scispace - formally typeset
Search or ask a question
Institution

Center for Neuroscience and Regenerative Medicine

Facility
About: Center for Neuroscience and Regenerative Medicine is a facility organization based out in . It is known for research contribution in the topics: Environmental science & Geology. The organization has 4 authors who have published 19 publications receiving 479 citations.

Papers
More filters
Journal ArticleDOI
University of Exeter1, Max Planck Institute for Biogeochemistry2, Tyndall Centre3, Atlantic Oceanographic and Meteorological Laboratory4, Bjerknes Centre for Climate Research5, University of Maryland, College Park6, CICERO Center for International Climate Research7, Leibniz Institute for Baltic Sea Research8, University of Reading9, Leibniz Institute of Marine Sciences10, Goddard Space Flight Center11, Flanders Marine Institute12, Food and Agriculture Organization13, Alfred Wegener Institute for Polar and Marine Research14, National Oceanic and Atmospheric Administration15, University of East Anglia16, Japan Meteorological Agency17, ETH Zurich18, National Institute for Environmental Studies19, Karlsruhe Institute of Technology20, Laboratoire des Sciences du Climat et de l'Environnement21, Tula Foundation22, Hertie Institute for Clinical Brain Research23, Nanjing University of Information Science and Technology24, Wageningen University and Research Centre25, Tsinghua University26, University of Western Sydney27, Cooperative Institute for Research in Environmental Sciences28, University of Florida29, Center for Neuroscience and Regenerative Medicine30, Woods Hole Research Center31, Michigan State University32, Tianjin University33, Auburn University34, Jilin Medical University35, Max Planck Institute for Meteorology36, Imperial College London37, Centre National de Recherches Météorologiques38, University of Groningen39, Tohoku University40, Ludwig Maximilian University of Munich41, Bank for International Settlements42, Institut Pierre-Simon Laplace43, Environment Canada44, North West Agriculture and Forestry University45, Northwest A&F University46, Pacific Marine Environmental Laboratory47, Stanford University48, Utrecht University49
TL;DR: Friedlingstein et al. as mentioned in this paper presented and synthesized datasets and methodology to quantify the five major components of the global carbon budget and their uncertainties, including fossil CO2 emissions, land use and land-use change data and bookkeeping models.
Abstract: Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize datasets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFOS) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly, and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) is estimated with global ocean biogeochemistry models and observation-based data products. The terrestrial CO2 sink (SLAND) is estimated with dynamic global vegetation models. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the first time, an approach is shown to reconcile the difference in our ELUC estimate with the one from national greenhouse gas inventories, supporting the assessment of collective countries' climate progress. For the year 2020, EFOS declined by 5.4 % relative to 2019, with fossil emissions at 9.5 ± 0.5 GtC yr−1 (9.3 ± 0.5 GtC yr−1 when the cement carbonation sink is included), and ELUC was 0.9 ± 0.7 GtC yr−1, for a total anthropogenic CO2 emission of 10.2 ± 0.8 GtC yr−1 (37.4 ± 2.9 GtCO2). Also, for 2020, GATM was 5.0 ± 0.2 GtC yr−1 (2.4 ± 0.1 ppm yr−1), SOCEAN was 3.0 ± 0.4 GtC yr−1, and SLAND was 2.9 ± 1 GtC yr−1, with a BIM of −0.8 GtC yr−1. The global atmospheric CO2 concentration averaged over 2020 reached 412.45 ± 0.1 ppm. Preliminary data for 2021 suggest a rebound in EFOS relative to 2020 of +4.8 % (4.2 % to 5.4 %) globally. Overall, the mean and trend in the components of the global carbon budget are consistently estimated over the period 1959–2020, but discrepancies of up to 1 GtC yr−1 persist for the representation of annual to semi-decadal variability in CO2 fluxes. Comparison of estimates from multiple approaches and observations shows (1) a persistent large uncertainty in the estimate of land-use changes emissions, (2) a low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) a discrepancy between the different methods on the strength of the ocean sink over the last decade. This living data update documents changes in the methods and datasets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this dataset (Friedlingstein et al., 2020, 2019; Le Quéré et al., 2018b, a, 2016, 2015b, a, 2014, 2013). The data presented in this work are available at https://doi.org/10.18160/gcp-2021 (Friedlingstein et al., 2021).

