scispace - formally typeset
Search or ask a question
Institution

Nanosystems Initiative Munich

FacilityMunich, Germany
About: Nanosystems Initiative Munich is a facility organization based out in Munich, Germany. It is known for research contribution in the topics: Quantum dot & Perovskite (structure). The organization has 323 authors who have published 549 publications receiving 24316 citations.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: It is suggested that encapsulation of mechanically exfoliated few-monolayer TMDCs within nanometre thick hBN dramatically enhances optical quality, producing ultra-narrow linewidths that approach the homogeneous limit.
Abstract: We demonstrate the reduction of the inhomogeneous linewidth of the free excitons in atomically thin transition metal dichalcogenides (TMDCs) MoSe$_{2}$, WSe$_{2}$ and MoS$_{2}$ by encapsulation within few nanometer thick hBN. Encapsulation is shown to result in a significant reduction of the 10K excitonic linewidths down to $\sim3.5 \text{ meV}$ for n-MoSe$_{2}$, $\sim5.0 \text{ meV}$ for p-WSe$_{2}$ and $\sim4.8 \text{ meV}$ for n-MoS$_{2}$. Evidence is obtained that the hBN environment effectively lowers the Fermi level since the relative spectral weight shifts towards the neutral exciton emission in n-doped TMDCs and towards charged exciton emission in p-doped TMDCs. Moreover, we find that fully encapsulated MoS$_{2}$ shows resolvable exciton and trion emission even after high power density excitation in contrast to non-encapsulated materials. Our findings suggest that encapsulation of mechanically exfoliated few-monolayer TMDCs within nanometer thick hBN dramatically enhances optical quality, producing ultra-narrow linewidths that approach the homogeneous limit.

36 citations

Journal ArticleDOI
TL;DR: It is demonstrated that a unipolar ballistic electron current is achieved by designing the plasmonic junctions to be asymmetric, which allows ultrafast electronics on the nanometer scale.
Abstract: We demonstrate that prestructured metal nanogaps can be shaped on-chip to below 10 nm by femtosecond laser ablation. We explore the plasmonic properties and the nonlinear photocurrent characteristics of the formed tunnel junctions. The photocurrent can be tuned from multiphoton absorption toward the laser-induced strong-field tunneling regime in the nanogaps. We demonstrate that a unipolar ballistic electron current is achieved by designing the plasmonic junctions to be asymmetric, which allows ultrafast electronics on the nanometer scale.

36 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reported the facile production of single-layered tin sulfide nanosheets by a direct solid-state reaction, followed by quantitative liquid exfoliation in water.
Abstract: We report on the facile production of single-layered tin sulfide nanosheets by a direct solid-state reaction, followed by quantitative liquid exfoliation in water. The new solid solution of SnS2 and Li2S with composition Li4xSn1−xS2 serves as a versatile solid-state precursor with tunable relative lithium and tin content. The end member Li2SnS3, corresponding to the solid solution composition Li3x[LixSn1−xS2], crystallizes in the well-known A2BO3 structure type with mixed Li/Sn layers alternating with pure Li layers in the cationic substructure, which is interleaved with sulfur layers. The bonding in the Li layers can be regarded as ionic, while the Sn–S bonds have substantial covalent character. The resulting inherent anisotropy allows for the facile production of unilamellar chalcogenide nanosheets with thicknesses below 1 nm and lateral sizes of tens of microns, simply by shaking the crystalline precursor in water. The quantitative exfoliation into single-layered nanosheets was confirmed using optical microscopy, AFM, TEM, as well as X-ray diffraction of freestanding films produced from the colloidal suspension by centrifugation. Upon annealing, the as-obtained nanosheets are converted into SnS2 without sacrificing their favorable dispersion properties in water. The presented method allows for the cheap and scalable production of unilamellar chalogenide nanosheets for various potential applications, such as in electronic devices, solar cells, sensors, or battery technology. We expect this method to be generic and transferable to the synthesis of other metal chalcogenides. The use of solid solutions as solid-state precursors, featuring a large compositional range and potential for doping with other metals, may ultimately allow for the controlled introduction of defect levels and rational band-gap engineering in nanosheet materials.

36 citations

Journal ArticleDOI
TL;DR: In this paper, a split-ring microwave resonator and a yttrium iron garnet (YIG) film were used to study magnon-photon coupling in a system consisting of a split ring microwave Resonator and an YIG film.
Abstract: Microfocused Brillouin light scattering (BLS) and microwave absorption (MA) are used to study magnon-photon coupling in a system consisting of a split-ring microwave resonator and an yttrium iron garnet (YIG) film. The split-ring resonator is defined by optical lithography and loaded with a 1 μm-thick YIG film grown by liquid phase epitaxy. BLS and MA spectra of the hybrid system are simultaneously recorded as a function of the applied magnetic field magnitude and microwave excitation frequency. Strong coupling of the magnon and microwave resonator modes is found with a coupling strength of geff /2π = 63 MHz. The combined BLS and MA data allow us to study the continuous transition of the hybridized modes from a purely magnonic to a purely photonic mode by varying the applied magnetic field and microwave frequency. Furthermore, the BLS data represent an up-conversion of the microwave frequency coupling to optical frequencies.

36 citations

Journal ArticleDOI
TL;DR: In this paper, the performance of NPl LEDs is primarily hindered by a poor electronic interface between the emitter and hole-injector, and an effective way to reduce these non-radiative losses is by using poly(triarylamine) interlayers.
Abstract: Perovskite nanoplatelets (NPls) hold great promise for light-emitting applications, having achieved high photoluminescence quantum efficiencies (PLQEs) approaching unity in the blue wavelength range, where other metal-halide perovskites have typically been ineffective. However, the external quantum efficiency (EQE) of blue-emitting NPl light-emitting diodes (LEDs) have only reached 0.12%, with typical values well below 0.1%. In this work, we show that the performance of NPl LEDs is primarily hindered by a poor electronic interface between the emitter and hole-injector. Through Kelvin Probe and X-ray photoemission spectroscopy measurements, we reveal that the NPls have remarkably deep ionization potentials (>=6.5 eV), leading to large barriers for hole injection, as well as substantial non-radiative decay at the interface between the emitter and hole-injector. We find that an effective way to reduce these non-radiative losses is by using poly(triarylamine) interlayers. This results in an increase in the EQE of our blue LEDs emitting at 464 nm wavelength to 0.3%. We find that our results can be generalized to thicker sky-blue-emitting NPls, where we increase the EQE to 0.55% using the poly(triarylamine) interlayer. Our work also identifies the key challenges for further efficiency increases.

36 citations


Authors

Showing all 323 results

NameH-indexPapersCitations
Thomas Bein10967742800
Ernst Wagner9653736723
Jochen Feldmann9141731049
Peter Hänggi9078842272
Markus Fischer8549028454
Martin Stutzmann8478130938
Gerhard Abstreiter7779125631
Oliver Eickelberg7532919447
Rudolf Gross6853217739
Dirk Trauner6582116279
Peter Müller-Buschbaum6360517603
Bettina V. Lotsch6224814599
Christoph Bräuchle5826712032
Jonathan J. Finley5635311100
Paolo Lugli5573914706
Network Information
Related Institutions (5)
SLAC National Accelerator Laboratory
9.2K papers, 559.6K citations

87% related

National Presto Industries
12.2K papers, 512.9K citations

86% related

Forschungszentrum Jülich
35.6K papers, 994.1K citations

86% related

National Institute for Materials Science
29.2K papers, 880.9K citations

85% related

Ulsan National Institute of Science and Technology
12K papers, 352K citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202015
201966
201898
201789
2016127
201588