scispace - formally typeset
Search or ask a question
Institution

University of California, San Francisco

EducationSan Francisco, California, United States
About: University of California, San Francisco is a education organization based out in San Francisco, California, United States. It is known for research contribution in the topics: Population & Health care. The organization has 83381 authors who have published 186236 publications receiving 12068420 citations. The organization is also known as: UCSF & UC San Francisco.


Papers
More filters
Journal ArticleDOI
05 Feb 1999-Cell
TL;DR: In this article, Latency-Aged Peptide (LAP) was shown to be a ligand for the integrin alpha v beta 6 and that alpha-v beta 6-expressing cells induce spatially restricted activation of TGF beta 1.

1,955 citations

Journal ArticleDOI
TL;DR: Three rare human genetic disorders, which result in deleterious effects on sensory perception, cognition and a variety of behaviours, have been shown to be attributable to mutations in brain-derived neurotrophic factor and two of the Trk receptors.
Abstract: Neurotrophins are a family of closely related proteins that were identified initially as survival factors for sensory and sympathetic neurons, and have since been shown to control many aspects of survival, development and function of neurons in both the peripheral and the central nervous systems. Each of the four mammalian neurotrophins has been shown to activate one or more of the three members of the tropomyosin-related kinase (Trk) family of receptor tyrosine kinases (TrkA, TrkB and TrkC). In addition, each neurotrophin activates p75 neurotrophin receptor (p75NTR), a member of the tumour necrosis factor receptor superfamily. Through Trk receptors, neurotrophins activate Ras, phosphatidyl inositol-3 (PI3)-kinase, phospholipase C-g1 and signalling pathways controlled through these proteins, such as the MAP kinases. Activation of p75NTR results in activation of the nuclear factor-kB (NF-kB) and Jun kinase as well as other signalling pathways. Limiting quantities of neurotrophins during development control the number of surviving neurons to ensure a match between neurons and the requirement for a suitable density of target innervation. The neurotrophins also regulate cell fate decisions, axon growth, dendrite growth and pruning and the expression of proteins, such as ion channels, transmitter biosynthetic enzymes and neuropeptide transmitters that are essential for normal neuronal function. Continued presence of the neurotrophins is required in the adult nervous system, where they control synaptic function and plasticity, and sustain neuronal survival, morphology and differentiation. They also have additional, subtler roles outside the nervous system. In recent years, three rare human genetic disorders, which result in deleterious effects on sensory perception, cognition and a variety of behaviours, have been shown to be attributable to mutations in brain-derived neurotrophic factor and two of the Trk receptors.

1,946 citations

Journal ArticleDOI
28 Apr 2000-Cell
TL;DR: The unfolded protein response and ERAD are dynamic responses required for the coordinated disposal of misfolded proteins even in the absence of acute stress.

1,941 citations

Journal ArticleDOI
14 Jun 1991-Science
TL;DR: Understanding prion diseases may advance investigations of other neurodegenerative disorders and of the processes by which neurons differentiate, function for decades, and then grow senescent.
Abstract: Prions cause transmissible and genetic neurodegenerative diseases, including scrapie and bovine spongiform encephalopathy of animals and Creutzfeldt-Jakob and Gerstmann-Straussler-Scheinker diseases of humans. Infectious prion particles are composed largely, if not entirely, of an abnormal isoform of the prion protein, which is encoded by a chromosomal gene. A posttranslational process, as yet unidentified, converts the cellular prion protein into an abnormal isoform. Scrapie incubation times, neuropathology, and prion synthesis in transgenic mice are controlled by the prion protein gene. Point mutations in the prion protein genes of animals and humans are genetically linked to development of neuro-degeneration. Transgenic mice expressing mutant prion proteins spontaneously develop neurologic dysfunction and spongiform neuropathology. Understanding prion diseases may advance investigations of other neurodegenerative disorders and of the processes by which neurons differentiate, function for decades, and then grow senescent.

1,941 citations

Journal ArticleDOI
14 Oct 2004-Nature
TL;DR: It is shown, by survival analysis, that neurons die in a time-independent fashion but one that is dependent on mutant huntingtin dose and polyglutamine expansion; many neurons die without forming an inclusion body.
Abstract: Huntington's disease is caused by an abnormal polyglutamine expansion within the protein huntingtin and is characterized by microscopic inclusion bodies of aggregated huntingtin and by the death of selected types of neuron. Whether inclusion bodies are pathogenic, incidental or a beneficial coping response is controversial. To resolve this issue we have developed an automated microscope that returns to precisely the same neuron after arbitrary intervals, even after cells have been removed from the microscope stage. Here we show, by survival analysis, that neurons die in a time-independent fashion but one that is dependent on mutant huntingtin dose and polyglutamine expansion; many neurons die without forming an inclusion body. Rather, the amount of diffuse intracellular huntingtin predicts whether and when inclusion body formation or death will occur. Surprisingly, inclusion body formation predicts improved survival and leads to decreased levels of mutant huntingtin elsewhere in a neuron. Thus, inclusion body formation can function as a coping response to toxic mutant huntingtin.

1,940 citations


Authors

Showing all 84066 results

NameH-indexPapersCitations
Robert Langer2812324326306
Meir J. Stampfer2771414283776
Gordon H. Guyatt2311620228631
Eugene Braunwald2301711264576
John Q. Trojanowski2261467213948
Fred H. Gage216967185732
Robert J. Lefkowitz214860147995
Peter Libby211932182724
Edward Giovannucci2061671179875
Rob Knight2011061253207
Irving L. Weissman2011141172504
Eugene V. Koonin1991063175111
Peter J. Barnes1941530166618
Virginia M.-Y. Lee194993148820
Gordon B. Mills1871273186451
Network Information
Related Institutions (5)
National Institutes of Health
297.8K papers, 21.3M citations

98% related

University of Pittsburgh
201K papers, 9.6M citations

96% related

University of North Carolina at Chapel Hill
185.3K papers, 9.9M citations

96% related

Yale University
220.6K papers, 12.8M citations

96% related

Harvard University
530.3K papers, 38.1M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023179
2022981
202111,518
202010,575
20199,343