scispace - formally typeset
Search or ask a question
Institution

ASRC Aerospace Corporation

About: ASRC Aerospace Corporation is a based out in . It is known for research contribution in the topics: In situ resource utilization & Propulsion. The organization has 194 authors who have published 404 publications receiving 4748 citations.


Papers
More filters
22 Jun 2010
TL;DR: In this article, the Electrodynamic Oust Shield (EDS) is incorporated into the HDU to demonstrate dust removal from a viewport and from a door prior to docking procedures.
Abstract: NASA is developing a Habitat Demonstration Unit (HDU) to investigate the feasibility of lunar surface technologies and lunar ground operations. The HDU will define and validate lunar scenario architecture through field analog testing. It will contain a four-port vertical habitat module with docking demonstration capabilities. The Electrodynamic Oust Shield (EDS) is being incorporated into the HDU to demonstrate dust removal from a viewport and from a door prior to docking procedures. In this paper, we will describe our efforts to scale up the EDS to protect a viewport 20 cm in diameter. We will also describe the development of several 20 cm x 25 cm EDS patches to demonstrate dust removal from one of the HDU doors.

10 citations

Proceedings ArticleDOI
TL;DR: In this article, the authors report on measurements made at the Shuttle Landing Facility (SLF) runway at Kennedy Space Center of receiver aperture averaging effects on a propagating optical Gaussian beam wave over a propagation path of 1,000 m.
Abstract: We report on measurements made at the Shuttle Landing Facility (SLF) runway at Kennedy Space Center of receiver aperture averaging effects on a propagating optical Gaussian beam wave over a propagation path of 1,000 m. A commercially available instrument with both transmit and receive apertures was used to transmit a modulated laser beam operating at 1550 nm through a transmit aperture of 2.54 cm. An identical model of the same instrument was used as a receiver with a single aperture that was varied in size up to 20 cm to measure the effect of receiver aperture averaging on Bit Error Rate. Simultaneous measurements were also made with a scintillometer instrument and local weather station instruments to characterize atmospheric conditions along the propagation path during the experiments.

10 citations

01 Jun 2010
TL;DR: This work has established a state-of-the-art capability for immediate use by supersonic concept designers and systems analysts at NASA, while also providing a strong base to build upon for future releases as more multifidelity capabilities are developed and integrated.
Abstract: Within the Supersonics (SUP) Project of the Fundamental Aeronautics Program (FAP), an initial multidisciplinary design & analysis framework has been developed. A set of low- and intermediate-fidelity discipline design and analysis codes were integrated within a multidisciplinary design and analysis framework and demonstrated on two challenging test cases. The first test case demonstrates an initial capability to design for low boom and performance. The second test case demonstrates rapid assessment of a well-characterized design. The current system has been shown to greatly increase the design and analysis speed and capability, and many future areas for development were identified. This work has established a state-of-the-art capability for immediate use by supersonic concept designers and systems analysts at NASA, while also providing a strong base to build upon for future releases as more multifidelity capabilities are developed and integrated.

10 citations

Journal ArticleDOI
TL;DR: In this paper, a dilution and aging sampling system that can condense volatile precursors to particle phase to simulate atmospheric evolution of aircraft engine exhaust has been developed, and field demonstration of its operation is described.
Abstract: Aircraft exhaust contains nonvolatile (soot) particulate matter (PM), trace gas pollutants, and volatile PM precursor material. Nonvolatile soot particles are predominantly present at the engine exit plane, but volatile PM precursors form new particles or add mass to the existing ones as the exhaust is diluted and cooled. Accurately characterizing the volatile PM mass, number, and size distribution is challenging due to this evolving nature and the impact of local ambient conditions on the gas-to-particle conversion processes. To accurately and consistently measure the aircraft PM emissions, a dilution and aging sampling system that can condense volatile precursors to particle phase to simulate atmospheric evolution of aircraft engine exhaust has been developed. In this paper, field demonstration of its operation is described. The dilution/aging probe system was tested using both a combustor rig and on-wing CFM56-7 engines. During the combustor rig testing at NASA Glenn Research Center, the dilution/aging probe supported formation of both nucleation/growth mode particles and soot coatings. The results showed that by increasing residence time, the nucleation particles become larger in size, increase in total mass, and decrease in number. During the on-wing CFM56-7 engine testing at Chicago Midway Airport, the dilution/aging probe was able to form soot coatings as well as nucleation mode particles, unlike conventional 1-m probe engine measurements. The number concentration of nucleation particles depended on sample fraction and relative humidity of the dilution air. The performance of the instrument is analyzed and explained using computational microphysics simulations.Copyright © 2011 by ASME

10 citations

01 Jan 2009
TL;DR: The NASA Evolutionary Xenon Thruster (NEXT) program is developing the next-generation ion propulsion system with significant enhancements beyond the state-of-the-art in ion propulsion to provide future NASA science missions with enhanced mission capabilities at a low total development cost.
Abstract: The NASA s Evolutionary Xenon Thruster (NEXT) program is developing the next-generation ion propulsion system with significant enhancements beyond the state-of-the-art in ion propulsion to provide future NASA science missions with enhanced mission capabilities at a low total development cost. As part of a comprehensive thruster service life assessment utilizing both testing and analyses, a Long-Duration Test (LDT) was initiated to validate and qualify the NEXT propellant throughput capability to a qualification-level of 450 kg, 1.5 times the mission-derived throughput requirement of 300 kg. This wear test is being conducted with a modified, flight-representative NEXT engineering model ion thruster, designated EM3. As of September 1, 2007, the thruster has accumulated 11,570 h of operation primarily at the thruster full-input-power of 6.9 kW with 3.52 A beam current and 1800 V beam power supply voltage. The thruster has processed 237 kg of xenon surpassing the NSTAR propellant throughput demonstrated during the extended life testing of the Deep Space 1 (DS1) flight spare. The NEXT LDT has demonstrated a total impulse of 9.78 10(exp 6) N(dot)s; the highest total impulse ever demonstrated by an ion thruster. Thruster performance tests are conducted periodically over the entire NEXT throttle table with input power ranging 0.5 to 6.9 kW. Thruster performance parameters including thrust, input power, specific impulse, and thruster efficiency have been nominal with little variation to date. Lifetime-limiting component erosion rates have been consistent with the NEXT service life assessment, which predicts the earliest failure sometime after 750 kg of xenon propellant throughput; well beyond the mission-derived lifetime requirement. The NEXT wear test data confirm that the erosion of the discharge keeper orifice, enlarging of nominal-current-density accelerator grid aperture cusps at full-power, and the decrease in cold grid-gap observed during NSTAR wear testing have been mitigated in the NEXT design. NEXT grid-gap data indicate a hot grid-gap at full-power that is 60 percent of the nominal cold grid-gap. This paper presents the status of the NEXT LDT to date with emphasis on comparison to the NSTAR extended life test results.

10 citations


Authors

Showing all 194 results

Network Information
Related Institutions (5)
Dow Corning
7.2K papers, 135.3K citations

66% related

Charles Stark Draper Laboratory
4.9K papers, 105K citations

66% related

Wright-Patterson Air Force Base
9.1K papers, 292.5K citations

65% related

General Motors
63.1K papers, 986K citations

65% related

University of Dayton Research Institute
2.6K papers, 66.2K citations

65% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20211
20192
20184
20174
20162
20142