scispace - formally typeset
Search or ask a question
Institution

General Dynamics

CompanyFairfax, Virginia, United States
About: General Dynamics is a company organization based out in Fairfax, Virginia, United States. It is known for research contribution in the topics: Signal & Propellant. The organization has 5722 authors who have published 5819 publications receiving 85768 citations. The organization is also known as: GD & General Dynamics Corporation.


Papers
More filters
Journal ArticleDOI
TL;DR: This work presents a viable approach to overcome the entanglement-distribution loss and shows that the measurement sensitivity enabled by entangled quantum sensors beat that afforded by the optimum local resource.
Abstract: A quantum repeater based on noiseless linear amplifiers is introduced and applied to an entanglement distribution setting used for sensing applications. The enhanced quantum sensor is a concrete application of quantum repeaters and can be implemented with current technology.

30 citations

Patent
Eric M. Bradley1
05 Sep 1989
TL;DR: In this article, a pair of multilayer dielectric or semiconductor mirrors are formed on opposite ends of an optical cavity with the mirrors formed in a plane parallel to the substrate surface.
Abstract: At least one optical resonator having a selected optical processing property is formed upon a substrate. Various property resonators may be stacked upon one another so as to share a common optical axis. A resonator typically has a pair of multilayer dielectric or semiconductor mirrors formed on opposite ends of an optical cavity with the mirrors formed in a plane parallel to the substrate surface. Temperature and mechanical stability superior to current technology is thus achievable in the structure. Additional combinations of mirrors, cavities and gratings may be formed in conjunction with the resonator.

30 citations

PatentDOI
TL;DR: In this article, the authors present a non-destructive monitoring of the time dependent curing of an advanced composite positioned within an autoclave where it is subjected to varying pressures and elevated temperatures over a predetermined time period.
Abstract: Method and apparatus for the non-destructive monitoring of the time dependent curing of an advanced composite positioned within an autoclave where it is subjected to varying pressures and elevated temperatures over a predetermined time period. A tool receiving the uncured advanced composite for receiving an acoustic wave guide which directly coupled to the composite. Ultrasound pulses are directed through the acoustic wave guide and the amplitude of the reflected pulses indicate changes in the modulus of the composite during the cure.

30 citations

Patent
13 Mar 1978
TL;DR: In this paper, a slidable retainer fits into a channel below the positioning plate to partially close the sockets and retain preforms therein, allowing the preforms to drop on the pins and the loaded connector is removed from the apparatus.
Abstract: A method and apparatus for loading solder preforms on to the pins of a multiple pin connector. A positioning plate has open sockets in the pattern of the pins of the connector to be loaded, the sockets being sized to receive a single solder preform in each one. A slidable retainer fits into a channel below the positioning plate to partially close the sockets and retain preforms therein. Loose preforms are contained in a dam attached to the top of the positioning plate and are shaken into the sockets on a vibrator table. The dam and excess preforms are removed and the positioning plate is covered by a cover plate to hold the preforms in place. The connector pins are then inserted through slots in the retainer, through the preforms and through holes in the cover plate. The retainer is removed, allowing the preforms to drop on the pins and the loaded connector is removed from the apparatus.

30 citations

Journal ArticleDOI
TL;DR: In this paper, the intrinsic response of the 10-Gb/s electrooptic Mach-Zehnder modulator (MZM) is used to create a low-pass-filtered (LPF) duobinary signal, which shows a minimum optical signal-to-noise ratio (OSNR) requirement penalty of /spl sim/4 to /splsim/6 dB as compared to nonreturn-tozero (NRZ) signals.
Abstract: Optical duobinary transmission at 42.7 Gb/s is demonstrated using a commercially available 10-Gb/s LiNbO/sub 3/ modulator. The intrinsic response of the 10-Gb/s electrooptic Mach-Zehnder modulator (MZM) is used to create a low-pass-filtered (LPF) duobinary signal, which shows a minimum optical signal-to-noise ratio (OSNR) requirement penalty of /spl sim/4 to /spl sim/6 dB as compared to nonreturn-to-zero (NRZ) signals. However, when the MZM-LPF duobinary is filtered with a 50-GHz 3-dB bandwidth first-order Gaussian filter, a significant improvement in required OSNR is seen. In contrast, similar optical filtering of NRZ data creates a significant OSNR penalty such that the NRZ and MZM-LPF duobinary data have nearly identical OSNR requirements. Therefore, the MZM-LPF duobinary technique may be a cost-effective approach to high-spectral-efficiency transmission at 42.7 Gb/s.

30 citations


Authors

Showing all 5726 results

NameH-indexPapersCitations
David Pines7733627708
Kenneth G. Miller7329520042
Timothy J. White7246620574
David Erickson5731012288
Maxim Likhachev4821011162
Karlene H. Roberts4610913937
Francesco Soldovieri424416664
Peter A. Rogerson391416127
Daniel W. Bliss382129054
R. Byron Pipes351695942
Yosio Nakamura341213947
Leonard George Cohen341313953
Christopher C. Davis333114013
Erhard W. Rothe311083309
Charles Dubois291292752
Network Information
Related Institutions (5)
Sandia National Laboratories
46.7K papers, 1.4M citations

84% related

General Electric
110.5K papers, 1.8M citations

83% related

United States Naval Research Laboratory
45.4K papers, 1.5M citations

83% related

Rensselaer Polytechnic Institute
39.9K papers, 1.4M citations

81% related

Ames Research Center
35.8K papers, 1.3M citations

80% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20234
20222
202193
202065
201948
201834