scispace - formally typeset
Search or ask a question
Institution

Centro de Investigación y Desarrollo Tecnológico en Electroquímica

About: Centro de Investigación y Desarrollo Tecnológico en Electroquímica is a based out in . It is known for research contribution in the topics: Cyclic voltammetry & Catalysis. The organization has 537 authors who have published 682 publications receiving 10382 citations. The organization is also known as: Centro de Investigacion y Desarrollo Tecnologico en Electroquimica & Center of Research and Technologic Development in Electrochemistry.


Papers
More filters
Journal ArticleDOI
TL;DR: Leaching of lead (Pb) from Salvinia minima biomass was studied by testing water, several aqueous ammonium salts, and EDTA solution as lead extractants and indicated that the dominant species produced by the leaching process should be the soluble species PbEDTA2- for EDTA system, and the insoluble Pb(COO)2S precipitate for the oxalate system.

38 citations

Journal ArticleDOI
TL;DR: In this paper, the influence of benzylideneacetone (BA) on the mechanism of Zn-Co alloy electrodeposition onto AISI 1018 steel was studied in chloride acidic solutions.
Abstract: The influence of benzylideneacetone (BA) on the mechanism of Zn–Co alloy electrodeposition onto AISI 1018 steel was studied in chloride acidic solutions. Results indicate that BA modifies the exchange current densities of zinc and cobalt such that the alloy is electrodeposited via a normal codeposition mechanism. Analysis of the deposits by Auger spectroscopy and X-ray diffraction shows that BA increases the cobalt concentration in the electrodeposited alloys and gives deposits with a constant concentration profile of both Zn and Co. BA also inhibits the formation of zinc hydroxide in the initial deposition stages, which supports the proposed mechanism of normal codeposition. Finally, it is shown that BA modifies the morphology of the deposits by inducing a reduction in the cluster size, leading to compact, smooth and shiny coatings.

38 citations

Journal ArticleDOI
TL;DR: In this article, the authors used electrophoretic deposition of colloidal aqueous suspensions on optically transparent electrodes followed by annealing in air to obtain doped nanocrystalline TiO 2 films.

37 citations

Journal ArticleDOI
TL;DR: In this article, the electrochemistry of the 1,4-benzoquinone and hydroquinone in acetonitrile and dimethylsulfoxide was reviewed to explain the nature of a broad reversible signal that appears during the reduction of quinones with small amounts of proton donors and that cannot be explained in the framework of the classical quinone reduction.

37 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of surface energy in the adsorption and electro-oxidation of D-(+)-glucose was determined by means of zeta potential measurements and was correlated with an electrochemical study.
Abstract: The glucose electro-oxidation reaction typically involves several steps and it is strongly influenced by the crystalline structure. In this paper, gold with typical {111} defects (namely Au{111}) and gold with defects enclosed in the (200) plane (Au{200}) were used to determine the effect of the surface energy in the adsorption and electro-oxidation of D-(+)-glucose. To this end, an electrokinetic analysis of surface species was made by means of zeta potential (ζ) measurements and was correlated with an electrochemical study. At low glucose concentration (0.1 mM), the system Au{200} showed a positive and large ζ value of 261.26 mV related to protons from the glucose dehydrogenation. Au{111} presented a negative ζ value of −98.11 mV associated to the glucose chemisorption plus OH− adsorption from the electrolyte. At a higher concentration (>20 mM) both systems exhibited positive ζ values (from 40 to 60 mV) related to the glucose dehydrogenation because of saturation of the electrical double layer by glucose molecules. Through cyclic voltammetry, it was observed that at low glucose concentration (<20 mM), both materials had preference for oxidation of glucose by-products. However, at higher concentrations, Au{111} favors glucono-lactone oxidation (0.4 V vs. NHE); meanwhile Au{200} favors glucose oxidation (−0.43 V vs. NHE). Through the electrokinetic analysis, the behavior of Au{111} can be related to its affinity toward the chemisorption of glucose molecules, and that of Au{200} to weak glucose chemisorption, which allows the desorption of glucose by-products renewing the gold surface for the further oxidation of glucose molecules.

37 citations


Authors
Network Information
Related Institutions (5)
East China University of Science and Technology
36.4K papers, 763.1K citations

85% related

Korea Institute of Science and Technology
27.3K papers, 625.8K citations

84% related

Instituto Politécnico Nacional
63.3K papers, 938.5K citations

84% related

Dalian University of Technology
71.9K papers, 1.1M citations

83% related

South China University of Technology
69.4K papers, 1.2M citations

83% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20224
202164
202055
201969
201853
201757