scispace - formally typeset
Search or ask a question

Showing papers in "Acta Physiologica in 2018"


Journal ArticleDOI
TL;DR: The two principle underlying mechanisms comprise spatiotemporal activity control of the small GTPases Rac1 and RhoA and the balance of the phosphorylation state of AJ proteins, which results in dissolution of TJs the outcome of which is endothelial barrier breakdown.
Abstract: The endothelial barrier consists of intercellular contacts localized in the cleft between endothelial cells, which is covered by the glycocalyx in a sievelike manner. Both types of barrier-forming junctions, i.e. the adherens junction (AJ) serving mechanical anchorage and mechanotransduction and the tight junction (TJ) sealing the intercellular space to limit paracellular permeability, are tethered to the actin cytoskeleton. Under resting conditions, the endothelium thereby builds a selective layer controlling the exchange of fluid and solutes with the surrounding tissue. However, in the situation of an inflammatory response such as in anaphylaxis or sepsis intercellular contacts disintegrate in post-capillary venules leading to intercellular gap formation. The resulting oedema can cause shock and multi-organ failure. Therefore, maintenance as well as coordinated opening and closure of interendothelial junctions is tightly regulated. The two principle underlying mechanisms comprise spatiotemporal activity control of the small GTPases Rac1 and RhoA and the balance of the phosphorylation state of AJ proteins. In the resting state, junctional Rac1 and RhoA activity is enhanced by junctional components, actin-binding proteins, cAMP signalling and extracellular cues such as sphingosine-1-phosphate (S1P) and angiopoietin-1 (Ang-1). In addition, phosphorylation of AJ components is prevented by junction-associated phosphatases including vascular endothelial protein tyrosine phosphatase (VE-PTP). In contrast, inflammatory mediators inhibiting cAMP/Rac1 signalling cause strong activation of RhoA and induce AJ phosphorylation finally leading to endocytosis and cleavage of VE-cadherin. This results in dissolution of TJs the outcome of which is endothelial barrier breakdown.

189 citations


Journal ArticleDOI
TL;DR: To determine whether exercise‐induced increases in muscle mitochondrial volume density (MitoVD) are related to enlargement of existing mitochondria or de novo biogenesis and to establish whether measures of mitochondrial‐specific enzymatic activities are valid biomarkers for exercise‐ induced increases in MitoVD.
Abstract: Aims 1) determine whether exercise induced increases in muscle mitochondrial volume density (MitoVD) is related to enlargement of existing mitochondria or de novo biogenesis, 2) establish if measures of mitochondrial-specific enzymatic activities are valid biomarkers for exercise induced increases in MitoVD. Method Skeletal muscle samples were collected from twenty-one healthy males prior to and following 6 weeks of endurance training. Transmission electron microscopy was used for estimation of mitochondrial densities and profiles. Biochemical assays, western blotting and high resolution respirometry were applied to detect changes in specific mitochondrial functions. Result MitoVD increased with 55 ± 9% (P < 0.001), whereas the number of mitochondrial profiles per area of skeletal muscle remained unchanged following training. Citrate synthase activity (CS) increased (44 ± 12%, P < 0.001) however, there were no functional changes in oxidative phosphorylation capacity (OXPHOS, CI+IIP) or cytochrome c oxidase (COX) activity. Correlations were found between MitoVD and CS (P=0.01; r=0.58), OXPHOS, CI+CIIP (P=0.01; R=0.58) and COX (P=0.02; R=0.52) before training, after training a correlation was found between MitoVD and CS activity only (P=0.04; R=0.49). Intrinsic respiratory capacities decreased (P < 0.05) with training when respiration was normalized to MitoVD. This was not the case when normalized to CS activity although the percentage change was comparable. Conclusions MitoVD was increased by inducing mitochondrial enlargement rather than de novo biogenesis. CS activity may be appropriate to track training induced changes in MitoVD. This article is protected by copyright. All rights reserved.

109 citations


Journal ArticleDOI
TL;DR: Observations of salt storage in the skin to buffer freeextracellular Na+ and macrophage modulation of the extracellular matrix and lymphatics suggest that electrolyte homeostasis in the body cannot be achieved by renal excretion alone, but also relies on extrarenal regulatory mechanisms.
Abstract: The role of salt in the pathogenesis of arterial hypertension is not well understood. According to the current understanding, the central mechanism for blood pressure (BP) regulation relies on classical studies linking BP and Na+ balance, placing the kidney at the very centre of long-term BP regulation. To maintain BP homeostasis, the effective circulating fluid volume and thereby body Na+ content has to be maintained within very narrow limits. From recent work in humans and rats, the notion has emerged that Na+ could be stored somewhere in the body without commensurate water retention to buffer free extracellular Na+ and that previously unidentified extrarenal, tissue-specific regulatory mechanisms are operative regulating the release and storage of Na+ from a kidney-independent reservoir. Moreover, immune cells from the mononuclear phagocyte system not only function as local on-site sensors of interstitial electrolyte concentration, but also, together with lymphatics, act as systemic regulators of body fluid volume and BP. These studies have established new and unexpected targets in studies of BP control and thus the pathophysiology of hypertension: the interstitium/extracellular matrix of the skin, its inherent interstitial fluid and the lymphatic vasculature forming a vessel network in the interstitium. Aspects of the interstitium in relation to Na+ balance and hypertension are the focus of this review. Taken together, observations of salt storage in the skin to buffer free extracellular Na+ and macrophage modulation of the extracellular matrix and lymphatics suggest that electrolyte homeostasis in the body cannot be achieved by renal excretion alone, but also relies on extrarenal regulatory mechanisms.

