scispace - formally typeset
Search or ask a question

Showing papers in "Analyst in 2021"


Journal ArticleDOI
25 Jan 2021-Analyst
TL;DR: A detailed evaluation of reported approaches in the design, operation and performance assessment of GFET biosensors, including transfer curves, output curves and time series as well as their integration in real-time or a posteriori protocols.
Abstract: Graphene field-effect transistors (GFETs) are emerging as bioanalytical sensors, in which their responsive electrical conductance is used to perform quantitative analyses of biologically-relevant molecules such as DNA, proteins, ions and small molecules. This review provides a detailed evaluation of reported approaches in the design, operation and performance assessment of GFET biosensors. We first dissect key design elements of these devices, along with most common approaches for their fabrication. We compare possible modes of operation of GFETs as sensors, including transfer curves, output curves and time series as well as their integration in real-time or a posteriori protocols. Finally, we review performance metrics reported for the detection and quantification of bioanalytes, and discuss limitations and best practices to optimize the use of GFETs as bioanalytical sensors.

70 citations


Journal ArticleDOI
25 Jan 2021-Analyst
TL;DR: The results indicate that the developed colorimetric RT-LAMP provides a simple, sensitive and reliable approach for the detection of SARS-CoV-2 in clinical samples, implying its beneficial use as a diagnostic platform for COVID-19 screening.
Abstract: COVID-19, caused by the infection of SARS-CoV-2, has emerged as a rapidly spreading infection. The disease has now reached the level of a global pandemic and as a result a more rapid and simple detection method is imperative to curb the spread of the virus. We aimed to develop a visual diagnostic platform for SARS-CoV-2 based on colorimetric RT-LAMP with levels of sensitivity and specificity comparable to that of commercial qRT-PCR assays. In this work, the primers were designed to target a conserved region of the RNA-dependent RNA polymerase gene (RdRp). The assay was characterized for its sensitivity and specificity, and validated with clinical specimens collected in Thailand. The developed colorimetric RT-LAMP assay could amplify the target gene and enabled visual interpretation in 60 min at 65 °C. No cross-reactivity with six other common human respiratory viruses (influenza A virus subtypes H1 and H3, influenza B virus, respiratory syncytial virus types A and B, and human metapneumovirus) and five other human coronaviruses (MERS-CoV, HKU-1, OC43, 229E and NL63) was observed. The limit of detection was 25 copies per reaction when evaluated with contrived specimens. However, the detection rate at this concentration fell to 95.8% when the incubation time was reduced from 60 to 30 min. The diagnostic performance of the developed RT-LAMP assay was evaluated in 2120 clinical specimens and compared with the commercial qRT-PCR. The results revealed high sensitivity and specificity of 95.74% and 99.95%, respectively. The overall accuracy of the RT-LAMP assay was determined to be 99.86%. In summary, our results indicate that the developed colorimetric RT-LAMP provides a simple, sensitive and reliable approach for the detection of SARS-CoV-2 in clinical samples, implying its beneficial use as a diagnostic platform for COVID-19 screening.

66 citations


Journal ArticleDOI
26 Apr 2021-Analyst
TL;DR: In this article, a rapid and sensitive fluorometric bioanalysis platform for mercury(ii) (Hg2+) detection was innovatively developed using ultrathin two-dimensional MXenes (Ti3C2) as fluorescence quencher and Hg2+-induced exonuclease III (Exo III)-assisted target recycling strategy for efficient signal amplification.
Abstract: Herein a rapid and sensitive fluorometric bioanalysis platform for mercury(ii) (Hg2+) detection was innovatively developed using ultrathin two-dimensional MXenes (Ti3C2) as fluorescence quencher and Hg2+-induced exonuclease III (Exo III)-assisted target recycling strategy for efficient signal amplification. Initially, fluorophore-labeled single-stranded DNA (FAM-labeled probe) can be easily adsorbed onto the surface of ultrathin Ti3C2 nanosheets by hydrogen bonding and metal chelating interaction, and the fluorescence signal emitted by the FAM-labeled probe is quenched strongly owing to the fluorescence resonance energy transfer between the FAM and ultrathin Ti3C2 nanosheets. Upon sensing the target Hg2+, the protruding DNA fragment at the 3' end of hairpin will hybridize with primer (hairpin-Hg2+-primer), and then further digested by Exo III to produce a probe (nicker). The released target Hg2+ and primer continue to participate in the next recycling, resulting in more hairpin probes becoming nickers. The combination of a large number of nickers and FAM-probe resulted in a significant increase in the fluorescence signal of the system, which was attributed to the fact that the double helix DNA was more rigid and separated from the surface of the ultrathin Ti3C2 nanosheets. The obvious fluorescence signal change of the Ti3C2-based Exo III-assisted target recycling can be accurately monitored by fluorescence spectrometry, which is also proportional to the concentration of Hg2+. Under optimum operating conditions, the peak intensity (520 nm wavelength) of fluorescence increased with increasing Hg2+ within a wide dynamic working range from 0.05 nM to 50 nM (R2 = 0.9913) with a limit of detection down to 42.5 pM. The proposed strategy uses ultrathin MXenes as a platform for binding nucleic acids, which contributes to its potential in nucleic acid hybridization-based biosensing and/or nucleic acid signal amplification bio-applications.

