scispace - formally typeset
Search or ask a question
Institution

Industrial Technology Research Institute

FacilitySan Jose, California, United States
About: Industrial Technology Research Institute is a facility organization based out in San Jose, California, United States. It is known for research contribution in the topics: Layer (electronics) & Signal. The organization has 32552 authors who have published 24401 publications receiving 347494 citations. The organization is also known as: Gongye Jishu Yanjiuyuan & Industrial Technology Research Institute of Taiwan, R.O.C.


Papers
More filters
Journal ArticleDOI
TL;DR: A new approach for the design of alloys is presented in this paper, where high-entropy alloys with multi-principal elements were synthesized using well-developed processing technologies.
Abstract: A new approach for the design of alloys is presented in this study. These high-entropy alloys with multi-principal elements were synthesized using well-developed processing technologies. Preliminary results demonstrate examples of the alloys with simple crystal structures, nanostructures, and promising mechanical properties. This approach may be opening a new era in materials science and engineering.

8,175 citations

Journal ArticleDOI
TL;DR: The influences of annealing time on the densification, crystallization, resistivity (ρ), hall mobility (μ), and carrier concentration of the CIS absorber layers were well investigated in this study.
Abstract: In this study, the Mo-electrode thin films were deposited by a two-stepped process, and the high-purity copper indium selenide-based powder (CuInSe2, CIS) was fabricated by hydrothermal process by Nanowin Technology Co. Ltd. From the X-ray pattern of the CIS precursor, the mainly crystalline phase was CIS, and the almost undetectable CuSe phase was observed. Because the CIS powder was aggregated into micro-scale particles and the average particle sizes were approximately 3 to 8 μm, the CIS power was ground into nano-scale particles, then the 6 wt.% CIS particles were dispersed into isopropyl alcohol to get the solution for spray coating method. Then, 0.1 ml CIS solution was sprayed on the 20 mm × 10 mm Mo/glass substrates, and the heat treatment for the nano-scale CIS solution under various parameters was carried out in a selenization furnace. The annealing temperature was set at 550°C, and the annealing time was changed from 5 to 30 min, without extra Se content was added in the furnace. The influences of annealing time on the densification, crystallization, resistivity (ρ), hall mobility (μ), and carrier concentration of the CIS absorber layers were well investigated in this study.

1,861 citations

Journal ArticleDOI
16 Apr 2015-Nature
TL;DR: A rechargeable aluminium battery with high-rate capability that uses an aluminium metal anode and a three-dimensional graphitic-foam cathode, found to enable fast anion diffusion and intercalation, and to withstand more than 7,500 cycles without capacity decay.
Abstract: An aluminium-ion battery is reported that can charge within one minute, and offers improved cycle life compared to previous devices; it operates through the electrochemical deposition and dissolution of aluminium at the anode, and the intercalation/de-intercalation of chloroaluminate anions into a novel graphitic-foam cathode. The low cost and useful electrical properties of aluminium suggest that rechargeable Al-ion batteries could offer viable and safe battery technology, but problems with cathode materials, poor cycling performance and other complications have persisted. Here Hongjie Dai and colleagues describe an Al-ion battery that can charge within one minute and offers substantially improved cycle life with little decay in capacity compared to previous devices reported in the literature. The battery operates through the electrochemical deposition and dissolution of Al and intercalation/de-intercalation of chloroaluminate anions into a novel 3D graphitic foam cathode using a non-flammable ionic liquid electrolyte. The development of new rechargeable battery systems could fuel various energy applications, from personal electronics to grid storage1,2. Rechargeable aluminium-based batteries offer the possibilities of low cost and low flammability, together with three-electron-redox properties leading to high capacity3. However, research efforts over the past 30 years have encountered numerous problems, such as cathode material disintegration4, low cell discharge voltage (about 0.55 volts; ref. 5), capacitive behaviour without discharge voltage plateaus (1.1–0.2 volts6 or 1.8–0.8 volts7) and insufficient cycle life (less than 100 cycles) with rapid capacity decay (by 26–85 per cent over 100 cycles)4,5,6,7. Here we present a rechargeable aluminium battery with high-rate capability that uses an aluminium metal anode and a three-dimensional graphitic-foam cathode. The battery operates through the electrochemical deposition and dissolution of aluminium at the anode, and intercalation/de-intercalation of chloroaluminate anions in the graphite, using a non-flammable ionic liquid electrolyte. The cell exhibits well-defined discharge voltage plateaus near 2 volts, a specific capacity of about 70 mA h g–1 and a Coulombic efficiency of approximately 98 per cent. The cathode was found to enable fast anion diffusion and intercalation, affording charging times of around one minute with a current density of ~4,000 mA g–1 (equivalent to ~3,000 W kg–1), and to withstand more than 7,500 cycles without capacity decay.

1,671 citations

Journal ArticleDOI
TL;DR: In this paper, a smart estimation method based on coulomb counting is proposed to improve the estimation accuracy for state-of-charge (SOC) estimation of lithium-ion batteries with high charging and discharging efficiencies.

1,172 citations

Patent
20 Oct 2008
TL;DR: In this article, a method for fabricating an AMOLED pixel includes forming a transparent semiconductor layer on a substrate and forming a first channel layer of the switch TFT, a lower electrode of a storage capacitor and a second channel of a driving TFT.
Abstract: A method for fabricating an AMOLED pixel includes forming a transparent semiconductor layer on a substrate and forming a first channel layer of the switch TFT, a lower electrode of a storage capacitor and a second channel layer of a driving TFT. A first dielectric layer is formed over the substrate. A first opaque metal gate of the switch TFT, a second opaque metal gate of the driving TFT and a scan line are formed on the first dielectric layer. A first source and a first drain of the switch TFT are formed in the first channel layer and a second source and a second drain of the switch TFT are formed in the second channel layer. A patterned transparent metal layer is formed on the first dielectric layer. A data line is formed over the substrate. An OLED is formed over the substrate.

1,016 citations


Authors

Showing all 32560 results

NameH-indexPapersCitations
Peidong Yang183562144351
A. Paul Alivisatos146470101741
Shuit-Tong Lee138112177112
Feng Li10499560692
Hiroshi Maeda10389363370
Tao Li102248360947
Jo Shu Chang9963937487
Duu-Jong Lee9197937292
Pi-Tai Chou9061430922
Adrian Perrig8937453367
Hsing-Wen Sung8629021594
Shin-Tson Wu86108233133
Chung-Yuan Mou8342025075
Leaf Huang8324829018
Ru-Shi Liu8273826699
Network Information
Related Institutions (5)
Samsung
163.6K papers, 2M citations

91% related

KAIST
77.6K papers, 1.8M citations

90% related

Nanyang Technological University
112.8K papers, 3.2M citations

90% related

Tsinghua University
200.5K papers, 4.5M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20232
202234
2021673
2020829
2019960
2018846