99 citations


Journal ArticleDOI
TL;DR: The brain's response to stress depends on an individual's genetic background in interaction with life events, and studies in rodents point to the possibility to prevent or reverse long‐term consequences of early life adversity on cognitive processing by normalizing the balance between the two receptor types for corticosteroid hormones at a critical moment just before the onset of puberty.
Abstract: After stress, the brain is exposed to waves of stress mediators, including corticosterone (in rodents) and cortisol (in humans). Corticosteroid hormones affect neuronal physiology in two time-domains: rapid, non-genomic actions primarily via mineralocorticoid receptors; and delayed genomic effects via glucocorticoid receptors. In parallel, cognitive processing is affected by stress hormones. Directly after stress, emotional behaviour involving the amygdala is strongly facilitated with cognitively a strong emphasis on the "now" and "self," at the cost of higher cognitive processing. This enables the organism to quickly and adequately respond to the situation at hand. Several hours later, emotional circuits are dampened while functions related to the prefrontal cortex and hippocampus are promoted. This allows the individual to rationalize the stressful event and place it in the right context, which is beneficial in the long run. The brain's response to stress depends on an individual's genetic background in interaction with life events. Studies in rodents point to the possibility to prevent or reverse long-term consequences of early life adversity on cognitive processing, by normalizing the balance between the two receptor types for corticosteroid hormones at a critical moment just before the onset of puberty.

99 citations


Journal ArticleDOI
TL;DR: The aim of this review is to summarize and critically discuss the possible roles of pHi and pHe in cell cycle progression and the relevance of links between pH and proliferation in the context of the perturbed pH homoeostasis and acidic microenvironment of solid tumours.
Abstract: Precise spatiotemporal regulation of intracellular pH (pHi ) is a prerequisite for normal cell function, and changes in pHi or pericellular pH (pHe ) exert important signalling functions. It is well established that proliferation of mammalian cells is dependent on a permissive pHi in the slightly alkaline range (7.0-7.2). It is also clear that mitogen signalling in nominal absence of HCO3- is associated with an intracellular alkalinization (~0.3 pH unit above steady-state pHi ), which is secondary to activation of Na+ /H+ exchange. However, it remains controversial whether this increase in pHi is part of the mitogenic signal cascade leading to cell cycle entry and progression, and whether it is relevant under physiological conditions. Furthermore, essentially all studies of pHi in mammalian cell proliferation have focused on the mitogen-induced G0-G1 transition, and the regulation and roles of pHi during the cell cycle remain poorly understood. The aim of this review is to summarize and critically discuss the possible roles of pHi and pHe in cell cycle progression. While the focus is on the mammalian cell cycle, important insights from studies in lower eukaryotes are also discussed. We summarize current evidence of links between cell cycle progression and pHi and discuss possible pHi - and pHe sensors and signalling pathways relevant to mammalian proliferation control. The possibility that changes in pHi during cell cycle progression may be an integral part of the checkpoint control machinery is explored. Finally, we discuss the relevance of links between pH and proliferation in the context of the perturbed pH homoeostasis and acidic microenvironment of solid tumours.

97 citations


Journal ArticleDOI
TL;DR: The aim of this study was to reveal the role of reactive oxygen and nitrogen species (RONS) in exercise adaptations under physiological in vivo conditions and without the interference from other exogenous redox agents.
Abstract: Aim The aim of the present study was to reveal the role of reactive oxygen and nitrogen species (RONS) in exercise adaptations under physiological in vivo conditions and without the interference from other exogenous redox agents (e.g., a pro-oxidant or antioxidant). Methods We invented a novel methodological set-up that exploited the large redox inter-individual variability in exercise responses. More specifically, we used exercise-induced oxidative stress as the “classifier” measure (i.e., low, moderate and high) and investigated the physiological and redox adaptations after a 6-wk endurance training protocol. Results We demonstrated that the group with the low exercise-induced oxidative stress exhibited the lowest improvements in a battery of classic adaptations to endurance training (VO2max, time trial and Wingate test) as well as in a set of redox biomarkers (oxidative stress biomarkers and antioxidants), compared to the high and moderate oxidative stress groups. Conclusion The findings of the present study substantiate, for the first time in a human in vivo physiological context, and in the absence of any exogenous redox manipulation, the vital role of RONS produced during exercise in adaptations. The stratification approach, based on a redox phenotype, implemented in the present study could be a useful experimental strategy to reveal the role of RONS and antioxidants in other biological manifestations as well. This article is protected by copyright. All rights reserved.

89 citations


Journal ArticleDOI
TL;DR: It is concluded that tissue hypoxia is a common feature of both AKI and CKD, and at least under in vitro conditions, renal tissue Hypoxia drives signalling cascades that lead to tissue damage and dysfunction.
Abstract: Tissue hypoxia has been proposed as an important factor in the pathophysiology of both chronic kidney disease (CKD) and acute kidney injury (AKI), initiating and propagating a vicious cycle of tubular injury, vascular rarefaction, and fibrosis and thus exacerbation of hypoxia. Here, we critically evaluate this proposition by systematically reviewing the literature relevant to the following six questions: (i) Is kidney disease always associated with tissue hypoxia? (ii) Does tissue hypoxia drive signalling cascades that lead to tissue damage and dysfunction? (iii) Does tissue hypoxia per se lead to kidney disease? (iv) Does tissue hypoxia precede pathology? (v) Does tissue hypoxia colocalize with pathology? (vi) Does prevention of tissue hypoxia prevent kidney disease? We conclude that tissue hypoxia is a common feature of both AKI and CKD. Furthermore, at least under in vitro conditions, renal tissue hypoxia drives signalling cascades that lead to tissue damage and dysfunction. Tissue hypoxia itself can lead to renal pathology, independent of other known risk factors for kidney disease. There is also some evidence that tissue hypoxia precedes renal pathology, at least in some forms of kidney disease. However, we have made relatively little progress in determining the spatial relationships between tissue hypoxia and pathological processes (i.e. colocalization) or whether therapies targeted to reduce tissue hypoxia can prevent or delay the progression of renal disease. Thus, the hypothesis that tissue hypoxia is a "common pathway" to both AKI and CKD still remains to be adequately tested.