46 citations


Journal ArticleDOI
Fu-Ting Wang1, Li-Na Wang1, Jing Xu1, Ke-Jing Huang1, Xu Wu1 
12 Jul 2021-Analyst
TL;DR: In this article, the authors summarized the top-down and bottom-up synthesis routes of CDs, highlight their modification strategies, and discuss their applications in the fields of photoluminescence biosensors, electrochemiluminescent biosensor, chemiluminecence biosensor, electrochemical biosensers, and fluorescence biosensor.
Abstract: There has been an explosion of interest in the use of nanomaterials for biosensing applications, and carbonaceous nanomaterials in particular are at the forefront of this explosion. Carbon dots (CDs), a new type of carbon material, have attracted extensive attention due to their fascinating properties, such as small particle size, tunable optical properties, good conductivity, low cytotoxicity, and good biocompatibility. These properties have enabled them to be highly promising candidates for the fabrication of various high-performance biosensors. In this review, we summarize the top-down and bottom-up synthesis routes of CDs, highlight their modification strategies, and discuss their applications in the fields of photoluminescence biosensors, electrochemiluminescence biosensors, chemiluminescence biosensors, electrochemical biosensors and fluorescence biosensors. In addition, the challenges and future prospects of the application of CDs for biosensors are also proposed.

44 citations


Journal ArticleDOI
08 Feb 2021-Analyst
TL;DR: An overview of the benefits and limitations of mD-LC-MS approaches in comparison to conventional chromatographic methods is presented, and the vision on a more integrated multi-level m D- LC-MS characterization platform is shared.
Abstract: Accelerated development of new therapeutics in an increasingly competitive landscape requires the use of high throughput analytical platforms. In addition, the complexity of novel biotherapeutic formats (e.g. fusion proteins, protein-polymer conjugates, co-formulations, etc.) reinforces the need to improve the selectivity and resolution of conventional one-dimensional (1D) liquid chromatography (LC). Liquid chromatography-mass spectrometry (LC-MS)-based technologies such as native LC-MS for intact mass analysis or peptide mapping (also called bottom-up approach)-based multi-attribute methods (MAM) have already demonstrated their potential to complement the conventional analytical toolbox for monoclonal antibody (mAb) characterization. Two-dimensional liquid-chromatography (2D-LC-MS) methods have emerged in the last ten years as promising approaches to address the increasing analytical challenges faced with novel antibody formats. However, off-line sample preparation procedures are still required for conventional 1D and 2D-LC-MS methods for the in-depth variant characterization at the peptide level. Multi-dimensional LC-MS (mD-LC-MS) combine sample preparation and multi-level (i.e. intact, reduced, middle-up and peptide) analysis within the same chromatographic set-up. This review presents an overview of the benefits and limitations of mD-LC-MS approaches in comparison to conventional chromatographic methods (i.e. 1D-LC-UV methods at intact protein level and 1D-LC-MS methods at peptide level). The current analytical trends in antibody characterization by mD-LC-MS approaches, beyond the 2D-LC-MS workhorse, are also reviewed, and our vision on a more integrated multi-level mD-LC-MS characterization platform is shared.

