scispace - formally typeset
Search or ask a question
Institution

Centro de Investigación y Desarrollo Tecnológico en Electroquímica

About: Centro de Investigación y Desarrollo Tecnológico en Electroquímica is a based out in . It is known for research contribution in the topics: Cyclic voltammetry & Catalysis. The organization has 537 authors who have published 682 publications receiving 10382 citations. The organization is also known as: Centro de Investigacion y Desarrollo Tecnologico en Electroquimica & Center of Research and Technologic Development in Electrochemistry.


Papers
More filters
Journal ArticleDOI
TL;DR: A comparison between these and experimental binding constants for binding of a series of radical anions from para- and ortho-substituted nitrobenzenes with 1,3-diethylurea in acetonitrile was performed, and fair correlations were obtained.
Abstract: Evaluation of the substituent effect in reaction series is an issue of interest, as it is fundamental for controlling chemical reactivity in molecules. Within the framework of density functional theory, employment of the chemical potential, μ, and the chemical hardness, η, leads to the calculation of properties of common use, such as the electrodonating (ω(-)) and electroaccepting (ω(+)) powers, in many chemical systems. In order to examine the predictive character of the substituent effect by these indexes, a comparison between these and experimental binding constants (Kb) for binding of a series of radical anions from para- and ortho-substituted nitrobenzenes with 1,3-diethylurea in acetonitrile was performed, and fair correlations were obtained; furthermore, this strategy was suitable for all of the studied compounds, even those for which empirical approximations, such as Hammett's model, are not valid. Visual representations of substituent effects are presented by considering the local electrodonating power ω(-)(r).

11 citations

Journal ArticleDOI
TL;DR: The number of transferred electrons during oxidation of molecules with antioxidant capacity was approximately obtained by means of the slope of CUPRAC calibration plots, compared with that for the Trolox, where a two-electron mechanism is presumed as discussed by the authors.

11 citations

Journal ArticleDOI
TL;DR: A novel biocomposite based on the enzyme monoamine oxidase-A (MAO-A) immobilized by covalent binding on multi-walled carbon nanotubes (MWCNT) has been developed for detection of serotonin, showing good thermal and pH stability and an improvement of its affinity towards its substrate.

11 citations

Journal ArticleDOI
TL;DR: In this article, the effect of simultaneous thermal decomposition of a thermolabile tert-butyl carbonate group, BOC, and cross-linking by a propargyl group (−CH2−C≡CH) on the gas selectivity-permeability properties of the resulting membranes is studied to learn how membranes with mitigated variations in the gas permeability coefficients with aging time may be produced.
Abstract: Physical aging in amorphous polymers causes a decrease in specific volume and thus in the gas transport properties of their membranes. In this work, the effect of simultaneous thermal decomposition of a thermolabile tert-butyl carbonate group, BOC, and cross-linking by a propargyl group (−CH2–C≡CH) on the gas selectivity–permeability properties of the resulting membranes is studied to learn how membranes with mitigated variations in the gas permeability coefficients with aging time may be produced. The model copolymer is a poly(oxyindole biphenylylene) that bears BOC and propargyl groups, [(PN-BOC)x-(PN-Pr)y]n. Systematic studies on the structure/processing/property relationship assessed by TGA, DSC, and permeation measurement using pure gases reveal that a single thermal treatment for 1 h at 240 °C on a neat copolymer membrane, 12–20 μm thickness, is enough to produce chemically robust membranes (insoluble in NMP and DMSO) and that are physically more resistant to aging since the permeability reduction r...

11 citations

Journal ArticleDOI
TL;DR: Titanium oxide nanotubes (TNTs) were anodically grown in ethylene glycol electrolyte and the influence of the anodization time on their physicochemical and photoelectrochemical properties was evaluated, affecting the opto-electronic properties.
Abstract: Titanium oxide nanotubes (TNTs) were anodically grown in ethylene glycol electrolyte. The influence of the anodization time on their physicochemical and photoelectrochemical properties was evaluated. Concomitant with the anodization time, the NT length, fluorine content, and capacitance of the space charge region increased, affecting the opto-electronic properties (bandgap, bathochromic shift, band-edge position) and surface hydrophilicity of TiO2 NTs. These properties are at the origin of the photocatalytic activity (PCA), as proved with the photooxidation of methylene blue.

11 citations


Authors
Network Information
Related Institutions (5)
East China University of Science and Technology
36.4K papers, 763.1K citations

85% related

Korea Institute of Science and Technology
27.3K papers, 625.8K citations

84% related

Instituto Politécnico Nacional
63.3K papers, 938.5K citations

84% related

Dalian University of Technology
71.9K papers, 1.1M citations

83% related

South China University of Technology
69.4K papers, 1.2M citations

83% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20224
202164
202055
201969
201853
201757