83 citations


Journal ArticleDOI
TL;DR: High‐intensity interval training (HIIT) is a time efficient alternative to regular endurance exercise and the metabolic benefit of HIIT in older subjects was investigated.
Abstract: AIM Metabolic health may deteriorate with age as a result of altered body composition and decreased physical activity. Endurance exercise is known to counter these changes delaying or even preventing onset of metabolic diseases. High-intensity interval training (HIIT) is a time efficient alternative to regular endurance exercise, and the aim of this study was to investigate the metabolic benefit of HIIT in older subjects. METHODS Twenty-two sedentary male (n = 11) and female (n = 11) subjects aged 63 ± 1 years performed HIIT training three times/week for 6 weeks on a bicycle ergometer. Each HIIT session consisted of five 1-minute intervals interspersed with 1½-minute rest. Prior to the first and after the last HIIT session whole-body insulin sensitivity, measured by a hyperinsulinaemic-euglycaemic clamp, plasma lipid levels, HbA1c, glycaemic parameters, body composition and maximal oxygen uptake were assessed. Muscle biopsies were obtained wherefrom content of glycogen and proteins involved in muscle glucose handling were determined. RESULTS Insulin sensitivity (P = .011) and maximal oxygen uptake increased (P < .05) in both genders, while plasma cholesterol (P < .05), low-density lipoprotein (P < .05), visceral fat mass (P < .05) and per cent body fat (P < .05) decreased after 6 weeks of HIIT. HbA1c decreased only in males (P = .001). Muscle glycogen content increased in both genders (P = .001) and in line GLUT4 (P < .05), glycogen synthase (P = .001) and hexokinase II (P < .05) content all increased. CONCLUSION Six weeks of HIIT significantly improves metabolic health in older males and females by reducing age-related risk factors for cardiometabolic disease.

71 citations


Journal ArticleDOI
TL;DR: A multi‐disciplinary pathway for translation comprising three components is proposed, large‐animal models of CPB to continuously monitor both whole kidney and regional kidney perfusion and oxygenation and clinically feasible non‐invasive methods to continuously Monitor renal oxygenation in the operating theatre and to identify patients at risk of AKI.
Abstract: Acute kidney injury (AKI) is a common complication following cardiac surgery performed on cardiopulmonary bypass (CPB) and has important implications for prognosis. The aetiology of cardiac surgery-associated AKI is complex, but renal hypoxia, particularly in the medulla, is thought to play at least some role. There is strong evidence from studies in experimental animals, clinical observations and computational models that medullary ischaemia and hypoxia occur during CPB. There are no validated methods to monitor or improve renal oxygenation during CPB, and thus possibly decrease the risk of AKI. Attempts to reduce the incidence of AKI by early transfusion to ameliorate intra-operative anaemia, refinement of protocols for cooling and rewarming on bypass, optimization of pump flow and arterial pressure, or the use of pulsatile flow, have not been successful to date. This may in part reflect the complexity of renal oxygenation, which may limit the effectiveness of individual interventions. We propose a multi-disciplinary pathway for translation comprising three components. Firstly, large-animal models of CPB to continuously monitor both whole kidney and regional kidney perfusion and oxygenation. Secondly, computational models to obtain information that can be used to interpret the data and develop rational interventions. Thirdly, clinically feasible non-invasive methods to continuously monitor renal oxygenation in the operating theatre and to identify patients at risk of AKI. In this review, we outline the recent progress on each of these fronts.

68 citations


Journal ArticleDOI
TL;DR: Thermoregulatory side effects hinder the development of transient receptor potential vanilloid‐1 (TRPV1) antagonists as new painkillers, and some cause hypothermia, which is unknown and was studied herein.
Abstract: Aim Thermoregulatory side effects hinder the development of transient receptor potential vanilloid-1 (TRPV1) antagonists as new painkillers. While many antagonists cause hyperthermia, a well-studied effect, some cause hypothermia. The mechanisms of this hypothermia are unknown and were studied herein. Methods Two hypothermia-inducing TRPV1 antagonists, the newly synthesized A-1165901 and the known AMG7905, were used in physiological experiments in rats and mice. Their pharmacological profiles against rat TRPV1 were studied in vitro. Results Administered peripherally, A-1165901 caused hypothermia in rats by either triggering tail-skin vasodilation (at thermoneutrality) or inhibiting thermogenesis (in the cold). A-1165901-induced hypothermia did not occur in rats with desensitized (by an intraperitoneal dose of the TRPV1 agonist resiniferatoxin) sensory abdominal nerves. The hypothermic responses to A-1165901 and AMG7905 (administered intragastrically or intraperitoneally) were absent in Trpv1-/- mice, even though both compounds evoked pronounced hypothermia in Trpv1+/+ mice. In vitro, both A-1165901 and AMG7905 potently potentiated TRPV1 activation by protons, while potently blocking channel activation by capsaicin. Conclusion TRPV1 antagonists cause hypothermia by an on-target action: on TRPV1 channels on abdominal sensory nerves. These channels are tonically activated by protons and drive the reflectory inhibition of thermogenesis and tail-skin vasoconstriction. Those TRPV1 antagonists that cause hypothermia further inhibit these cold defences, thus decreasing body temperature. Significance TRPV1 antagonists (of capsaicin activation) are highly unusual in that they can cause both hyper- and hypothermia by modulating the same mechanism. For drug development, this means that both side effects can be dealt with simultaneously, by minimizing these compounds' interference with TRPV1 activation by protons.

59 citations


Journal ArticleDOI
TL;DR: The effects of blood flow restriction on mRNA responses of PGC‐1α, 1α1, and 1α4 and Na+,K+‐ATPase isoforms and NKA to an interval running session were explored to determine whether these effects were related to increased oxidative stress, hypoxia, and fibre type‐specific AMPK and CaMKII signalling, in human skeletal muscle.
Abstract: AIM This study explored the effects of blood flow restriction (BFR) on mRNA responses of PGC-1α (total, 1α1, and 1α4) and Na+ ,K+ -ATPase isoforms (NKA; α1-3 , β1-3 , and FXYD1) to an interval running session and determined whether these effects were related to increased oxidative stress, hypoxia, and fibre type-specific AMPK and CaMKII signalling, in human skeletal muscle. METHODS In a randomized, crossover fashion, 8 healthy men (26 ± 5 year and 57.4 ± 6.3 mL kg-1 min-1 ) completed 3 exercise sessions: without (CON) or with blood flow restriction (BFR), or in systemic hypoxia (HYP, ~3250 m). A muscle sample was collected before (Pre) and after exercise (+0 hour, +3 hours) to quantify mRNA, indicators of oxidative stress (HSP27 protein in type I and II fibres, and catalase and HSP70 mRNA), metabolites, and α-AMPK Thr172 /α-AMPK, ACC Ser221 /ACC, CaMKII Thr287 /CaMKII, and PLBSer16 /PLB ratios in type I and II fibres. RESULTS Muscle hypoxia (assessed by near-infrared spectroscopy) was matched between BFR and HYP, which was higher than CON (~90% vs ~70%; P < .05). The mRNA levels of FXYD1 and PGC-1α isoforms (1α1 and 1α4) increased in BFR only (P < .05) and were associated with increases in indicators of oxidative stress and type I fibre ACC Ser221 /ACC ratio, but dissociated from muscle hypoxia, lactate, and CaMKII signalling. CONCLUSION Blood flow restriction augmented exercise-induced increases in muscle FXYD1 and PGC-1α mRNA in men. This effect was related to increased oxidative stress and fibre type-dependent AMPK signalling, but unrelated to the severity of muscle hypoxia, lactate accumulation, and modulation of fibre type-specific CaMKII signalling.