42 citations


Journal ArticleDOI
Fang Mi1, Ming Guan1, Cunming Hu1, Fei Peng1, Shijiao Sun1, Xiaomei Wang1 
25 Jan 2021-Analyst
TL;DR: The progress of lectin-based pathogen detection methods, including various electrochemical methods, optical methods and quartz crystal microbalance methods, as well as lectin based microfluidic methods are highlighted.
Abstract: Foodborne diseases caused by pathogenic bacteria pose a serious threat to human health. Early and rapid detection of foodborne pathogens is urgently needed. The use of biosensors to identify and detect pathogenic bacteria has attracted ample attention because of their high sensitivity, near real-time quantification without enrichment, on-site detection, simple operation, and so on. As a promising alternative recognition element in biosensors, lectins have been widely studied in bacterial detection because of their high stability and low cost. In this review, we highlight the progress of lectin-based pathogen detection methods, including various electrochemical methods, optical methods and quartz crystal microbalance methods, as well as lectin based microfluidic methods. The interaction mechanism between lectins and bacterial recognition site-sugars is also studied. Finally, the future prospects and challenges in the development of lectin-based biosensors are discussed.

41 citations


Journal ArticleDOI
14 Jun 2021-Analyst
TL;DR: A label-free multiplexed electrochemical biosensor based on a gold nanoparticles/graphene quantum dots/Graphene oxide (AuNPs/GQDs/GO) modified three-screen-printed carbon electrode (3SPCE) array is successfully constructed to detect miRNA-21, miRNA155, and miRNA210 biomarkers for the first time.
Abstract: A label-free multiplexed electrochemical biosensor based on a gold nanoparticles/graphene quantum dots/graphene oxide (AuNPs/GQDs/GO) modified three-screen-printed carbon electrode (3SPCE) array is successfully constructed to detect miRNA-21, miRNA-155, and miRNA-210 biomarkers for the first time. Redox species (anthraquinone (AQ), methylene blue (MB), and polydopamine (PDA)) are used as redox indicators for anchoring capture miRNA probes, which hybridize with the complementary targets, miRNA-21, miRNA-155, and miRNA-210, respectively. After three target miRNAs are present, the square wave voltammetry (SWV) scan displays three well-separated peaks. Each peak indicates the presence of one miRNA, and its intensity quantitatively correlates with the concentration of the corresponding target analyte. This phenomenon results in the substantial decline of the SWV peak current of the redox probes. The developed AuNPs/GQDs/GO-based biosensor reveals excellent performance for simultaneous miRNA sensing. It offers a wide linear dynamic range from 0.001 to 1000 pM with ultrasensitive low detection limits of 0.04, 0.33, and 0.28 fM for the detection of miRNA-21, miRNA-155, and miRNA-210, respectively. It also presents high selectivity and applicability for the detection of miRNAs in human serum samples. This multiplex label-free miRNA biosensor has great potential for applications in breast cancer diagnosis.

41 citations


Journal ArticleDOI
22 Feb 2021-Analyst
TL;DR: In this paper, a polystyrene-toner (PS-T) centrifugal microfluidic device was used for molecular diagnosis of COVID-19 by RT-LAMP, with integrated and automated colorimetric detection.
Abstract: Infection caused by the new coronavirus (SARS-CoV-2) has become a serious worldwide public health problem, and one of the most important strategies for its control is mass testing. Loop-mediated isothermal amplification (LAMP) has emerged as an important alternative to simplify the diagnostics of infectious diseases. In addition, an advantage of LAMP is that it allows for easy reading of the final result through visual detection. However, this step must be performed with caution to avoid contamination and false-positive results. LAMP performed on microfluidic platforms can minimize false-positive results, in addition to having potential for point-of-care applications. Here, we describe a polystyrene-toner (PS-T) centrifugal microfluidic device manually controlled by a fidget spinner for molecular diagnosis of COVID-19 by RT-LAMP, with integrated and automated colorimetric detection. The amplification was carried out in a microchamber with 5 μL capacity, and the reaction was thermally controlled with a thermoblock at 72 °C for 10 min. At the end of the incubation time, the detection of amplified RT-LAMP fragments was performed directly on the chip by automated visual detection. Our results demonstrate that it is possible to detect COVID-19 in reactions initiated with approximately 10-3 copies of SARS-CoV-2 RNA. Clinical samples were tested using our RT-LAMP protocol as well as by conventional RT-qPCR, demonstrating comparable performance to the CDC SARS-CoV-2 RT-qPCR assay. The methodology described in this study represents a simple, rapid, and accurate method for rapid molecular diagnostics of COVID-19 in a disposable microdevice, ideal for point-of-care testing (POCT) systems.

