scispace - formally typeset
Search or ask a question
Institution

University of California, San Francisco

EducationSan Francisco, California, United States
About: University of California, San Francisco is a education organization based out in San Francisco, California, United States. It is known for research contribution in the topics: Population & Health care. The organization has 83381 authors who have published 186236 publications receiving 12068420 citations. The organization is also known as: UCSF & UC San Francisco.


Papers
More filters
Journal ArticleDOI
23 Aug 2018-Cell
TL;DR: The advances in ILC biology over the past decade are distill the advances to refine the nomenclature of ILCs and highlight the importance of I LCs in tissue homeostasis, morphogenesis, metabolism, repair, and regeneration.

1,252 citations

Journal ArticleDOI
TL;DR: For patients with newly diagnosed GBMs, aggressive EOR equates to improvement in overall survival, even at the highest levels of resection, and stepwise improvement in survival was evident even in the 95%-100% EOR range.
Abstract: Object The value of extent of resection (EOR) in improving survival in patients with glioblastoma multiforme (GBM) remains controversial. Specifically, it is unclear what proportion of contrast-enhancing tumor must be resected for a survival advantage and how much survival improves beyond this threshold. The authors attempt to define these values for the patient with newly diagnosed GBM in the modern neurosurgical era. Methods The authors identified 500 consecutive newly diagnosed patients with supratentorial GBM treated at the University of California, San Francisco between 1997 and 2009. Clinical, radiographic, and outcome parameters were measured for each case, including MR imaging–based volumetric tumor analysis. Results The patients had a median age of 60 years and presented with a median Karnofsky Performance Scale (KPS) score of 80. The mean clinical follow-up period was 15.3 months, and no patient was unaccounted for. All patients underwent resection followed by chemotherapy and radiation therapy....

1,249 citations

Journal ArticleDOI
04 Apr 2003-Science
TL;DR: It is demonstrated that transient recruitment of the Eed-Ezh2 complex to the inactive X chromosome (Xi) occurs during initiation of X inactivation in both extraembryonic and embryonic cells and is accompanied by H3-K27 methylation.
Abstract: The Polycomb group (PcG) protein Eed is implicated in regulation of imprinted X-chromosome inactivation in extraembryonic cells but not of random X inactivation in embryonic cells. The Drosophila homolog of the Eed-Ezh2 PcG protein complex achieves gene silencing through methylation of histone H3 on lysine 27 (H3-K27), which suggests a role for H3-K27 methylation in imprinted X inactivation. Here we demonstrate that transient recruitment of the Eed-Ezh2 complex to the inactive X chromosome (Xi) occurs during initiation of X inactivation in both extraembryonic and embryonic cells and is accompanied by H3-K27 methylation. Recruitment of the complex and methylation on the Xi depend on Xist RNA but are independent of its silencing function. Together, our results suggest a role for Eed-Ezh2-mediated H3-K27 methylation during initiation of both imprinted and random X inactivation and demonstrate that H3-K27 methylation is not sufficient for silencing of the Xi.

1,248 citations

Journal ArticleDOI
21 Jun 2017-Nature
TL;DR: It is shown by direct protein delivery into mammalian cells that an HP1 α mutant incapable of phase separation in vitro forms smaller and fewer nuclear puncta than phosphorylated HP1α, suggesting that heterochromatin-mediated gene silencing may occur in part through sequestration of compacted chromatin in phase-separated HP1 droplets, which are dissolved or formed by specific ligands on the basis of nuclear context.
Abstract: Gene silencing by heterochromatin is proposed to occur in part as a result of the ability of heterochromatin protein 1 (HP1) proteins to spread across large regions of the genome, compact the underlying chromatin and recruit diverse ligands. Here we identify a new property of the human HP1α protein: the ability to form phase-separated droplets. While unmodified HP1α is soluble, either phosphorylation of its N-terminal extension or DNA binding promotes the formation of phase-separated droplets. Phosphorylation-driven phase separation can be promoted or reversed by specific HP1α ligands. Known components of heterochromatin such as nucleosomes and DNA preferentially partition into the HP1α droplets, but molecules such as the transcription factor TFIIB show no preference. Using a single-molecule DNA curtain assay, we find that both unmodified and phosphorylated HP1α induce rapid compaction of DNA strands into puncta, although with different characteristics. We show by direct protein delivery into mammalian cells that an HP1α mutant incapable of phase separation in vitro forms smaller and fewer nuclear puncta than phosphorylated HP1α. These findings suggest that heterochromatin-mediated gene silencing may occur in part through sequestration of compacted chromatin in phase-separated HP1 droplets, which are dissolved or formed by specific ligands on the basis of nuclear context.

