scispace - formally typeset
Search or ask a question
Institution

Heidelberg University

EducationHeidelberg, Germany
About: Heidelberg University is a education organization based out in Heidelberg, Germany. It is known for research contribution in the topics: Population & Transplantation. The organization has 62066 authors who have published 119109 publications receiving 4678423 citations. The organization is also known as: Ruprecht-Karls-Universität Heidelberg & University of Heidelberg.
Topics: Population, Transplantation, Galaxy, Cancer, Stars


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that RAGE functions as an endothelial adhesion receptor promoting leukocyte recruitment relevant in inflammatory disorders associated with increased RAGE expression, such as in diabetes, and could provide the basis for the development of novel therapeutic applications.
Abstract: The pattern recognition receptor, RAGE (receptor for advanced glycation endproducts), propagates cellular dysfunction in several inflammatory disorders and diabetes. Here we show that RAGE functions as an endothelial adhesion receptor promoting leukocyte recruitment. In an animal model of thioglycollate-induced acute peritonitis, leukocyte recruitment was significantly impaired in RAGE-deficient mice as opposed to wild-type mice. In diabetic wild-type mice we observed enhanced leukocyte recruitment to the inflamed peritoneum as compared with nondiabetic wild-type mice; this phenomenon was attributed to RAGE as it was abrogated in the presence of soluble RAGE and was absent in diabetic RAGE-deficient mice. In vitro, RAGE-dependent leukocyte adhesion to endothelial cells was mediated by a direct interaction of RAGE with the beta2-integrin Mac-1 and, to a lower extent, with p150,95 but not with LFA-1 or with beta1-integrins. The RAGE-Mac-1 interaction was augmented by the proinflammatory RAGE-ligand, S100-protein. These results were corroborated by analysis of cells transfected with different heterodimeric beta2-integrins, by using RAGE-transfected cells, and by using purified proteins. The RAGE-Mac-1 interaction defines a novel pathway of leukocyte recruitment relevant in inflammatory disorders associated with increased RAGE expression, such as in diabetes, and could provide the basis for the development of novel therapeutic applications.

581 citations

Journal ArticleDOI
11 Jul 1985-Nature
TL;DR: Polyclonal antibodies are prepared to a prominent member of the L2/HNK-1 family and it is reported that these antibodies, designated J1 antibodies, react with astrocytes and oligodendroCytes and interfere with neurone–astrocyte adhesion, but not with neur one–neurone or astroCyte–astrospecific adhesion.
Abstract: The neural cell adhesion molecules L1 and N-CAM share a common carbohydrate epitope that is recognized by the monoclonal antibodies L2 and HNK-1. The L2/HNK-1 epitope is also present on the myelin-associated glycoprotein (MAG) which is thought to mediate surface interactions between the axon and myelinating cell. Other, as yet unidentified, cell-surface glycoproteins are recognized by the two antibodies and are believed to belong to a family of neural cell adhesion molecules. To test this hypothesis, we have prepared polyclonal antibodies to a prominent member of the L2/HNK-1 family, the 160K (relative molecular mass (Mr)160,000) glycoprotein. Here we report that these antibodies, designated J1 antibodies, react with astrocytes and oligodendrocytes and interfere with neurone-astrocyte adhesion, but not with neurone-neurone or astrocyte-astrocyte adhesion. This result suggests the involvement of the J1 antigen in cell-cell interactions.

580 citations

Journal ArticleDOI
01 Jun 2002-Bone
TL;DR: It is concluded that application of the techniques investigated here can lead to a better prediction of the bone failure load for bone in vivo than is possible from DXA measurements, structural parameters, or a combination thereof.

579 citations

Journal ArticleDOI
TL;DR: Enhanced PAR-2 signaling is identified as a new link between inflammatory and sensory phenomena in atopic dermatitis patients and represents a promising therapeutic target for the treatment of cutaneous neurogenic inflammation and pruritus.
Abstract: We examined whether neuronal proteinase-activated receptor-2 (PAR-2) may be involved in pruritus of human skin. The endogenous PAR-2 agonist tryptase was increased up to fourfold in atopic dermatitis (AD) patients. PAR-2 was markedly enhanced on primary afferent nerve fibers in skin biopsies of AD patients. Intracutaneous injection of endogenous PAR-2 agonists provoked enhanced and prolonged itch when applied intralesionally. Moreover, itch upon mast cell degranulation was abolished by local antihistamines in controls but prevailed in AD patients. Thus, we identified enhanced PAR-2 signaling as a new link between inflammatory and sensory phenomena in AD patients. PAR-2 therefore represents a promising therapeutic target for the treatment of cutaneous neurogenic inflammation and pruritus.

579 citations

Journal ArticleDOI
TL;DR: This review describes the physical, biologic, and technologic aspects of particle beam therapy and clinical trials investigating proton and carbon ion RT will be discussed in the context of their relevance to recent concepts of treatment with RT.
Abstract: Particle beams like protons and heavier ions offer improved dose distributions compared with photon (also called x-ray) beams and thus enable dose escalation within the tumor while sparing normal tissues. Although protons have a biologic effectiveness comparable to photons, ions, because they are heavier than protons, provide a higher biologic effectiveness. Recent technologic developments in the fields of accelerator engineering, treatment planning, beam delivery, and tumor visualization have stimulated the process of transferring particle radiation therapy (RT) from physics laboratories to the clinic. This review describes the physical, biologic, and technologic aspects of particle beam therapy. Clinical trials investigating proton and carbon ion RT will be summarized and discussed in the context of their relevance to recent concepts of treatment with RT.

578 citations


Authors

Showing all 62427 results

NameH-indexPapersCitations
Nicholas G. Martin1921770161952
Jing Wang1844046202769
Chris Sander178713233287
Kenneth C. Anderson1781138126072
Zena Werb168473122629
Marc Weber1672716153502
Volker Springel165746123399
Ira Pastan1601286110069
Wolfgang Wagner1562342123391
Jovan Milosevic1521433106802
Hermann Brenner1511765145655
Robert J. Sternberg149106689193
Margaret A. Pericak-Vance149826118672
Andreas Pfeiffer1491756131080
Rajesh Kumar1494439140830
Network Information
Related Institutions (5)
Ludwig Maximilian University of Munich
161.5K papers, 5.7M citations

98% related

University of Zurich
124K papers, 5.3M citations

95% related

University of Amsterdam
140.8K papers, 5.9M citations

94% related

Harvard University
530.3K papers, 38.1M citations

93% related

University of Helsinki
113.1K papers, 4.6M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023191
2022729
20216,243
20206,124
20195,659
20185,388