39 citations


Journal ArticleDOI
26 Apr 2021-Analyst
TL;DR: In this paper, the authors provide an accessible overview of chemometric methods within the context of forensic science and discuss the challenges and emerging trends in this rapidly growing field, as well as a broad review of studies demonstrating the utility of chemometrics across various forensic disciplines.
Abstract: Forensic investigations are often reliant on physical evidence to reconstruct events surrounding a crime. However, there remains a need for more objective approaches to evidential interpretation, along with rigorously validated procedures for handling, storage and analysis. Chemometrics has been recognised as a powerful tool within forensic science for interpretation and optimisation of analytical procedures. However, careful consideration must be given to factors such as sampling, validation and underpinning study design. This tutorial review aims to provide an accessible overview of chemometric methods within the context of forensic science. The review begins with an overview of selected chemometric techniques, followed by a broad review of studies demonstrating the utility of chemometrics across various forensic disciplines. The tutorial review ends with the discussion of the challenges and emerging trends in this rapidly growing field.

38 citations


Journal ArticleDOI
08 Mar 2021-Analyst
TL;DR: A review of molecular biology and nanotechnology based analytical methods for the rapid screening and detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; 2019-nCoV) play an essential role in the diagnosis of COVID-19, which can minimize local transmission and prevent an epidemic.
Abstract: Currently, the 2019 novel coronavirus (2019-nCoV) is drastically affecting 214 countries, causing severe pneumonia in patients, which has resulted in lockdown being implemented in several countries to stop its local transmission. Considering this, the rapid screening and accurate detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; 2019-nCoV) play an essential role in the diagnosis of COVID-19, which can minimize local transmission and prevent an epidemic. Due to this public health emergency, the development of ultra-fast reliable diagnostic kits is essential for the diagnosis of COVID-19. Recently, molecular biology and nanotechnology based analytical methods have proven to be promising diagnostic tools for the rapid screening of 2019-nCoV with high accuracy and precision. The main aim of this review is to provide a retrospective overview on the molecular biology tools (reverse transcription polymerase chain reaction (RT-PCR) and reverse transcription loop-mediated isothermal amplification (RT-LAMP)) and nanotechnology based analytical tools (enzyme-linked immunosorbent assay (ELISA), RT-PCR, and lateral flow assay) for the rapid diagnosis of COVID-19. This review also presents recent reports on other analytical techniques including paper spray mass spectrometry for the diagnosis of COVID-19 in clinical samples. Finally, we provide a quick reference on molecular biology and nanotechnology based analytical tools for COVID-19 diagnosis in clinical samples.

37 citations


Journal ArticleDOI
14 Jun 2021-Analyst
TL;DR: A comprehensive overview of various conventional technologies and modern microfluidic and nanotechnological advancements towards isolation and characterization of exosome subpopulations is presented in this article.
Abstract: Exosomes are nano-sized extracellular vesicles that serve as a communications system between cells and have shown tremendous promise as liquid biopsy biomarkers in diagnostic, prognostic, and even therapeutic use in different human diseases. Due to the natural heterogeneity of exosomes, there is a need to separate exosomes into distinct biophysical and/or biochemical subpopulations to enable full interrogation of exosome biology and function prior to the possibility of clinical translation. Currently, there exists a multitude of different exosome isolation and characterization approaches which can, in limited capacity, separate exosomes based on biophysical and/or biochemical characteristics. While notable reviews in recent years have reviewed these approaches for bulk exosome sorting, we herein present a comprehensive overview of various conventional technologies and modern microfluidic and nanotechnological advancements towards isolation and characterization of exosome subpopulations. The benefits and limitations of these different technologies to improve their use for distinct exosome subpopulations in clinical practices are also discussed. Furthermore, an overview of the most commonly encountered technical and biological challenges for effective separation of exosome subpopulations is presented.

