting concurrency, synchronization, and other complex behavior. As a bipartite graph, the net can conveniently capture salient aspects of the system. As a mathematical tool, the net can specify an analyzable state space. Indeed, one can reason about certain qualitative properties (from state occupancies) and how they arise (the sequence of events leading there). By introducing deterministic or random delays, the model is forced to sojourn in states some amount of time, giving rise to an underlying stochastic process, one that can be specified in a compact way and capable of providing quantitative, probabilistic measures. We formalize a new non-Markovian extension to the Petri net that captures both discrete and continuous timing in the same model. The approach affords efficient, stationary analysis in most cases and efficient transient analysis under certain restrictions. Moreover, this new formalism has the added benefit in modeling fidelity stemming from the simultaneous capture of discrete- and continuous-time events (as opposed to capturing only one and approximating the other). We show how the underlying stochastic process, which is non-Markovian, can be resolved into simpler Markovian problems that enjoy efficient solutions. Solution algorithms are provided that can be easily programmed.

6 citations

Proceedings ArticleDOI
TL;DR: An external technique for monitoring responsivity changes based on empirical distribution functions (EDFs) of observations of the Earth's full disk is examined and results are similar to those obtained earlier with a star-based technique, thus increasing confidence in the results of both techniques.
Abstract: Although the visible channel of the Imagers carried by NOAA's operational Geostationary Operational Environmental Satellites (GOES) has no onboard calibration device, the decrease in the responsivity of this channel over time must be known if we are to make the data in this channel useful for detecting trends in the signals from the Earth. Therefore, some external method is required to provide this information. In this paper, we examine an external technique for monitoring responsivity changes based on empirical distribution functions (EDFs) of observations of the Earth's full disk. A time series of instrument outputs (in digital counts) at fixed levels at the tops of the EDFs is produced. A nonlinear least squares technique is then employed to adjust the time series for solar and seasonal effects and to fit it with an exponential, whose argument provides the rate of degradation of the responsivity. This technique assumes that the probabilistic structure of the signal from the earth does not change over time. The resulting time series and estimated responsivity degradation rates for the visible channels of GOES-8 and -10 Imagers will be presented. These results are similar to those obtained earlier with a star-based technique, thus increasing our confidence in the results of both techniques. The EDF technique and the star-based technique are synergistic, as they use very different approaches and data sets. Also, the star based technique works at the low end of the Imager's output signal range, whereas the EDF technique works at the high end.

6 citations

Proceedings ArticleDOI
20 Apr 2010
TL;DR: In this paper, the main purpose is to detail issues and lessons learned regarding designing, integrating, and implementing Fault Detection Isolation and Recovery (FDIR) for Constellation Exploration Program (CxP) Ground Operations at Kennedy Space Center (KSC).
Abstract: This paper's main purpose is to detail issues and lessons learned regarding designing, integrating, and implementing Fault Detection Isolation and Recovery (FDIR) for Constellation Exploration Program (CxP) Ground Operations at Kennedy Space Center (KSC).

6 citations

14 May 2007
TL;DR: The use of palladium oxide (PdOx) as a barrier layer between the metal and SiC is discussed in this paper, and the use of atomically flat SiC to provide an improved SiC semiconductor surface for gas sensor element deposition is explored.
Abstract: Silicon carbide (SiC) based gas sensors have the ability to meet the needs of a range of aerospace propulsion applications including emissions monitoring, leak detection, and hydrazine monitoring. These applications often require sensitive gas detection in a range of environments. An effective sensing approach to meet the needs of these applications is a Schottky diode based on a SiC semiconductor. The primary advantage of using SiC as a semiconductor is its inherent stability and capability to operate at a wide range of temperatures. The complete SiC Schottky diode gas sensing structure includes both the SiC semiconductor and gas sensitive thin film metal layers; reliable operation of the SiC-based gas sensing structure requires good control of the interface between these gas sensitive layers and the SiC. This paper reports on the development of SiC gas sensors. The focus is on two efforts to better control the SiC gas sensitive Schottky diode interface. First, the use of palladium oxide (PdOx) as a barrier layer between the metal and SiC is discussed. Second, the use of atomically flat SiC to provide an improved SiC semiconductor surface for gas sensor element deposition is explored. The use of SiC gas sensors in a multi-parameter detection system is briefly discussed. It is concluded that SiC gas sensors have potential in a range of propulsion system applications, but tailoring of the sensor for each application is necessary.

6 citations


Authors

Showing all 194 results

Network Information
Related Institutions (5)
Dow Corning
7.2K papers, 135.3K citations

66% related

Charles Stark Draper Laboratory
4.9K papers, 105K citations

66% related

Wright-Patterson Air Force Base
9.1K papers, 292.5K citations

65% related

General Motors
63.1K papers, 986K citations

65% related

University of Dayton Research Institute
2.6K papers, 66.2K citations

65% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20211
20192
20184
20174
20162
20142