Journal ArticleDOI
TL;DR: The relation between MUCV and RT for large samples of motor units is analysed and it is shown that larger motor neurones innervate fibres with larger diameters than smallerMotor units should be recruited orderly according to their conduction velocity (MUCV).
Abstract: Aim Motor units are recruited in an orderly manner according to the size of motor neurones. Moreover, because larger motor neurones innervate fibres with larger diameters than smaller motor neurones, motor units should be recruited orderly according to their conduction velocity (MUCV). Because of technical limitations, these relations have been previously tested either indirectly or in small motor unit samples that revealed weak associations between motor unit recruitment threshold (RT) and MUCV. Here, we analyse the relation between MUCV and RT for large samples of motor units. Methods Ten healthy volunteers completed a series of isometric ankle dorsiflexions at forces up to 70% of the maximum. Multi-channel surface electromyographic signals recorded from the tibialis anterior muscle were decomposed into single motor unit action potentials, from which the corresponding motor unit RT, MUCV and action potential amplitude were estimated. Established relations between muscle fibre diameter and CV were used to estimate the fibre size. Results Within individual subjects, the distributions of MUCV and fibre diameters were unimodal and did not show distinct populations. MUCV was strongly correlated with RT (mean (SD) R2 = 0.7 (0.09), P < 0.001; 406 motor units), which supported the hypothesis that fibre diameter is associated with RT. Conclusion The results provide further evidence for the relations between motor neurone and muscle fibre properties for large samples of motor units. The proposed methodology for motor unit analysis has also the potential to open new perspectives in the study of chronic and acute neuromuscular adaptations to ageing, training and pathology.

Journal ArticleDOI
TL;DR: How dietary nitrate, via stimulation of the nitrate‐nitrite‐NO pathway, affects various organ systems is described and underlying mechanisms that may contribute to the observed blood pressure‐lowering effect are discussed.
Abstract: Nitric oxide (NO) importantly contributes to cardiovascular homeostasis by regulating blood flow and maintaining endothelial integrity. Conversely, reduced NO bioavailability is a central feature during natural ageing and in many cardiovascular disorders, including hypertension. The inorganic anions nitrate and nitrite are endogenously formed after oxidation of NO synthase (NOS)-derived NO and are also present in our daily diet. Knowledge accumulated over the past two decades has demonstrated that these anions can be recycled back to NO and other bioactive nitrogen oxides via serial reductions that involve oral commensal bacteria and various enzymatic systems. Intake of inorganic nitrate, which is predominantly found in green leafy vegetables and beets, has a variety of favourable cardiovascular effects. As hypertension is a major risk factor of morbidity and mortality worldwide, much attention has been paid to the blood pressure reducing effect of inorganic nitrate. Here, we describe how dietary nitrate, via stimulation of the nitrate-nitrite-NO pathway, affects various organ systems and discuss underlying mechanisms that may contribute to the observed blood pressure-lowering effect.

Journal ArticleDOI
TL;DR: This study sought to determine the role of free radicals derived from mitochondria in the vasculature in the recognized age‐related endothelial dysfunction of human skeletal muscle feed arteries (SMFAs).
Abstract: This work was supported by NIH Heart, Lung, Blood Institute grants (HL‐091830) and Veterans Affairs Rehabilitation Research and Development Merit (E6910‐R).

Journal ArticleDOI
TL;DR: Focal adhesion kinase response to concentric vs eccentric resistance training and the relationships between FAK, muscle protein synthesis (MPS) and morphological remodelling are assessed.
Abstract: AIMS We assessed focal adhesion kinase (FAK) response to concentric (CON) versus eccentric (ECC) resistance training (RT) at two vastus lateralis (VL) sites, and the relationships between FAK, muscle protein synthesis (MPS), and morphological remodeling. METHODS Six young males trained both legs unilaterally 3 times/week for 8 weeks; one leg performed CON RT, the contralateral performed ECC RT. Muscle biopsies were collected after training from VL midbelly (MID) and distal (Distal) sites at 0, 4, 8 weeks. FAK content and activation were evaluated by immunoblotting. MPS was assessed by deuterium-oxide tracer; morphological adaptations were evaluated by ultrasound and DXA. RESULTS pY397-FAK 8 weeks levels were ~4-fold greater after ECC at the Distal site compared to CON (p<0.05); pY397FAK to total FAK ratio was greater in ECC versus CON at 4 (~2.2 fold, p<0.05) and 8 weeks (~9fold, p<0.001) at the Distal site. Meta-vinculin was found transiently increased at 4 weeks at the Distal site only after ECC RT. ECC presented greater fascicle length (Lf) increases (10.5% vs. 4%), whereas CON showed greater in pennation angle (PA) changes (12.3% vs. 2.1%). MPS did not differ between exercise types or muscle sites at all time points. Distal pY397-FAK and pY397-FAK/FAK values correlated to changes in Lf at 8weeks (r=0.76, p<0.01 and r=0.66, p<0.05, respectively). CONCLUSION FAK phosphorylation was greater at 8-wks after ECC RT and was muscle region-specific. FAK activity correlated to contraction-dependent architectural remodeling, suggesting a potential role of FAK in orienting muscle structural changes in response to distinct mechanical stimuli. This article is protected by copyright. All rights reserved.