343 citations

Journal ArticleDOI
Pierre Friedlingstein1, Sönke Zaehle2, Corinne Le Quéré3, Christian Rödenbeck2, Bronte Tilbrook, Henry C. Bittig4, Denis Pierrot5, Louise Chini6, Jan Ivar Korsbakken7, Nicolas Bellouin8, Toste Tanhua9, Benjamin Poulter10, Peter Landschützer11, Francesco N. Tubiello12, Judith Hauck13, Are Olsen14, Vivek K. Arora15, Colm Sweeney16, Almut Arneth17, Marion Gehlen18, Hiroyuki Tsujino19, Daniel P. Kennedy20, Yosuke Iida19, Luke Gregor21, Jiye Zeng22, George C. Hurtt6, Nicolas Mayot23, Giacomo Grassi24, Shin-Ichiro Nakaoka22, Frédéric Chevallier18, Clemens Schwingshackl7, Wiley Evans25, Meike Becker26, Thomas Gasser27, Xu Yue28, Katie Pocock25, Stephanie Falk29, Thanos Gkritzalis11, Naiqing Pan30, Ingrid T. van der Laan-Luijkx31, Fraser Holding32, Carlos Gustavo Halaburda, Guanghong Zhou33, Peter Angele34, Jianling Chen1, e6gehqc68135, Carlos Muñoz Pérez23, Hiroshi Niinami36, Zongwe Binesikwe Crystal Hardy, Samuel Bourne37, Ralf Wüsthofen38, Paulo Brito, Christian Liguori39, Juan A. Martin-Ramos, Rattan Lal, kensetyrdhhtml2mdcom40, Staffan Furusten, Luca Miceli41, Eric Horster16, V. Miranda Chase, Field Palaeobiology Lab30, Living Tree Cbd Gummies, Lifeng Qin34, Yong Tang42, Annie Phillips43, Nathalie Fenouil26, mark, Karina Querne de Carvalho44, Satya Wydya Yenny, Maja Bak Herrie, Silvia Ravelli45, Andreas Gerster46, Denise Hottmann47, Wui-Lee Chang, Andreas Lutz48, Olga D. Vorob'eva49, Pallavi Banerjee1, Verónica Undurraga50, Jovan Babić, Michele D. Wallace9, Mònica Ginés-Blasi, 에볼루션카지노51, James Kelvin29, Christos Kontzinos1, Охунова Дилафруз Муминовна, Isabell Diekmann, Emily Burgoyne16, Vilemina Čenić52, Naomi Gikonyo26, CHAO LUAN21, Benjamin Pfluger53, Benjamin Pfluger54, A. J. Shields, Kobzos, Laszlo55, Adrian Langer56, Stuart L. Weinstein55, Abdullah ÖZÇELİK57, Yi Chen58, Anzhelika Solodka59, Valery Vasil'evich Kozlov60, Н.С. Рыжук, Roshan Vasant Shinde, Dr Sandeep Haribhau Wankhade, Dr Nitin Gajanan Shekapure, Mr Sachin Shrikant …61, Mylene Charon7, David Seibt62, Kobi Peled, None Rahmi52 
University of Exeter1, Max Planck Institute for Biogeochemistry2, Tyndall Centre3, Leibniz Institute for Baltic Sea Research4, Atlantic Oceanographic and Meteorological Laboratory5, University of Maryland, College Park6, CICERO Center for International Climate Research7, University of Reading8, Leibniz Institute of Marine Sciences9, Goddard Space Flight Center10, Flanders Marine Institute11, Food and Agriculture Organization12, Alfred Wegener Institute for Polar and Marine Research13, Geophysical Institute14, University of Victoria15, National Oceanic and Atmospheric Administration16, Karlsruhe Institute of Technology17, Laboratoire des Sciences du Climat et de l'Environnement18, Japan Meteorological Agency19, Indiana University20, ETH Zurich21, National Institute for Environmental Studies22, University of East Anglia23, European Commission24, Tula Foundation25, Bjerknes Centre for Climate Research26, Hertie Institute for Clinical Brain Research27, Nanjing University of Information Science and Technology28, Ludwig Maximilian University of Munich29, Auburn University30, Wageningen University and Research Centre31, University of Western Sydney32, Cooperative Institute for Research in Environmental Sciences33, Tsinghua University34, University of Florida35, Center for Neuroscience and Regenerative Medicine36, Woods Hole Research Center37, University of Alaska Fairbanks38, Princeton University39, Michigan State University40, University of Washington41, Appalachian State University42, Sun Yat-sen University43, Imperial College London44, University of Groningen45, University of Tennessee46, Washington University in St. Louis47, Jilin Medical University48, Tohoku University49, Rutgers University50, Centre for Research on Ecology and Forestry Applications51, Institut Pierre-Simon Laplace52, North West Agriculture and Forestry University53, Northwest A&F University54, Pacific Marine Environmental Laboratory55, Xi'an Jiaotong University56, Stanford University57, National Center for Atmospheric Research58, University of Edinburgh59, Max Planck Institute for Meteorology60, Utrecht University61, Oak Ridge National Laboratory62
TL;DR: Friedlingstein et al. as mentioned in this paper presented and synthesized data sets and methodologies to quantify the five major components of the global carbon budget and their uncertainties, including fossil CO2 emissions, land use and land-use change data and bookkeeping models.
Abstract: Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets and methodologies to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFOS) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly, and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) is estimated with global ocean biogeochemistry models and observation-based data products. The terrestrial CO2 sink (SLAND) is estimated with dynamic global vegetation models. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the year 2021, EFOS increased by 5.1 % relative to 2020, with fossil emissions at 10.1 ± 0.5 GtC yr−1 (9.9 ± 0.5 GtC yr−1 when the cement carbonation sink is included), and ELUC was 1.1 ± 0.7 GtC yr−1, for a total anthropogenic CO2 emission (including the cement carbonation sink) of 10.9 ± 0.8 GtC yr−1 (40.0 ± 2.9 GtCO2). Also, for 2021, GATM was 5.2 ± 0.2 GtC yr−1 (2.5 ± 0.1 ppm yr−1), SOCEAN was 2.9 ± 0.4 GtC yr−1, and SLAND was 3.5 ± 0.9 GtC yr−1, with a BIM of −0.6 GtC yr−1 (i.e. the total estimated sources were too low or sinks were too high). The global atmospheric CO2 concentration averaged over 2021 reached 414.71 ± 0.1 ppm. Preliminary data for 2022 suggest an increase in EFOS relative to 2021 of +1.0 % (0.1 % to 1.9 %) globally and atmospheric CO2 concentration reaching 417.2 ppm, more than 50 % above pre-industrial levels (around 278 ppm). Overall, the mean and trend in the components of the global carbon budget are consistently estimated over the period 1959–2021, but discrepancies of up to 1 GtC yr−1 persist for the representation of annual to semi-decadal variability in CO2 fluxes. Comparison of estimates from multiple approaches and observations shows (1) a persistent large uncertainty in the estimate of land-use change emissions, (2) a low agreement between the different methods on the magnitude of the land CO2 flux in the northern extratropics, and (3) a discrepancy between the different methods on the strength of the ocean sink over the last decade. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set. The data presented in this work are available at https://doi.org/10.18160/GCP-2022 (Friedlingstein et al., 2022b).

