scispace - formally typeset
Search or ask a question
Institution

Clarkson University

EducationPotsdam, New York, United States
About: Clarkson University is a education organization based out in Potsdam, New York, United States. It is known for research contribution in the topics: Particle & Turbulence. The organization has 4414 authors who have published 10009 publications receiving 305356 citations. The organization is also known as: Thomas S. Clarkson Memorial School of Technology & Thomas S. Clarkson Memorial College of Technology.


Papers
More filters
Journal ArticleDOI
01 Jul 1999-Heredity
TL;DR: The global polymorphism for Knockdown temperature, coupled with the ease of selective removal of either mode, suggests that genetic variation for knockdown temperature may be maintained by natural selection.
Abstract: We selected on knockdown temperature, the upper temperature at which insects lose the ability to cling to an inclined surface, in replicate populations of Drosophila melanogaster for 32 generations (46 generations of rearing). Knockdown temperature (Tkd) was initially bimodally distributed in both control and selected lines, and a similar pattern was found in several populations surveyed from two other continents. Within 20 generations of selection, the Up-selected lines (top 25% each generation) had lost the lower mode and the Low-selected lines (selected to fall out at ≈37°C) had largely lost the upper mode. The realized heritability of Tkd computed over the first 10 selection episodes was ≈0.12 in the Up-selected and ≈0.19 in the Low-selected lines. Realized heritability rose dramatically in the Low-selected lines over the first 20 generations of selection. The two modes, plus this rise in heritability, suggest that knockdown temperature is the product of one or two genes of large effect. The global polymorphism for knockdown temperature, coupled with the ease of selective removal of either mode, suggests that genetic variation for knockdown temperature may be maintained by natural selection.

108 citations

Journal ArticleDOI
TL;DR: In this article, platinized colloidal cadmium sulphide was generated in situ in Aerosol-OT reversed micelle entrapped water pools in iso-octane sensitized water photoreduction by thiophenol, dissolved in the organic phase.
Abstract: Irradiation of platinized colloidal cadmium sulphide, generated in situ in Aerosol-OT reversed micelle entrapped water pools in iso-octane sensitized water photoreduction by thiophenol, dissolved in the organic phase.

108 citations

Journal ArticleDOI
TL;DR: The results suggest that fungi are an important structuring element of organic surface biofilms and the physical stability of the substratum strongly influences biofilm development in a fourth-order North American boreal river.
Abstract: SUMMARY 1. Biofilms are organic layers that develop on submerged surfaces. They are composed of micro-organisms, exoenzymes, and detritus particles enclosed within a gelatinous matrix. While much is known about mineral surface biofilms, those developing on organic surfaces have not been extensively studied. We examined the influences of current velocity and substratum composition on biofilm development in a fourth-order North American boreal river. 2. Arrays of white birch ice-cream sticks and sugar maple leaves were placed at fast and slow current sites. Samples were collected periodically, analysed for mass loss, and assayed for microbial biomass (ATP, ergosterol, chlorophyll a) and exoenzyme activity associated with lignocellulose degradation (exo- and endocellulase, β-glucosidase, phenol oxidase, peroxidase). 3. Biofilms developed rapidly on both surfaces. On leaves, biomass peaked within 30 days of exposure. On wood, ATP and chlorophyll a concentrations peaked within 30–70 days, whereas ergosterol increased throughout the study (161 days). On leaves, current velocity had little influence on biofilm development, although breakdown rates were greater at the fast flow site. On wood, ATP and chlorophyll a concentrations were greater at the fast flow site, whereas ergosterol concentrations and breakdown rates were similar at both sites. Microbial biomass was consistently greater on wood than leaves, Exoenzyme activity developed rapidly on both surfaces; current velocity had little influence on activity. Except for β-glucosidase, activities were greater on wood than leaves. 4. Our results suggest that fungi are an important structuring element of organic surface biofilms and the physical stability of the substratum strongly influences biofilm development. Leaf surfaces are susceptible to softening and fragmentation, truncating biofilm development. In contrast, abrasion of wood surfaces removes senescent material exposing fresh substratum for colonization. Thus, wood surfaces with their greater physical stability, permit the development of more extensive biofilms. Wood surfaces may represent an overlooked but important site of metabolic activity in streams.

108 citations

Journal ArticleDOI
TL;DR: This paper proposes the optimal operation of MMGs by a cooperativeEnergy and reserve scheduling model, in which energy and reserve can be cooperatively utilized among M MGs.
Abstract: Microgrid (MG) represents one of the major drives of adopting Internet of Things for smart cities, as it effectively integrates various distributed energy resources. Indeed, MGs can be connected with each other and presented as a system of multimicrogrid (MMG). This paper proposes the optimal operation of MMGs by a cooperative energy and reserve scheduling model, in which energy and reserve can be cooperatively utilized among MMGs. In addition, values of Shapely are introduced to allocate economic benefits of the cooperative operation. Finally, a case study based on a system of MMGs is conducted, and simulation results verify the effectiveness of the proposed cooperative scheduling model.

108 citations

Journal ArticleDOI
TL;DR: The model cytoskeleton behaves as a tunable band filter: for given linker molecules, energy transmission peaks in a narrow range of stimulation frequencies, and most of the normal modes of the network are spread over the same frequency range.
Abstract: We constructed a model cytoskeleton to investigate the proposal that this interconnected filamentous structure can act as a mechano- and signal transducer. The model cytoskeleton is composed of rigid rods representing actin filaments, which are connected with springs representing cross-linker molecules. The entire mesh is placed in viscous cytoplasm. The model eukaryotic cell is submitted to either shock wave-like or periodic mechanical perturbations at its membrane. We calculated the efficiency of this network to transmit energy to the nuclear wall as a function of cross-linker stiffness, cytoplasmic viscosity, and external stimulation frequency. We found that the cytoskeleton behaves as a tunable band filter: for given linker molecules, energy transmission peaks in a narrow range of stimulation frequencies. Most of the normal modes of the network are spread over the same frequency range. Outside this range, signals are practically unable to reach their destination. Changing the cellular ratios of linker molecules with different elastic characteristics can control the allowable frequency range and, with it, the efficiency of mechanotransduction.

108 citations


Authors

Showing all 4454 results

NameH-indexPapersCitations
Xuan Zhang119153065398
Michael R. Hoffmann10950063474
Philip K. Hopke9192940612
Sudipta Seal8651432788
Egon Matijević8146625015
Mark J. Ablowitz7437427715
Kim R. Dunbar7447020262
Maureen E. Callow7018814957
Igor M. Sokolov6967320256
James A. Callow6818614424
Michal Borkovec6623519638
Sergiy Minko6625618723
Corwin Hansch6634226798
David H. Russell6647717172
Nitash P. Balsara6241115083
Network Information
Related Institutions (5)
Georgia Institute of Technology
119K papers, 4.6M citations

93% related

University of Maryland, College Park
155.9K papers, 7.2M citations

91% related

ETH Zurich
122.4K papers, 5.1M citations

91% related

University of California, Santa Barbara
80.8K papers, 4.6M citations

91% related

Texas A&M University
164.3K papers, 5.7M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202315
202259
2021395
2020394
2019414
2018428