1,247 citations

Journal ArticleDOI
TL;DR: Hyperfractionation and accelerated fractionation with concomitant boost are more efficacious than standard fractionation for locally advanced head and neck cancer.
Abstract: Purpose: The optimal fractionation schedule for radiotherapy of head and neck cancer has been controversial. The objective of this randomized trial was to test the efficacy of hyperfractionation and two types of accelerated fractionation individually against standard fractionation. Methods and Materials: Patients with locally advanced head and neck cancer were randomly assigned to receive radiotherapy delivered with: 1) standard fractionation at 2 Gy/fraction/day, 5 days/week, to 70 Gy/35 fractions/7 weeks; 2) hyperfractionation at 1.2 Gy/fraction, twice daily, 5 days/week to 81.6 Gy/68 fractions/7 weeks; 3) accelerated fractionation with split at 1.6 Gy/fraction, twice daily, 5 days/week, to 67.2 Gy/42 fractions/6 weeks including a 2-week rest after 38.4 Gy; or 4) accelerated fractionation with concomitant boost at 1.8 Gy/fraction/day, 5 days/week and 1.5 Gy/fraction/day to a boost field as a second daily treatment for the last 12 treatment days to 72 Gy/42 fractions/6 weeks. Of the 1113 patients entered, 1073 patients were analyzable for outcome. The median follow-up was 23 months for all analyzable patients and 41.2 months for patients alive. Results: Patients treated with hyperfractionation and accelerated fractionation with concomitant boost had significantly better local-regional control (p = 0.045 and p = 0.050 respectively) than those treated with standard fractionation. There was also a trend toward improved disease-free survival (p = 0.067 and p = 0.054 respectively) although the difference in overall survival was not significant. Patients treated with accelerated fractionation with split had similar outcome to those treated with standard fractionation. All three altered fractionation groups had significantly greater acute side effects compared to standard fractionation. However, there was no significant increase of late effects. Conclusions: Hyperfractionation and accelerated fractionation with concomitant boost are more efficacious than standard fractionation for locally advanced head and neck cancer. Acute but not late effects are also increased.

1,246 citations


Authors

Showing all 84066 results

NameH-indexPapersCitations
Robert Langer2812324326306
Meir J. Stampfer2771414283776
Gordon H. Guyatt2311620228631
Eugene Braunwald2301711264576
John Q. Trojanowski2261467213948
Fred H. Gage216967185732
Robert J. Lefkowitz214860147995
Peter Libby211932182724
Edward Giovannucci2061671179875
Rob Knight2011061253207
Irving L. Weissman2011141172504
Eugene V. Koonin1991063175111
Peter J. Barnes1941530166618
Virginia M.-Y. Lee194993148820
Gordon B. Mills1871273186451
Network Information
Related Institutions (5)
National Institutes of Health
297.8K papers, 21.3M citations

98% related

University of Pittsburgh
201K papers, 9.6M citations

96% related

University of North Carolina at Chapel Hill
185.3K papers, 9.9M citations

96% related

Yale University
220.6K papers, 12.8M citations

96% related

Harvard University
530.3K papers, 38.1M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023179
2022981
202111,518
202010,575
20199,343