scispace - formally typeset
Search or ask a question
Institution

Georgia Institute of Technology

EducationAtlanta, Georgia, United States
About: Georgia Institute of Technology is a education organization based out in Atlanta, Georgia, United States. It is known for research contribution in the topics: Population & Computer science. The organization has 45387 authors who have published 119086 publications receiving 4651220 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A novel bio-inspired composite electrocatalyst, iron phthalocyanine with an axial ligand anchored on single-walled carbon nanotubes, demonstrating higher electrocatalytic activity for oxygen reduction than the state-of-the-art Pt/C catalyst as well as exceptional durability during cycling in alkaline media.
Abstract: Electrocatalysts for oxygen reduction are a critical component that may dramatically enhance the performance of fuel cells and metal-air batteries, which may provide the power for future electric vehicles. Here we report a novel bio-inspired composite electrocatalyst, iron phthalocyanine with an axial ligand anchored on single-walled carbon nanotubes, demonstrating higher electrocatalytic activity for oxygen reduction than the state-of-the-art Pt/C catalyst as well as exceptional durability during cycling in alkaline media. Theoretical calculations suggest that the rehybridization of Fe 3d orbitals with the ligand orbitals coordinated from the axial direction results in a significant change in electronic and geometric structure, which greatly increases the rate of oxygen reduction reaction. Our results demonstrate a new strategy to rationally design inexpensive and durable electrochemical oxygen reduction catalysts for metal-air batteries and fuel cells.

605 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of loading rate, hydrostatic pressure and microstructural heterogeneity on the load-carrying capacities of concrete and mortar were investigated using split Hopkinson pressure bar and plate impact.

604 citations

Journal ArticleDOI
TL;DR: This definition is based on a particular set of eigenvectors of the DFT matrix, which constitutes the discrete counterpart of the set of Hermite-Gaussian functions, and is exactly unitary, index additive, and reduces to the D FT for unit order.
Abstract: We propose and consolidate a definition of the discrete fractional Fourier transform that generalizes the discrete Fourier transform (DFT) in the same sense that the continuous fractional Fourier transform generalizes the continuous ordinary Fourier transform. This definition is based on a particular set of eigenvectors of the DFT matrix, which constitutes the discrete counterpart of the set of Hermite-Gaussian functions. The definition is exactly unitary, index additive, and reduces to the DFT for unit order. The fact that this definition satisfies all the desirable properties expected of the discrete fractional Fourier transform supports our confidence that it will be accepted as the definitive definition of this transform.

604 citations

Journal ArticleDOI
TL;DR: One way of energy harvesting without such restraints is to utilize piezoelectric materials that can convert vibrational and mechanical energy sources from human activities such as pressure, bending, and stretching motions into electrical energy.
Abstract: Outdoor renewable energy sources such as solar energy (15 000 μ W/cm 3 ), [ 3 , 4 ] wind energy (380 μ W/cm 3 ), [ 5 ] and wave energy (1 000 W/cm of wave crest length) [ 6 , 7 ] can provide largescale needs of power. However, for driving small electronics in indoor or concealed environments [ 3 , 8 ] (such as in tunnels, clothes, and artifi cial skin) and implantable biomedical devices, innovative approaches have to be developed. One way of energy harvesting without such restraints is to utilize piezoelectric materials that can convert vibrational and mechanical energy sources from human activities such as pressure, bending, and stretching motions into electrical energy. [ 9–11 ]

604 citations

Journal ArticleDOI
TL;DR: An atomistic modeling framework is developed to address the probabilistic nature of surface dislocation nucleation, showing the activation volume associated with surface dislocated nucleation is characteristically in the range of 1-10b3, where b is the Burgers vector.
Abstract: Dislocation nucleation is essential to the plastic deformation of small-volume crystalline solids. The free surface may act as an effective source of dislocations to initiate and sustain plastic flow, in conjunction with bulk sources. Here, we develop an atomistic modeling framework to address the probabilistic nature of surface dislocation nucleation. We show the activation volume associated with surface dislocation nucleation is characteristically in the range of $1--10{b}^{3}$, where $b$ is the Burgers vector. Such small activation volume leads to sensitive temperature and strain-rate dependence of the nucleation stress, providing an upper bound to the size-strength relation in nanopillar compression experiments.

604 citations


Authors

Showing all 45752 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Younan Xia216943175757
Paul M. Thompson1832271146736
Hyun-Chul Kim1764076183227
Jiawei Han1681233143427
John H. Seinfeld165921114911
David J. Mooney15669594172
Richard E. Smalley153494111117
Vivek Sharma1503030136228
James M. Tiedje150688102287
Philip S. Yu1481914107374
Kevin Murphy146728120475
Gordon T. Richards144613110666
Yi Yang143245692268
Joseph T. Hupp14173182647
Network Information
Related Institutions (5)
Carnegie Mellon University
104.3K papers, 5.9M citations

96% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

96% related

University of Maryland, College Park
155.9K papers, 7.2M citations

95% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

95% related

Purdue University
163.5K papers, 5.7M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023163
2022704
20216,327
20206,636
20196,645
20186,011