98 citations

Journal ArticleDOI
TL;DR: In this article , the authors compare the results from six Earth-system models that have performed the G6sulfur experiment and examine how SAI affects two important modes of natural variability, the northern wintertime North Atlantic Oscillation (NAO) and the Quasi-Biennial Oscillations (QBO) using the proposed geoengineering technique of stratospheric aerosol intervention (SAI).
Abstract: Abstract. As part of the Geoengineering Model Intercomparison Project a numerical experiment known as G6sulfur has been designed in which temperatures under a high-forcing future scenario (SSP5-8.5) are reduced to those under a medium-forcing scenario (SSP2-4.5) using the proposed geoengineering technique of stratospheric aerosol intervention (SAI). G6sulfur involves introducing sulfuric acid aerosol into the tropical stratosphere where it reflects incoming sunlight back to space, thus cooling the planet. Here, we compare the results from six Earth-system models that have performed the G6sulfur experiment and examine how SAI affects two important modes of natural variability, the northern wintertime North Atlantic Oscillation (NAO) and the Quasi-Biennial Oscillation (QBO). Although all models show that SAI is successful in reducing global mean temperature as designed, they are also consistent in showing that it forces an increasingly positive phase of the NAO as the injection rate increases over the course of the 21st century, exacerbating precipitation reductions over parts of southern Europe compared with SSP5-8.5. In contrast to the robust result for the NAO, there is less consistency for the impact on the QBO, but the results nevertheless indicate a risk that equatorial SAI could cause the QBO to stall and become locked in a phase with permanent westerly winds in the lower stratosphere.