Journal ArticleDOI
TL;DR: This study tested the hypothesis that high doses of anti‐inflammatory drugs would attenuate the adaptive response to resistance training compared with low doses.
Abstract: AIMS: This study tested the hypothesis that high doses of anti-inflammatory drugs would attenuate the adaptive response to resistance training compared with low doses.METHODS: Healthy men and women ...

Journal ArticleDOI
TL;DR: The aims of this review are to provide an update on the expanding field of exercise epigenetics, offer an overview of data on intergenerational/transgenerational epigenetic inheritance of disease by environmental insults, and outline potential mechanisms and avenues for future work on epigenetics through exercise.
Abstract: Epigenetics is the study of gene expression changes that occur in the absence of altered genotype. Current evidence indicates a role for environmentally induced alterations to epigenetic modifications leading to health and disease changes across multiple generations. This phenomenon is called intergenerational or transgenerational epigenetic inheritance of health or disease. Environmental insults, in the form of toxins, plastics and particular dietary interventions, perturb the epigenetic landscape and influence the health of F1 through to F4 generations in rodents. There is, however, the possibility that healthy lifestyles and environmental factors, such as exercise training, could lead to favourable, heritable epigenetic modifications that augment transcriptional programmes protective of disease, including metabolic dysfunction, heart disease and cancer. The health benefits conferred by regular physical exercise training are unquestionable, yet many of the molecular changes may have heritable health implications for future generations. Similar to other environmental factors, exercise modulates the epigenome of somatic cells and researchers are beginning to study exercise epigenetics in germ cells. The germ cell epigenetic modifications affected by exercise offer a molecular mechanism for the inheritance of health and disease risk. The aims of this review are to: (i) provide an update on the expanding field of exercise epigenetics; (ii) offer an overview of data on intergenerational/transgenerational epigenetic inheritance of disease by environmental insults; (iii) to discuss the potential of exercise-induced intergenerational inheritance of health and disease risk; and finally, outline potential mechanisms and avenues for future work on epigenetic inheritance through exercise.

Journal ArticleDOI
TL;DR: Investigation of extracellular lactate‐associated morphological changes and intracellular signals in C2C12 skeletal muscle cells found lactate receptor, G‐protein‐coupled receptor 81, is expressed in skeletal Muscle cells expresses GPR81, indicating physiological role of lactate on skeletal muscle.
Abstract: Aim Lactate is produced in and released from skeletal muscle cells. Lactate receptor, G-protein-coupled receptor 81 (GPR81), is expressed in skeletal muscle cells. However, a physiological role of extracellular lactate on skeletal muscle is not fully clarified. The purpose of this study was to investigate extracellular lactate-associated morphological changes and intracellular signals in C2C12 skeletal muscle cells. Methods Mouse myoblast C2C12 cells were differentiated for 5 days to form myotubes. Sodium lactate (lactate) or GPR81 agonist, 3,5-dihydroxybenzoic acid (3,5-DHBA), was administered to the differentiation medium. Results Lactate administration increased the diameter of C2C12 myotubes in a dose-dependent manner. Administration of 3,5-DHBA also increased myotube diameter. Not only lactate but also 3,5-DHBA upregulated the phosphorylation level of mitogen-activated protein kinase kinase 1/2 (MEK1/2), p42/44 extracellular signal-regulated kinase-1/2 (ERK1/2) and p90 ribosomal S6 kinase (p90RSK). MEK inhibitor U0126 depressed the phosphorylation of ERK-p90RSK and increase in myotube diameter induced by lactate. On the other hand, both lactate and 3,5-DHBA failed to induce significant responses in the phosphorylation level of Akt, mammalian target of rapamycin, p70 S6 kinase and protein degradation-related signals. Conclusion These observations suggest that lactate-associated increase in the diameter of C2C12 myotubes is induced via activation of GRP81-mediated MEK/ERK pathway. Extracellular lactate might have a positive effect on skeletal muscle size.

Journal ArticleDOI
TL;DR: The aim of this study was to investigate the effects of 4 consecutive simulated night shifts on glucose homeostasis, mitochondrial function and central and peripheral rhythmicities compared with a simulated day shift schedule.
Abstract: Aim The aim of this study was to investigate the effects of 4 consecutive simulated night shifts on glucose homeostasis, mitochondrial function and central and peripheral rhythmicities compared with a simulated day shift schedule. Methods Seventeen healthy adults (8M:9F) matched for sleep, physical activity and dietary/fat intake participated in this study (night shift work n = 9; day shift work n = 8). Glucose tolerance and insulin sensitivity before and after 4 nights of shift work were measured by an intravenous glucose tolerance test and a hyperinsulinaemic euglycaemic clamp respectively. Muscles biopsies were obtained to determine insulin signalling and mitochondrial function. Central and peripheral rhythmicities were assessed by measuring salivary melatonin and expression of circadian genes from hair samples respectively. Results Fasting plasma glucose increased (4.4 ± 0.1 vs. 4.6 ± 0.1 mmol L−1; P = .001) and insulin sensitivity decreased (25 ± 7%, P < .05) following the night shift, with no changes following the day shift. Night shift work had no effect on skeletal muscle protein expression (PGC1α, UCP3, TFAM and mitochondria Complex II‐V) or insulin‐stimulated pAkt Ser473, pTBC1D4Ser318 and pTBC1D4Thr642. Importantly, the metabolic changes after simulated night shifts occurred despite no changes in the timing of melatonin rhythmicity or hair follicle cell clock gene expression across the wake period (Per3, Per1, Nr1d1 and Nr1d2). Conclusion Only 4 days of simulated night shift work in healthy adults is sufficient to reduce insulin sensitivity which would be expected to increase the risk of T2D.

