scispace - formally typeset
Search or ask a question
Institution

Centro de Investigación y Desarrollo Tecnológico en Electroquímica

About: Centro de Investigación y Desarrollo Tecnológico en Electroquímica is a based out in . It is known for research contribution in the topics: Cyclic voltammetry & Catalysis. The organization has 537 authors who have published 682 publications receiving 10382 citations. The organization is also known as: Centro de Investigacion y Desarrollo Tecnologico en Electroquimica & Center of Research and Technologic Development in Electrochemistry.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a simple method was applied to prepare the nanoparticles, which were characterized by transmission electron microscopy, Ultraviolet-Visible spectroscopy, X-ray diffraction spectrography, and cyclic voltammetry.
Abstract: This paper describes the application of glassy carbon modified electrodes bearing Aux-Agy nanoparticles to catalyze the electrochemical oxidation of glucose. In particular, the paper shows the influence of the Ag content on this oxidation process. A simple method was applied to prepare the nanoparticles, which were characterized by transmission electron microscopy, Ultraviolet-Visible spectroscopy, X-ray diffraction spectroscopy, and cyclic voltammetry. These nanoparticles were used to modify glassy carbon electrodes. The effectiveness of these electrodes for electrochemical glucose oxidation was evaluated. The modified glassy carbon electrodes are highly sensitive to glucose oxidation in alkaline media, which could be attributed to the presence of Aux-Agy nanoparticles on the electrode surface. The voltammetric results suggest that the glucose oxidation speed is controlled by the glucose diffusion to the electrode surface. These results also show that the catalytic activity of the electrodes depends on the Ag content of the nanoparticles. Best results were obtained for the Au80-Ag20 nanoparticles modified electrode. This electrode could be used for Gluconic acid (GA) production.

17 citations

Journal ArticleDOI
TL;DR: The radical anions and radical cations of the two tautomers (1e and 1i) of 5,10,15,20-tetraphenyl N-confused free-base porphyrin have been studied using a combination of cyclic voltammetry, steady state absorption spectroscopy, and computational chemistry to understand the absorption spectra of the corresponding radical ions.
Abstract: The radical anions and radical cations of the two tautomers (1e and 1i) of 5,10,15,20-tetraphenyl N-confused free-base porphyrin have been studied using a combination of cyclic voltammetry, steady state absorption spectroscopy, and computational chemistry. N-Confused porphyrins (NCPs), alternatively called 2-aza-21-carba-5,10,15,20-tetraphenylporphyrins or inverted porphyrins, are of great interest for their potential as building blocks in assemblies designed for artificial photosynthesis, and understanding the absorption spectra of the corresponding radical ions is paramount to future studies in multicomponent arrays where electron-transfer reactions are involved. NCP 1e was shown to oxidize at a potential of Eox 0.65 V vs Fc+|Fc in DMF and reduce at Ered −1.42 V, while the corresponding values for 1i in toluene were Eox 0.60 V and Ered −1.64 V. The geometries of these radical ions were computed at the B3LYP/6-31+G(d)//B3LYP/6-31G(d) level in the gas phase and in solution using the polarizable continuum ...

17 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe the results obtained in the design and characterization of a tubular electrochemical reactor, which was employed for on-site hydrogen peroxide (H2O2) production in an acidic medium (pH 3) to promote three electrochemical advanced oxi-dation processes (EAOP): electro-Fenton (EF), photoelectro-fenton (PEF), and photocatalysis treatment (PT).
Abstract: This paper describes the results obtained in the design and characterization of a tubular electrochemical reactor. The set-up was employed for on-site hydrogen peroxide (H2O2) production in an acidic medium (pH 3) to promote three electrochemical advanced oxi- dation processes (EAOP): electro-Fenton (EF), photoelectro-Fenton (PEF) and photocatalysis treatment (PT). These processes were evalu- ated by their abilities to degrade a commercial dye, Orange-II (OG- II), in solution using total organic carbon (TOC) removal and high performance liquid chromatography (HPLC). To have free solutions of iron in the EF and PEF systems, a Nafion membrane with dispersed iron was prepared. For use in photocatalysis, electrodes with a large superficial area were prepared by coating carbon cloth fiber supports with titanium dioxide (TiO2) using the electrophoretic (EP) method. In this work, wastewater samples with a large number of microorganisms (coliform bacteria) were treated with this new reactor design.

17 citations

Journal ArticleDOI
TL;DR: In this article, the optical characterization of a photoluminescent geopolymer synthesized at three different temperatures (40, 60 and 90°C) is described, and the results were correlated to the porosity fraction.

17 citations

Journal ArticleDOI
TL;DR: In this article, the performance of the catalysts is attributed to the favorable size and shape of the catalyst, the high surface-to-volume ratio, and the high localized mass transport rates inside the flow-throughmicroporous electrodes.
Abstract: crystallographicplanes and flow-through microporous electrodes with high surface area. The high performance is attributed to the favorable sizeand shape of the catalyst, the high surface-to-volume ratio, and the high localized mass transport rates inside the flow-throughmicroporous electrodes. These results open up the opportunity to utilize oxygen as oxidant in miniaturized electrochemical cellswithout the constraints imposed by integration of air-breathing cathodes exposed to surrounding air.© The Author(s) 2015. Published by ECS. This is an open access article distributed under the terms of the Creative CommonsAttribution Non-Commercial No Derivatives 4.0 License (CC BY-NC-ND, http://creativecommons.org/licenses/by-nc-nd/4.0/),whichpermitsnon-commercialreuse,distribution,andreproductioninanymedium,providedtheoriginalworkisnotchangedinanyway and is properly cited. For permission for commercial reuse, please email: oa@electrochem.org. [DOI: 10.1149/2.0031504eel]All rights reserved.Manuscript submitted October 29, 2014; revised manuscript received January 26, 2015. Published February 5, 2015.

17 citations


Authors
Network Information
Related Institutions (5)
East China University of Science and Technology
36.4K papers, 763.1K citations

85% related

Korea Institute of Science and Technology
27.3K papers, 625.8K citations

84% related

Instituto Politécnico Nacional
63.3K papers, 938.5K citations

84% related

Dalian University of Technology
71.9K papers, 1.1M citations

83% related

South China University of Technology
69.4K papers, 1.2M citations

83% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20224
202164
202055
201969
201853
201757