scispace - formally typeset
Search or ask a question
Institution

Clarkson University

EducationPotsdam, New York, United States
About: Clarkson University is a education organization based out in Potsdam, New York, United States. It is known for research contribution in the topics: Particle & Turbulence. The organization has 4414 authors who have published 10009 publications receiving 305356 citations. The organization is also known as: Thomas S. Clarkson Memorial School of Technology & Thomas S. Clarkson Memorial College of Technology.


Papers
More filters
Journal ArticleDOI
16 Aug 2010-Analyst
TL;DR: The development of a highly parallel enzyme logic sensing concept employing a novel encoding scheme for the determination of multiple pathophysiological conditions is reported, which enabled the effective discrimination of 64 unique pathological conditions to offer a comprehensive high-fidelity diagnosis of multiple injury conditions.
Abstract: The development of a highly parallel enzyme logic sensing concept employing a novel encoding scheme for the determination of multiple pathophysiological conditions is reported. The new concept multiplexes a contingent of enzyme-based logic gates to yield a distinct ‘injury code’ corresponding to a unique pathophysiological state as prescribed by a truth table. The new concept is illustrated using an array of NAND and AND gates to assess the biomedical significance of numerous biomarker inputs including creatine kinase, lactate dehydrogenase, norepinephrine, glutamate, alanine transaminase, lactate, glucose, glutathione disulfide, and glutathione reductase to assess soft-tissue injury, traumatic brain injury, liver injury, abdominal trauma, hemorrhagic shock, and oxidative stress. Under the optimal conditions, physiological and pathological levels of these biomarkers were detected through either optical or electrochemical techniques by monitoring the level of the outputs generated by each of the six logic gates. By establishing a pathologically meaningful threshold for each logic gate, the absorbance and amperometric assays tendered the diagnosis in a digitally encoded 6-bit word, defined as an ‘injury code’. This binary ‘injury code’ enabled the effective discrimination of 64 unique pathological conditions to offer a comprehensive high-fidelity diagnosis of multiple injury conditions. Such processing of relevant biomarker inputs and the subsequent multiplexing of the logic gate outputs to yield a comprehensive ‘injury code’ offer significant potential for the rapid and reliable assessment of varied and complex forms of injury in circumstances where access to a clinical laboratory is not viable. While the new concept of parallel and multiplexed enzyme logic gates is illustrated here in connection to multi-injury diagnosis, it could be readily extended to a wide range of practical medical, industrial, security and environmental applications.

102 citations

Journal ArticleDOI
TL;DR: In this article, samples of rainwater were collected to characterize the chemistry and sources in two representative megacities at Pune (Southwest) and Delhi (Northern) India from 2011 to 2014 across two seasons: monsoon (MN) and non-monsoon (NMN).

102 citations

Journal ArticleDOI
TL;DR: In this paper, the authors estimate the stator winding insulation life of a squirrel cage motors using Arrhenius' equations and calculate motor losses and temperatures using simple motor testing techniques rather than from complex methods requiring motor design data.
Abstract: This paper estimates motor life when a motor is supplied with a combination of over- or undervoltages with unbalanced voltages. The motor life is predicted by estimating the stator winding insulation life of squirrel cage motors using Arrhenius' equations. Electrical and thermal models are used to calculate motor losses and temperatures, respectively. The thermal model parameters are obtained from simple motor testing techniques rather than from complex methods requiring motor design data

102 citations

Journal ArticleDOI
TL;DR: In this article, the authors present explicit criteria that will serve as a foundation for developing measurable objectives for energy literacy in three dimensions: cognitive (knowledge, cognitive skills), affective (attitude, values, personal responsibility); and behavioral.
Abstract: Energy literacy is a broad term encompassing content knowledge as well as a citizenship understanding of energy that includes affective and behavioral aspects. This article presents explicit criteria that will serve as a foundation for developing measurable objectives for energy literacy in three dimensions: cognitive (knowledge, cognitive skills), affective (attitude, values, personal responsibility); and behavioral. The outcome of this research is a framework from which a quantitative survey of energy literacy for secondary students in New York State, United States, can be created. Efforts supported by this research may help assess the broader impacts of educational programs in terms of their effectiveness for improving students’ energy literacy.

102 citations

Journal ArticleDOI
TL;DR: The current state-of-the-art research in graphene based nanomaterials (physicochemical properties and surface functionalities), the role of these parameters in enhancing electron transfer, the stability and activity of immobilized enzymes, and how enhanced power density can be achieved are covered.
Abstract: The excellent electrical conductivity and ease of functionalization make graphene a promising material for use in enzymatic bioelectrodes and biofuel cells. Enzyme based biofuel cells have attracted substantial interest due to their potential to harvest energy from organic materials. This review provides an overview of the functional properties and applications of graphene in the construction of biofuel cells as alternative power sources. The review covers the current state-of-the-art research in graphene based nanomaterials (physicochemical properties and surface functionalities), the role of these parameters in enhancing electron transfer, the stability and activity of immobilized enzymes, and how enhanced power density can be achieved. Specific examples of enzyme immobilization methods, enzyme loading, stability and function on graphene, functionalized graphene and graphene based nanocomposite materials are discussed along with their advantages and limitations. Finally, a critical evaluation of the performance of graphene based enzymatic biofuel cells, the current status, challenges and future research needs are provided.

102 citations


Authors

Showing all 4454 results

NameH-indexPapersCitations
Xuan Zhang119153065398
Michael R. Hoffmann10950063474
Philip K. Hopke9192940612
Sudipta Seal8651432788
Egon Matijević8146625015
Mark J. Ablowitz7437427715
Kim R. Dunbar7447020262
Maureen E. Callow7018814957
Igor M. Sokolov6967320256
James A. Callow6818614424
Michal Borkovec6623519638
Sergiy Minko6625618723
Corwin Hansch6634226798
David H. Russell6647717172
Nitash P. Balsara6241115083
Network Information
Related Institutions (5)
Georgia Institute of Technology
119K papers, 4.6M citations

93% related

University of Maryland, College Park
155.9K papers, 7.2M citations

91% related

ETH Zurich
122.4K papers, 5.1M citations

91% related

University of California, Santa Barbara
80.8K papers, 4.6M citations

91% related

Texas A&M University
164.3K papers, 5.7M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202315
202259
2021395
2020394
2019414
2018428