Journal ArticleDOI
08 Mar 2021-Analyst
TL;DR: In this article, the authors discuss two main research directions of lateral flow nucleic acid tests, namely, the incorporation of isothermal amplification methods with LFA, which ensures an ultra-high testing sensitivity under non-laboratory conditions.
Abstract: Recently, lateral flow assay (LFA) for nucleic acid detection has drawn increasing attention in the point-of-care testing fields. Due to its rapidity, easy implementation, and low equipment requirement, it is well suited for use in rapid diagnosis, food authentication, and environmental monitoring under source-limited conditions. This review will discuss two main research directions of lateral flow nucleic acid tests. The first one is the incorporation of isothermal amplification methods with LFA, which ensures an ultra-high testing sensitivity under non-laboratory conditions. The two most commonly used methodologies will be discussed, namely Loop-mediated Isothermal Amplification (LAMP) and Recombinase Polymerase Amplification (RPA), and some novel methods with special properties will also be introduced. The second research direction is the development of novel labeling materials. It endeavors to increase the sensitivity and quantifiability of LFA testing, where signals can be read and analyzed by portable devices. These methods are compared in terms of limits of detection, detection times, and quantifiabilities. It is anticipated that future research on lateral flow nucleic acid tests will focus on the integration of the whole testing process into a microfluidic system and the combination with molecular diagnostic tools such as clustered regularly interspaced short palindromic repeats to facilitate a rapid and accurate test.

Journal ArticleDOI
17 May 2021-Analyst
TL;DR: In this review, recent advancements regarding the applications of MIPs and pertinent virus imprinting techniques for the detection of viruses, as well as their current significant challenges and future perspectives are deliberated.
Abstract: Molecularly imprinted polymers (MIPs) have numerous applications in the sensing field, the detection/recognition of virus, the structure determination of proteins, drug delivery, artificial/biomimetic antibodies, drug discovery, and cell culturing. There are lots of conventional methods routinely deployed for the analysis/detection of viral infections and pathogenic viruses, namely enzyme immunoassays, immunofluorescence microscopy, polymerase chain reaction (PCR) and virus isolation. However, they typically suffer from higher costs, low selectivity/specificity, false negative/positive results, time consuming procedures, and inherent labor intensiveness. MIPs offer promising potential for viral recognition/detection with high target selectivity, sensitivity, robustness, reusability, and reproducible fabrication. In terms of virus detection, selectivity and sensitivity are critical parameters determined by the template; additionally, the analytical detection and evaluation of viruses must have considerably low detection limits. The virus-imprinted polymer-based innovative strategies with enough specificity, convenience, validity, and reusability features for the detection/recognition of a wide variety of viruses, can provide attractive capabilities for reliable screening with minimal false negative/positive results that is so crucial for the prevention and control of epidemic and pandemic viral infections. However, in the process of imprinting viruses, critical factors such as size of the target, solubility, fragility, and compositional complexity should be analytically considered and systematically evaluated. In this review, recent advancements regarding the applications of MIPs and pertinent virus imprinting techniques for the detection of viruses, as well as their current significant challenges and future perspectives, are deliberated.

Journal ArticleDOI
26 Apr 2021-Analyst
TL;DR: In this article, an electrochemical sensor is fabricated using a nanocomposite, consisting of graphene (GP), polypyrrole (PPY), and gold nanoparticles (AuNPs), modified onto a screen-printed carbon electrode (SPCE) to improve electron transfer properties and increase the degree of methylene blue (MB) intercalation for signal amplification.
Abstract: Numerous clinical studies suggest that microRNAs (miRNAs) are indicative biomolecules for the early diagnosis of cancer. This work aims to develop a cost-effective and label-free electrochemical biosensor to detect miRNA-21, a biomarker of breast cancer. An electrochemical sensor is fabricated using a nanocomposite, consisting of graphene (GP), polypyrrole (PPY) and gold nanoparticles (AuNPs), modified onto a screen-printed carbon electrode (SPCE) to improve electron transfer properties and increase the degree of methylene blue (MB) intercalation for signal amplification. The GP/PPY-modified electrode offers good electrochemical reactivity and high dispersibility of AuNPs, resulting in excellent sensor performance. Peak current of the MB redox process, which is proportional to miRNA-21 concentration on the electrode surface, is monitored by differential pulse voltammetry (DPV). Under optimal conditions, this sensor is operated by monitoring the MB signal response due to the amount of hybridization products between miRNA-21 target molecules and DNA-21 probes immobilized on the electrode. The proposed biosensor reveals a linear range from 1.0 fM to 1.0 nM with a low detection limit of 0.020 fM. In addition, the miRNA-21 biosensor provides good selectivity, high stability, and satisfactory reproducibility, which shows promising potential in clinical research and diagnostic applications.

