scispace - formally typeset
Search or ask a question
Institution

Georgia Institute of Technology

EducationAtlanta, Georgia, United States
About: Georgia Institute of Technology is a education organization based out in Atlanta, Georgia, United States. It is known for research contribution in the topics: Population & Computer science. The organization has 45387 authors who have published 119086 publications receiving 4651220 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the size and temperature dependence of the plasmon absorption of 9, 15, 22, 48, and 99 nm gold nanoparticles in aqueous solution were studied.
Abstract: The size and temperature dependence of the plasmon absorption is studied for 9, 15, 22, 48, and 99 nm gold nanoparticles in aqueous solution. The plasmon bandwidth is found to follow the predicted behavior as it increases with decreasing size in the intrinsic size region (mean diameter smaller than 25 nm), and also increases with increasing size in the extrinsic size region (mean diameter larger than 25 nm). Because of this pronounced size effect a homogeneous size distribution and therefore a homogeneous broadening of the plasmon band is concluded for all the prepared gold nanoparticle samples. By applying a simple two-level model the dephasing time of the coherent plasmon oscillation is calculated and found to be less than 5 fs. Furthermore, the temperature dependence of the plasmon absorption is examined. A small temperature effect is observed. This is consistent with the fact that the dominant electronic dephasing mechanism involves electron−electron interactions rather than electron−phonon coupling.

2,480 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented a stable and efficient numerical implementation of the analysis technique for one-dimensional binary gratings for both TE and TM polarization and for the general case of conical diffraction.
Abstract: The rigorous coupled-wave analysis technique for describing the diffraction of electromagnetic waves by periodic grating structures is reviewed. Formulations for a stable and efficient numerical implementation of the analysis technique are presented for one-dimensional binary gratings for both TE and TM polarization and for the general case of conical diffraction. It is shown that by exploitation of the symmetry of the diffraction problem a very efficient formulation, with up to an order-of-magnitude improvement in the numerical efficiency, is produced. The rigorous coupled-wave analysis is shown to be inherently stable. The sources of potential numerical problems associated with underflow and overflow, inherent in digital calculations, are presented. A formulation that anticipates and preempts these instability problems is presented. The calculated diffraction efficiencies for dielectric gratings are shown to converge to the correct value with an increasing number of space harmonics over a wide range of parameters, including very deep gratings. The effect of the number of harmonics on the convergence of the diffraction efficiencies is investigated. More field harmonics are shown to be required for the convergence of gratings with larger grating periods, deeper gratings, TM polarization, and conical diffraction.

2,437 citations

Journal ArticleDOI
TL;DR: The Review will consider some of the current scientific issues underpinning lithium batteries and electric double-layer capacitors.
Abstract: Energy-storage technologies, including electrical double-layer capacitors and rechargeable batteries, have attracted significant attention for applications in portable electronic devices, electric vehicles, bulk electricity storage at power stations, and “load leveling” of renewable sources, such as solar energy and wind power. Transforming lithium batteries and electric double-layer capacitors requires a step change in the science underpinning these devices, including the discovery of new materials, new electrochemistry, and an increased understanding of the processes on which the devices depend. The Review will consider some of the current scientific issues underpinning lithium batteries and electric double-layer capacitors.

2,412 citations

Journal ArticleDOI
TL;DR: The genesis of these tasks is reviewed and how and why they came to be so influential, the reliability and validity of the tasks are addressed, and more technical aspects are considered, such as optimal administration and scoring procedures.
Abstract: Working memory (WM) span tasks—and in particular, counting span, operation span, and reading span tasks—are widely used measures of WM capacity. Despite their popularity, however, there has never been a comprehensive analysis of the merits of WM span tasks as measurement tools. Here, we review the genesis of these tasks and discuss how and why they came to be so influential. In so doing, we address the reliability and validity of the tasks, and we consider more technical aspects of the tasks, such as optimal administration and scoring procedures. Finally, we discuss statistical and methodological techniques that have commonly been used in conjunction with WM span tasks, such as latent variable analysis and extreme-groups designs.

2,411 citations


Authors

Showing all 45752 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Younan Xia216943175757
Paul M. Thompson1832271146736
Hyun-Chul Kim1764076183227
Jiawei Han1681233143427
John H. Seinfeld165921114911
David J. Mooney15669594172
Richard E. Smalley153494111117
Vivek Sharma1503030136228
James M. Tiedje150688102287
Philip S. Yu1481914107374
Kevin Murphy146728120475
Gordon T. Richards144613110666
Yi Yang143245692268
Joseph T. Hupp14173182647
Network Information
Related Institutions (5)
Carnegie Mellon University
104.3K papers, 5.9M citations

96% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

96% related

University of Maryland, College Park
155.9K papers, 7.2M citations

95% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

95% related

Purdue University
163.5K papers, 5.7M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023163
2022704
20216,327
20206,636
20196,645
20186,011