Journal ArticleDOI
TL;DR: To determine whether repeated maximal‐intensity hypoxic exercise induces larger beneficial adaptations on the hypoxia‐inducible factor‐1α pathway and its target genes than similar normoxic exercise, when combined with chronic hypoxic exposure.
Abstract: Aim To determine whether repeated maximal-intensity hypoxic exercise induces larger beneficial adaptations on the hypoxia inducible factor-1α pathway and its target genes than similar normoxic exercise, when combined with chronic hypoxic exposure. Methods Lowland elite male team-sport athletes underwent 14 days of passive normobaric hypoxic exposure (≥14 h.day−1 at FiO2 14.5-14.2%) with the addition of six maximal-intensity exercise sessions either in normobaric hypoxia (FiO2 ~14.2%) (LHTLH; n = 9) or in normoxia (FiO2 20.9%) (LHTL; n = 11). A group living in normoxia with no additional maximal-intensity exercise (LLTL; n = 10) served as control. Before (Pre), immediately after (Post-1), and 3 weeks after (Post-2) the intervention, muscle biopsies were obtained from the vastus lateralis. Results Hypoxia inducible factor-1α subunit, vascular endothelial growth factor, myoglobin, peroxisome proliferator-activated receptor-gamma coactivator 1 alpha and mitochondrial transcription factor A mRNA levels increased at Post-1 (all P≤0.05) in LHTLH, but not in LHTL or LLTL, and returned near baseline levels at Post-2. The protein expression of citrate synthase increased in LHTLH (P<0.001 and P<0.01 at Post-1 and Post-2, respectively) and LLTL (P<0.01 and P<0.05 at Post-1 and Post-2, respectively), whereas it decreased in LHTL at Post-1 and Post-2 (both P<0.001). Conclusion Combined with residence in normobaric hypoxia, repeated maximal-intensity hypoxic exercise induces short-term post-intervention beneficial changes in muscle transcriptional factors that are of larger magnitude (or not observed) than with similar normoxic exercise. The decay of molecular adaptations was relatively fast, with most of benefits already absent 3 weeks post-intervention. This article is protected by copyright. All rights reserved.

Journal ArticleDOI
TL;DR: This study aimed to determine the expression and regulation of SelT in the mammalian heart in normal and pathological conditions and to evaluate the cardioprotective effect of a SelT‐derived peptide, SelT43‐52(PSELT) encompassing the redox motif which is key to its function, against ischaemia/reperfusion(I/R) injury.
Abstract: Aim Selenoprotein T (SelT or SELENOT) is a novel thioredoxin-like enzyme whose genetic ablation in mice results in early embryonic lethality. SelT exerts an essential cytoprotective action during development and after injury through its redox-active catalytic site. This study aimed to determine the expression and regulation of SelT in the mammalian heart in normal and pathological conditions and to evaluate the cardioprotective effect of a SelT-derived peptide, SelT43-52(PSELT) encompassing the redox motif which is key to its function, against ischaemia/reperfusion(I/R) injury. Methods We used the isolated Langendorff rat heart model and different analyses by immunohistochemistry, Western blot and ELISA. Results We found that SelT expression is very abundant in embryo but is undetectable in adult heart. However, SelT expression was tremendously increased after I/R. PSELT (5 nmol/L) was able to induce pharmacological post-conditioning cardioprotection as evidenced by a significant recovery of contractility (dLVP) and reduction of infarct size (IS), without changes in cardiac contracture (LVEDP). In contrast, a control peptide lacking the redox site did not confer cardioprotection. Immunoblot analysis showed that PSELT-dependent cardioprotection is accompanied by a significant increase in phosphorylated Akt, Erk-1/2 and Gsk3α-β, and a decrement of p38MAPK. PSELT inhibited the pro-apoptotic factors Bax, caspase 3 and cytochrome c and stimulated the anti-apoptotic factor Bcl-2. Furthermore, PSELT significantly reduced several markers of I/R-induced oxidative and nitrosative stress. Conclusion These results unravel the role of SelT as a cardiac modulator and identify PSELT as an effective pharmacological post-conditioning agent able to protect the heart after ischaemic injury.

Journal ArticleDOI
TL;DR: This study aimed to investigate whether microRNA‐214‐3p (miR‐214-3p) is involved in the endothelial cell autophagy regulation of atherosclerosis.
Abstract: Aim Endothelial cell injury assumes a fundamental part in the pathogenesis of atherosclerosis, and endothelial cell autophagy has protective effects on the development of atherosclerosis, though the underlying molecular regulation mechanism is indistinct. This study is aimed to investigate whether microRNA-214-3p (miR-214-3p) is involved in the endothelial cell autophagy regulation of atherosclerosis. Methods We utilized ApoE-/- mice provided with a high-fat diet (HFD) as atherosclerosis model. We analyzed the level of miR-214-3p and the levels of autophagy-related protein 5 (ATG5) and autophagy-related protein 12 (ATG12) in the purified CD31+ endothelial cells from mouse aorta. Bioinformatics analysis and a dual luciferase reporter assay were performed to confirm the binding target of miR-214-3p. In vitro study, human umbilical vein endothelial cells (HUVECs) were transfected with miR-214-3p mimics/inhibitor and stimulated with 100 μg/mL oxidized low-density lipoprotein (ox-LDL) for 12 hours to initiate a stress-repairing autophagic process. Results In mouse models, we identified an inverse correlation between miR-214-3p, ATG5 and ATG12. We observed that in young HUVECs, ox-LDL initiated autophagy where repressed by miR-214-3p overexpression, as evaluated by autophagic protein analysis, microtubule-associated protein 1 light chain 3B-II (LC3B-II) immunofluorescence assay, and transmission electron microscopy (TEM). Also, miR-214-3p promoted ox-LDL accumulation in HUVECs and THP-1 monocyte adhesion. Conversely, in old HUVECs, suppression of miR-214-3p preserved the ability to initiate a protective autophagy reaction to the ox-LDL stimulation. Conclusion miR-214-3p regulates ox-LDL-initiated autophagy in HUVECs by directly targeting the 3'UTR of ATG5, and may have a suitable role in the pathogenesis of atherosclerosis. This article is protected by copyright. All rights reserved.