Journal ArticleDOI
04 May 2021-Analyst
TL;DR: This review presents various approaches using 3D-printed materials, screen-printed electrodes, polymer templates, designs allowing multiple glucose analysis, bioanalytes and/or nanostructures for glucose detection in smartphone-based diagnostics.
Abstract: Diabetes is a group of metabolic conditions resulting in high blood sugar levels over prolonged periods that affects hundreds of millions of patients worldwide. Measuring glucose concentration enables patient-specific insulin therapy, and is essential to reduce the severity of the disease, potential complications, and related mortalities. Recent advances and developments in smartphone-based colorimetric glucose detection systems are discussed in this review. The importance of glucose monitoring, data collection, transfer, and analysis, via non-invasive/invasive methods is highlighted. The review also presents various approaches using 3D-printed materials, screen-printed electrodes, polymer templates, designs allowing multiple glucose analysis, bioanalytes and/or nanostructures for glucose detection. The positive effects of advances in improving the performance of smartphone-based platforms are introduced along with future directions and trends in the application of emerging technologies in smartphone-based diagnostics.

Journal ArticleDOI
08 Feb 2021-Analyst
TL;DR: The long-wavelength emission by AuNCs avoided the interference of the complex biomatrix background fluorescence, indicating their great application prospects for clinical diagnosis.
Abstract: A fluorescence analysis method based on gold nanocluster (AuNC) and metal-organic framework (MOF) composite materials (AuNCs@ZIF-8) was established for highly sensitive detection of bilirubin (BR). First, AuNCs@ZIF-8 was successfully obtained by co-precipitation and displayed an aggregation-induced emission enhancement by the confinement effect of the MOFs (i.e., ZIF-8). The product showed approximately 7.0 times enhancement in the quantum yield and longer fluorescence lifetime from 2.29 μs to 11.51 μs compared with AuNCs. When BR combined with the metal node Zn2+ of ZIF-8, the skeleton of the composite was destroyed, leading to a great decrease in the fluorescence intensity by the transformation of the AuNCs from the aggregated state to dispersed state. The linear range for the detection of BR was 0.1-5.0 μM, with the limit of detection (LOD) of 0.07 μM (S/N = 3). The AuNCs@ZIF-8 exhibited a selective response toward BR within 5 min and detected BR in human serum. The long-wavelength emission by AuNCs avoided the interference of the complex biomatrix background fluorescence, indicating their great application prospects for clinical diagnosis.

Journal ArticleDOI
04 May 2021-Analyst
TL;DR: This review explores the current state-of-the-art smartphone-based optical analysis systems in various areas of application and investigates one class of smartphone-Based devices: (i) smartphone- based colorimeters, (ii) smartphones-based photo- and spectrometers and (iii) smartphone -based fluorimeters.
Abstract: During the past few decades, there has been a growing trend towards the use of smartphone-based analysis systems This is mainly due to its ubiquity, its increasing computing capacity, its relatively low cost and the ability to acquire and process data at the same time Furthermore, there are many sensors integrated into a smartphone, for example a complementary metal-oxide semiconductor (CMOS) sensor A CMOS sensor enables optical analysis for example by using it as a colorimeter, photometer or spectrometer This review explores the current state-of-the-art smartphone-based optical analysis systems in various areas of application It is organized into three sections, each of which investigates one class of smartphone-based devices: (i) smartphone-based colorimeters (ii) smartphone-based photo- and spectrometers and (iii) smartphone-based fluorimeters

Journal ArticleDOI
05 Jan 2021-Analyst
TL;DR: Upconversion nanoparticles are inorganic nanocrystals that convert near-infrared light into shorter wavelength emission that render UCNPs excellent optical labels for biosensing because they can be detected without optical background interferences from the sample matrix.
Abstract: Food safety and quality regulations inevitably call for sensitive and accurate analytical methods to detect harmful contaminants in food and to ensure safe food for the consumer. Both novel and well-established biorecognition elements, together with different transduction schemes, enable the simple and rapid analysis of various food contaminants. Upconversion nanoparticles (UCNPs) are inorganic nanocrystals that convert near-infrared light into shorter wavelength emission. This unique photophysical feature, along with narrow emission bandwidths and large anti-Stokes shift, render UCNPs excellent optical labels for biosensing because they can be detected without optical background interferences from the sample matrix. In this review, we show how this exciting technique has evolved into biosensing platforms for food quality and safety monitoring and highlight recent applications in the field.

