scispace - formally typeset
Search or ask a question
Institution

ASRC Aerospace Corporation

About: ASRC Aerospace Corporation is a based out in . It is known for research contribution in the topics: In situ resource utilization & Propulsion. The organization has 194 authors who have published 404 publications receiving 4748 citations.


Papers
More filters
07 Aug 2005
TL;DR: In this article, the sensitivity of a long-lived constellation of 3 satellites to non-gravitational forces is determined, and a design strategy is formulated that minimizes any potential sensitivity to these accelerations.
Abstract: Prior results have developed a methodology for selecting a long-lived constellation of 3 satellites that provide persistent, stable coverage to either the North or South Pole with no requirement for stationkeeping under the influence of only gravitational perturbations. In the present study, the sensitivity of this coverage in the presence of non-gravitational forces is determined, and a design strategy is formulated that minimizes any potential sensitivity to these accelerations.

5 citations

Proceedings ArticleDOI
01 Mar 2012
TL;DR: In this paper, the authors evaluated the accuracy of various existing CFD models used in the modeling of superheated sprays, and applied it to investigate the following three cases: (1) the validation of a flashing jet generated by the sudden release of pressurized R134A from a cylindrical nozzle, (2) the differences between two superheat vaporization models were studied based on both hot and cold flow calculations of a Parker-Hannifin pressure swirl atomizer, and (3) the spray characteristics generated by a single-element LDI (Lean
Abstract: An understanding of liquid fuel behavior at superheat conditions is identified to be a topic of importance in the design of modern supersonic engines. As a part of the NASA's supersonics project office initiative on high altitude emissions, we have undertaken an effort to assess the accuracy of various existing CFD models used in the modeling of superheated sprays. As a part of this investigation, we have completed the implementation of a modeling approach into the national combustion code (NCC), and then applied it to investigate the following three cases: (1) the validation of a flashing jet generated by the sudden release of pressurized R134A from a cylindrical nozzle, (2) the differences between two superheat vaporization models were studied based on both hot and cold flow calculations of a Parker-Hannifin pressure swirl atomizer, (3) the spray characteristics generated by a single-element LDI (Lean Direct Injector) experiment were studied to investigate the differences between superheat and non-superheat conditions. Further details can be found in the paper.

5 citations

Proceedings ArticleDOI
11 Jul 2016
TL;DR: In this paper, the results of single event effect (SEE) testing and analysis investigating the effects of radiation on electronics are presented. But the results are limited to a single-class case.
Abstract: We present the results of single event effect (SEE) testing and analysis investigating the effects of radiation on electronics. This paper is a summary of test results.

5 citations

05 Feb 2016
TL;DR: In this article, the authors discuss the proximity operations of the Asteroid Redirect Mission (ARM) which have been broken into three phases: Approach and Characterization, Boulder Capture, and Planetary Defense Demonstration.
Abstract: NASA's Asteroid Redirect Mission (ARM) is composed of two segments, the Asteroid Redirect Robotic Mission (ARRM), and the Asteroid Redirect Crewed Mission (ARCM). In March of 2015, NASA selected the Robotic Boulder Capture Option1 as the baseline for the ARRM. This option will capture a multi-ton boulder, (typically 2-4 meters in size) from the surface of a large (greater than approx.100 m diameter) Near-Earth Asteroid (NEA) and return it to cis-lunar space for subsequent human exploration during the ARCM. Further human and robotic missions to the asteroidal material would also be facilitated by its return to cis-lunar space. In addition, prior to departing the asteroid, the Asteroid Redirect Vehicle (ARV) will perform a demonstration of the Enhanced Gravity Tractor (EGT) planetary defense technique2. This paper will discuss the proximity operations which have been broken into three phases: Approach and Characterization, Boulder Capture, and Planetary Defense Demonstration. Each of these phases has been analyzed for the ARRM reference target, 2008 EV5, and a detailed baseline operations concept has been developed.

5 citations

28 Oct 2017
TL;DR: The NASA Space Life Sciences Training Program (SLSTP) as discussed by the authors provides undergraduate students entering their junior or senior years with professional experience in space life science disciplines, including a ten-week summer program at NASA Ames Research Center.
Abstract: The NASA Space Life Sciences Training Program (SLSTP) provides undergraduate students entering their junior or senior years with professional experience in space life science disciplines. This challenging ten-week summer program is held at NASA Ames Research Center. The primary goal of the program is to train the next generation of scientists and engineers, enabling NASA to meet future research and development challenges in the space life sciences. Students work closely with NASA scientists and engineers on cutting-edge research and technology development. In addition to conducting hands-on research and presenting their findings, SLSTP students attend technical lectures given by experts on a wide range of topics, tour NASA research facilities, participate in leadership and team building exercises, and complete a group project. For this presentation, we will highlight program processes, accomplishments, goals, and feedback from alumni and mentors since 2013. To date, 49 students from 41 different academic institutions, 9 staffers, and 21 mentors have participated in the program. The SLSTP is funded by Space Biology, which is part of the Space Life and Physical Sciences Research and Application division of NASA's Human Exploration and Operations Mission Directorate. The SLSTP is managed by the Space Biology Project within the Science Directorate at Ames Research Center.

4 citations


Authors

Showing all 194 results

Network Information
Related Institutions (5)
Dow Corning
7.2K papers, 135.3K citations

66% related

Charles Stark Draper Laboratory
4.9K papers, 105K citations

66% related

Wright-Patterson Air Force Base
9.1K papers, 292.5K citations

65% related

General Motors
63.1K papers, 986K citations

65% related

University of Dayton Research Institute
2.6K papers, 66.2K citations

65% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20211
20192
20184
20174
20162
20142