Journal ArticleDOI
TL;DR: This study aims at demonstrating that an antibody against the protein pericentriolar material 1 (PCM1) can be used to reliably identify myonuclei on histological cross sections from humans, mice and rats.
Abstract: Aim Skeletal muscle is a heterogeneous tissue containing several different cell types, and only about 40%-50% of the cell nuclei within the tissue belong to myofibres. Existing technology, attempting to distinguish myonuclei from other nuclei at the light microscopy level, has led to controversies in our understanding of the basic cell biology of muscle plasticity. This study aims at demonstrating that an antibody against the protein pericentriolar material 1 (PCM1) can be used to reliably identify myonuclei on histological cross sections from humans, mice and rats. Methods Cryosections were labelled with a polyclonal antibody against PCM1. The specificity of the labelling for myonuclei was verified using 3D reconstructions of confocal z-stacks triple-labelled for DNA, dystrophin and PCM1, and by co-localization with nuclear mCherry driven by the muscle-specific Alpha-Actin-1 promoter after viral transduction. Results The PCM1 antibody specifically labelled all myonuclei, and myonuclei only, in cryosections of muscles from rats, mice and men. Nuclei in other cell types including satellite cells were not labelled. Both normal muscles and hypertrophic muscles after synergist ablation were investigated. Conclusion Pericentriolar material 1 can be used as a specific histological marker for myonuclei in skeletal muscle tissue without relying on counterstaining of other structures or cumbersome and subjective analysis of nuclear positioning.

Journal ArticleDOI
TL;DR: The aim of the present review is to assimilate current experimental evidence on the role of platelets as biomaterials in tissue regeneration, particularly in skeletal muscle, by integrating findings from human, animal and cell studies.
Abstract: Platelet-based applications such as platelet-rich plasma (PRP) and platelet releasate have gained unprecedented attention in regenerative medicine across a variety of tissues as of late. The rationale behind utilizing PRP originates in the delivery of key cytokines and growth factors from α-granules to the targeted area, which in turn act as cell cycle regulators and promote the healing process across a variety of tissues. The aim of the present review is to assimilate current experimental evidence on the role of platelets as biomaterials in tissue regeneration, particularly in skeletal muscle, by integrating findings from human, animal and cell studies. This review is composed of 3 parts: firstly, we review key aspects of platelet biology that precede the preparation and use of platelet-related applications for tissue regeneration. Secondly, we critically discuss relevant evidence on platelet-mediated regeneration in skeletal muscle focusing on findings from (i) clinical trials, (ii) experimental animal studies and (iii) cell culture studies; and thirdly, we discuss the application of platelets in the regeneration of several other tissues including tendon, bone, liver, vessels and nerve. Finally, we review key technical variations in platelet preparation that may account for the large discrepancy in outcomes from different studies. This review provides an up-to-date reference tool for biomedical and clinical scientists involved in platelet-mediated tissue regenerative applications.

Journal ArticleDOI
TL;DR: To explore the cooperation of GLP‐1 receptor and β3‐adrenergic receptor (β3‐AR)‐mediated signalling in the control of fat mass/feeding behaviour by studying the effects of a combined therapy composed of the GLP-1R agonist liraglutide and the β3-AR agonist CL316243.
Abstract: Aim To explore the cooperation of GLP-1 receptor and β3-adrenergic receptor (β3-AR)-mediated signalling in the control of fat mass/feeding behaviour by studying the effects of a combined therapy composed of the GLP-1R agonist liraglutide and the β3-AR agonist CL316243. Methods The study included the analysis of key mechanisms regulating lipid/cholesterol metabolism, and thermogenesis in brown (BAT) and epididymal white (eWAT) adipose tissues, abdominal muscle and liver of male rats. Results CL316243 (1 mg kg-1 ) and liraglutide (100 μg kg-1 ) co-administration over 6 days potentiated an overall negative energy balance (reduction in food intake, body weight gain, fat/non-fat mass ratio, liver fat content, and circulating levels of non-essential fatty acids, triglycerides, very low-density lipoprotein-cholesterol and leptin). These effects were accompanied by increased plasma levels of insulin and IL6. We also observed increased gene expression of uncoupling proteins regulating thermogenesis in BAT/eWAT (Ucp1) and muscle (Ucp2/3). Expression of transcription factor and enzymes involved either in de novo lipogenesis (Chrebp, Acaca, Fasn, Scd1, Insig1, Srebp1) or in fatty acid β-oxidation (Cpt1b) was enhanced in eWAT and/or muscle but decreased in BAT. Pparα and Pparγ, essentials in lipid flux/storage, were decreased in BAT/eWAT but increased in the muscle and liver. Cholesterol synthesis regulators (Insig2, Srebp2, Hmgcr) were particularly over-expressed in muscle. These GLP-1R/β3-AR-induced metabolic effects were associated with the downregulation of cAMP-dependent signalling pathways (PKA/AKT/AMPK). Conclusion Combined activation of GLP-1 and β3-ARs potentiate changes in peripheral pathways regulating lipid/cholesterol metabolism in a tissue-specific manner that favours a switch in energy availability/expenditure and may be useful for obesity treatment.

Journal ArticleDOI
TL;DR: The effects of chronic hypoxia on diaphragm function in high‐ and low‐altitude populations of Peromyscus mice are examined.
Abstract: Aim We examined the effects of chronic hypoxia on diaphragm function in high- and low-altitude populations of Peromyscus mice. Methods Deer mice (P. maniculatus) native to high altitude and congeneric mice native to low altitude (P. leucopus) were born and raised in captivity to adulthood and were acclimated to normoxia or hypobaric hypoxia (12 or 9 kPa, simulating hypoxia at 4300 and 7000 m) for 6-8 weeks. We then measured indices of mitochondrial respiration capacity, force production, and fatigue resistance in the diaphragm. Results Mitochondrial respiratory capacities (assessed using permeabilized fibres with single or multiple inputs to the electron transport system), citrate synthase activity (a marker of mitochondrial volume), twitch force production, and muscle fatigue resistance increased after exposure to chronic hypoxia in both populations. These changes were not well explained by variation in the fibre-type composition of the muscle. However, there were several differences in diaphragm function in high-altitude mice compared to low-altitude mice. Exposure to a deeper level of hypoxia (9 kPa vs 12 kPa) was needed to elicit increases in mitochondrial respiration rates in highlanders. Chronic hypoxia did not increase the emission of reactive oxygen species from permeabilized fibres in highlanders, in contrast to the pronounced increases that occurred in lowlanders. In general, the diaphragm of high-altitude mice had greater capillary length densities, produced less force in response to stimulation and had shorter relaxation times. The latter was associated with higher activity of sarcoplasmic reticulum Ca2+ -ATPase (SERCA) activity in the diaphragm of high-altitude mice. Conclusion Overall, our work suggests that exposure to chronic hypoxia increases the capacities for mitochondrial respiration, force production and fatigue resistance of the diaphragm. However, many of these effects are opposed by evolved changes in diaphragm function in high-altitude natives, such that highlanders in chronic hypoxia maintain similar diaphragm function to lowlanders in sea level conditions.