Journal ArticleDOI
25 Jan 2021-Analyst
TL;DR: An effective machine learning classification of protein species with closely resembled spectral profiles by a mixed data processing based on principal component analysis (PCA) applied to multipeak fitting on SERS spectra is proposed.
Abstract: Establishing standardized methods for a consistent analysis of spectral data remains a largely underexplored aspect in surface-enhanced Raman spectroscopy (SERS), particularly applied to biological and biomedical research. Here we propose an effective machine learning classification of protein species with closely resembled spectral profiles by a mixed data processing based on principal component analysis (PCA) applied to multipeak fitting on SERS spectra. This strategy simultaneously assures a successful discrimination of proteins and a thorough characterization of the chemostructural differences among them, ultimately opening up new routes for SERS evolution toward sensing applications and diagnostics of interest in life sciences.

Journal ArticleDOI
08 Feb 2021-Analyst
TL;DR: The fundamental applications, advantages and disadvantages of modern analytical techniques used for bacterial characterisation, classification and identification are discussed.
Abstract: Rapid and accurate classification and discrimination of bacteria is an important task and has been highlighted recently for rapid diagnostics using real-time results. Coupled with a recent report by Jim O'Neill [] that if left unaddressed antimicrobial resistance (AMR) in bacteria could kill 10 million people per year by 2050, which would surpass current cancer mortality, this further highlights the need for unequivocal identification of microorganisms. Whilst traditional microbiological testing has offered insights into the characterisation and identification of a wide range of bacteria, these approaches have proven to be laborious and time-consuming and are not really fit for purpose, considering the modern day speed and volume of international travel and the opportunities it creates for the spread of pathogens globally. To overcome these disadvantages, modern analytical methods, such as mass spectrometry (MS) and vibrational spectroscopy, that analyse the whole organism, have emerged as essential alternative approaches. Currently within clinical microbiology laboratories, matrix assisted laser desorption ionisation (MALDI)-MS is the method of choice for bacterial identification. This is largely down to its robust analysis as it largely measures the ribosomes which are always present irrespective of how the bacteria are cultured. However, MALDI-MS requires large amounts of biomass and infrared spectroscopy and Raman spectroscopy are attractive alternatives as these physicochemical bioanalytical techniques have the advantages of being rapid, reliable and cost-effective for analysing various types of bacterial samples, even at the single cell level. In this review, we discuss the fundamental applications, advantages and disadvantages of modern analytical techniques used for bacterial characterisation, classification and identification.

Journal ArticleDOI
06 Apr 2021-Analyst
TL;DR: The fast and direct colorimetric and fluorometric sensing of biogenic amines by means of a dinuclear Zn(ii) Schiff-base complex and the selectivity towards biogenicAmines, even in the presence of common aliphatic, primary, secondary, or tertiary monoamines, heterocyclic amines, and amino acids is demonstrated by competitive experiments.
Abstract: Biogenic amines are involved in physiological roles in living organisms, but their excessive production or intake can induce undesired toxicological effects. As biogenic amines can be found in the process of food spoilage, they are considered an indicator of food quality and freshness, and their detection is of crucial importance in food safety. In this contribution, we report the fast and direct colorimetric and fluorometric sensing of biogenic amines by means of a dinuclear Zn(II) Schiff-base complex. The selective and sensitive detection involves the formation of stable adducts between the dinuclear complex, acting as the Lewis acidic molecular tweezer, and biogenic di- or polyamines. The selectivity towards biogenic amines, even in the presence of common aliphatic, primary, secondary, or tertiary monoamines, heterocyclic amines, and amino acids, is demonstrated by competitive experiments. The quantitation of histamine in a fish matrix is easily achieved using a standard extraction procedure followed by simple colorimetric or fluorometric measurements.