10 citations

Journal ArticleDOI
TL;DR: In this article , the impacts of stratospheric aerosol intervention (SAI) and solar dimming on ozone based on the G6 Geoengineering Model Intercomparison Project (GeoMIP) experiments are assessed.
Abstract: Abstract. This study assesses the impacts of stratospheric aerosol intervention (SAI) and solar dimming on stratospheric ozone based on the G6 Geoengineering Model Intercomparison Project (GeoMIP) experiments, called G6sulfur and G6solar. For G6sulfur, an enhanced stratospheric sulfate aerosol burden reflects some of the incoming solar radiation back into space to cool the surface climate, while for G6solar, the reduction in the global solar constant in the model achieves the same goal. Both experiments use the high emissions scenario of SSP5-8.5 as the baseline experiment and define surface temperature from the medium emission scenario of SSP2-4.5 as the target. In total, six Earth system models (ESMs) performed these experiments, and three out of the six models include interactive stratospheric chemistry. The increase in absorbing sulfate aerosols in the stratosphere results in a heating of the lower tropical stratospheric temperatures by between 5 to 13 K for the six different ESMs, leading to changes in stratospheric transport, water vapor, and other related changes. The increase in the aerosol burden also increases aerosol surface area density, which is important for heterogeneous chemical reactions. The resulting changes in the springtime Antarctic ozone between the G6sulfur and SSP5-8.5, based on the three models with interactive chemistry, include an initial reduction in total column ozone (TCO) of 10 DU (ranging between 0–30 DU for the three models) and up to 20 DU (between 10–40 DU) by the end of the century. The relatively small reduction in TCO for the multi-model mean in the first 2 decades results from variations in the required sulfur injections in the models and differences in the complexity of the chemistry schemes. In contrast, in the Northern Hemisphere (NH) high latitudes, no significant changes can be identified due to the large natural variability in the models, with little change in TCO by the end of the century. However, all three models with interactive chemistry consistently simulate an increase in TCO in the NH mid-latitudes up to 20 DU, compared to SSP5-8.5, in addition to the 20 DU increase resulting from increasing greenhouse gases between SSP2-4.5 and SSP5-8.5. In contrast to G6sulfur, G6solar does not significantly change stratospheric temperatures compared to the baseline simulation. Solar dimming results in little change in TCO compared to SSP5-8.5. Only in the tropics does G6solar result in an increase of TCO of up to 8 DU, compared to SSP2-4.5, which may counteract the projected reduction in SSP5-8.5. This work identifies differences in the response of SAI and solar dimming on ozone for three ESMs with interactive chemistry, which are partly due to the differences and shortcomings in the complexity of aerosol microphysics, chemistry, and the description of ozone photolysis. It also identifies that solar dimming, if viewed as an analog to SAI using a predominantly scattering aerosol, would succeed in reducing tropospheric and surface temperatures, but any stratospheric changes due to the high forcing greenhouse gas scenario, including the potential harmful increase in TCO beyond historical values, would prevail.

9 citations

Journal ArticleDOI
TL;DR: The impact of anthropogenic climate change on marine net primary production (NPP) is a reason for concern because changing NPP will have widespread consequences for marine ecosystems and their associated services as discussed by the authors .
Abstract: Abstract. The impact of anthropogenic climate change on marine net primary production (NPP) is a reason for concern because changing NPP will have widespread consequences for marine ecosystems and their associated services. Projections by the current generation of Earth system models have suggested decreases in global NPP in response to future climate change, albeit with very large uncertainties. Here, we make use of two versions of the Institut Pierre-Simon Laplace Climate Model (IPSL-CM) that simulate divergent NPP responses to similar high-emission scenarios in the 21st century and identify nitrogen fixation as the main driver of these divergent NPP responses. Differences in the way N fixation is parameterised in the marine biogeochemical component PISCES (Pelagic Interactions Scheme for Carbon and Ecosystem Studies) of the IPSL-CM versions lead to N-fixation rates that are either stable or double over the course of the 21st century, resulting in decreasing or increasing global NPP, respectively. An evaluation of these two model versions does not help constrain future NPP projection uncertainties. However, the use of a more comprehensive version of PISCES, with variable nitrogen-to-phosphorus ratios as well as a revised parameterisation of the temperature sensitivity of N fixation, suggests only moderate changes in globally averaged N fixation in the 21st century. This leads to decreasing global NPP, in line with the model-mean changes of a recent multi-model intercomparison. Lastly, despite contrasting trends in NPP, all our model versions simulate similar and significant reductions in planktonic biomass. This suggests that projected plankton biomass may be a more robust indicator than NPP of the potential impact of anthropogenic climate change on marine ecosystems across models.

6 citations


Authors

Showing all 4 results

NameH-indexPapersCitations
Hiroshi Niinami513469
Xiangxiang Hao239
Zhicheng Wu121
Jongchul Kim010
Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
202218