Journal ArticleDOI
TL;DR: The mechanism of autophagy and its regulation in the cell, the role of Autophagy in the ageing heart, and how theAutophagy pathway might be targeted to improve cardiac health are discussed.
Abstract: As average life expectancy continues to rise in the developed world, age-associated pathologies are increasing in prevalence. The hallmarks of cardiac ageing include cardiomyocyte loss, fibrosis and hypertrophy, all of which contribute to an increased incidence of cardiac disease. At the molecular level, cellular ageing is characterized by increased ROS production, mitochondrial dysfunction and the accumulation of damaged proteins and organelles. Cardiomyocytes and other senescent cell types rely upon autophagy, a lysosome-mediated degradation pathway, to remove potentially toxic protein aggregates and damaged organelles from the cellular milieu. However, increasing lines of evidence point to an age-associated decrease in cardiomyocyte autophagy, with predictably negative consequences for cardiac function and health. Conversely, stimulation of autophagy has been shown to improve cellular health and cardiac function and to increase lifespan in numerous model organisms. Clearly, autophagy represents a critical pathway for cellular vitality, as well as a promising therapeutic target for the treatment of age-related cardiac pathologies. In this review, we will discuss the mechanism of autophagy and its regulation in the cell, the role of autophagy in the ageing heart, and how the autophagy pathway might be targeted to improve cardiac health.

Journal ArticleDOI
TL;DR: Autophagy and unfolded protein response appear to be important for skeletal muscle homoeostasis and may be altered by exercise and the effects of resistance exercise and training on indicators of UPR and autophagy are investigated.
Abstract: AIM Autophagy and unfolded protein response (UPR) appear to be important for skeletal muscle homoeostasis and may be altered by exercise. Our aim was to investigate the effects of resistance exercise and training on indicators of UPR and autophagy in healthy untrained young men (n = 12, 27 ± 4 years) and older men (n = 8, 61 ± 6 years) as well as in resistance-trained individuals (n = 15, 25 ± 5 years). METHODS Indicators of autophagy and UPR were investigated from the muscle biopsies after a single resistance exercise bout and after 21 weeks of resistance training. RESULTS Lipidated LC3II as an indicator of autophagosome content increased at 48 hours post-resistance exercise (P < .05) and after a resistance training period (P < .01) in untrained young men but not in older men. Several UPRER markers, typically induced by protein misfolding in endoplasmic reticulum, were increased at 48 hours post-resistance exercise in untrained young and older men (P < .05) but were unaltered after the 21-week resistance training period regardless of age. UPR was unchanged within the first few hours after the resistance exercise bout regardless of the training status. Changes in autophagy and UPRER indicators did not correlate with a resistance training-induced increase in muscle strength and size. CONCLUSION Autophagosome content is increased by resistance training in young previously untrained men, but this response may be blunted by ageing. However, unfolded protein response is induced by an unaccustomed resistance exercise bout in a delayed manner regardless of age.

Journal ArticleDOI
TL;DR: In this paper, the authors considered alterations in renal endothelial function in the setting of acute kidney injury that may underlie impairment in renal perfusion and how inefficient vascular repair may manifest post-AKI and contribute to the potential transition to CKD.
Abstract: Acute kidney injury (AKI) represents a significant clinical concern that is associated with high mortality rates and also represents a significant risk factor for the development of chronic kidney disease (CKD). This article will consider alterations in renal endothelial function in the setting of AKI that may underlie impairment in renal perfusion and how inefficient vascular repair may manifest post-AKI and contribute to the potential transition to CKD. We provide updated terminology for cells previously classified as 'endothelial progenitor' that may mediate vascular repair such as pro-angiogenic cells and endothelial colony-forming cells. We consider how endothelial repair may be mediated by these different cell types following vascular injury, particularly in models of AKI. We further summarize the potential ability of these different cells to mitigate the severity of AKI, improve perfusion and maintain vascular structure in pre-clinical studies.

Journal ArticleDOI
TL;DR: The role of MICAL2 in breast cancer cell migration as well as its underlying mechanisms are investigated and cytoskeleton dynamics regulator is identified associated with survival and metastasis of several types of cancers.
Abstract: Aim MICAL2, a cytoskeleton dynamics regulator, is identified associated with survival and metastasis of several types of cancers recently. The present study was designed to investigate the role of MICAL2 in breast cancer cell migration as well as its underlying mechanisms. Methods The relationship between MICAL2 and EGF/EGFR signaling was analyzed by using gene overexpression and knockdown techniques. Cell migration was measured by wound healing assays. Activation of EGF/EGFR singaling pathways were evaluated by immunofluorescence, qPCR, Western blotting and zymography techniques. Rac1 activity was assessed by pulldown assay. Correlation of MICAL2 and EGFR in breast cancer specimens was examined by using immunohistochemical analysis. Results Ectopic expression of MICAL2 in MCF-7 cells augmented EGFR protein level, accompanied by the promotion of cell migration. Silencing MICAL2 in MDA-MB-231 cells destabilized EGFR and inhibited cell migration. In mechanism, the maintaining effect of MICAL2 on EGFR protein content was due to a delay in EGFR degradation. Expression of MICAL2 was also shown positively correlated with the activation of P38/HSP27 and P38/MMP9 signalings, which are the main downstream signaling cascades of EGF/EGFR involved in cell migration. Further analysis indicated that Rac1 activation contributed to the maintaining effect of MICAL2 on EGFR stability. In addition, analysis of breast cancer specimens revealed a positive correlation between MICAL2 and EGFR levels and an association between MICAL2 expression and worse prognosis. Conclusion MICAL2 is a major regulator of breast cancer cell migration, maintaining EGFR stability and subsequent EGFR/P38 signaling activation through inhibiting EGFR degradation in a Rac1-dependent manner. This article is protected by copyright. All rights reserved.