Journal ArticleDOI
11 Oct 2021-Analyst
TL;DR: In this article, the authors provide an overview of the MEs as the Achilles heel of the liquid chromatography-mass spectrometry (LC-MS) technique, the causes of ME occurrence, their consequences, and systemic approaches towards overcoming MEs during LC-MS-based multi-analyte procedures.
Abstract: The high-performance liquid chromatography-mass spectrometry (LC-MS) technique is widely applied to routine analysis in many matrices. Despite the enormous application of LC/MS, this technique is subjected to drawbacks called matrix effects (MEs) that could lead to ion suppression or ion enhancement. This phenomenon can exert a deleterious impact on the ionization efficacy of an analyte and subsequently on the important method performance parameters. LC-MS susceptibility to MEs is the main challenge of this technique in the analysis of complex matrices such as biological and food samples. Nowadays, the assessment, estimation, and overcoming of the MEs before developing a method is mandatory in any analysis. Two main approaches including the post-column infusion and post-extraction spike are proposed to determine the degree of MEs. Different strategies can be adopted to reduce or eliminate MEs depending on the complexity of the matrix. This could be done by improving extraction and clean-up methods, changing the type of ionization employed, optimization of liquid chromatography conditions, and using corrective calibration methods. This review article will provide an overview of the MEs as the Achilles heel of the LC-MS technique, the causes of ME occurrence, their consequences, and systemic approaches towards overcoming MEs during LC-MS-based multi-analyte procedures.

Journal ArticleDOI
Jingjing Jiang1, Dong Ding1, Jing Wang1, Xinyi Lin1, Guowang Diao1 
08 Feb 2021-Analyst
TL;DR: In this article, a metal-free quadruplet electrochemical sensor for simultaneous detection of ascorbic acid, dopamine, uric acid and acetaminophen (AP) is presented.
Abstract: Three-dimensional nitrogen-doped graphene (3D-NG) networks, yielded by hydrothermal reaction and freeze-drying treatment, were used as building blocks to construct a metal-free quadruplet electrochemical sensor for simultaneous detection of ascorbic acid (AA), dopamine (DA), uric acid (UA), and acetaminophen (AP). The introduced 3D-NG materials with a 3D porous structure and a nitrogen doping effect were beneficial for the generation of multidimensional electron transfer pathways and the improvement of electrocatalytic activities by modulating their electronic properties, which could contribute to the effective differentiation of the four analytes in their quaternary mixture. Well-resolved oxidation peaks and enhanced response currents of AA, DA, UA, and AP were obtained from the 3D-NG-based electrodes. For the individual determination of one analyte, the linear concentration ranges of AA, DA, UA, and AP were 20–10 000, 1–1000, 0.5–1000, and 0.1–600 μM with detection limits of 3.91, 0.26, 0.12, and 0.02 μM (S/N = 3), respectively. After the synchronous change of the concentrations of AA, DA, UA, and AP, desirable linear relationships were observed in the ranges of 100–7000, 2–600, 1–800, and 10–550 μM with detection limits of 24.33, 0.37, 0.21, and 1.87 μM (S/N = 3), respectively. This sensitive sensing platform was successfully used to monitor AA, DA, UA, and AP in human urine samples, which indicated that 3D-NG could become a promising electrode material for the simultaneous monitoring of multiple electroactive species.

Journal ArticleDOI
06 Apr 2021-Analyst
TL;DR: In this article, a new paper-based analytical device was fabricated by a wax printing method for simultaneous determination of heavy metal ions using bathocuproine (Bc), dimethylglyoxime (DMG), dithizone (DTZ), and 4-(2-pyridylazo) resorcinol (PAR) as complexing agents.
Abstract: A new paper-based analytical device design was fabricated by a wax printing method for simultaneous determination of Cu(II), Co(II), Ni(II), Hg(II), and Mn(II). Colorimetry was used to quantify these heavy metal ions using bathocuproine (Bc), dimethylglyoxime (DMG), dithizone (DTZ), and 4-(2-pyridylazo) resorcinol (PAR) as complexing agents. The affinity of complexing agents to heavy metal ions is dependent on the formation constant (Kf). To enhance the selectivity for heavy metal ion determination, the new device was designed with two pretreatment zones, where masking agents remove the interfering ions. It was found that two pretreatment zones worked better than a single pretreatment zone at removing interferences. The reaction time, sample and complexing agent volumes, and complexing agent concentrations were optimized. The analytical results were achieved with the lowest detectable concentrations of 0.32, 0.59, 5.87, 0.20, and 0.11 mg L−1 for Cu(II), Co(II), Ni(II), Hg(II), and Mn(II), respectively. The linear ranges were found to be 0.32–63.55 mg L−1 (Cu(II)), 0.59–4.71 mg L−1 (Co(II)), 5.87–352.16 mg L−1 (Ni(II)), 0.20–12.04 mg L−1 (Hg(II)), and 0.11–0.55 mg L−1 (Mn(II)). The lowest detectable concentration and linearity for the five metal ions allow the application of this device for the determination of heavy metal ions in various water samples. The sensor showed high selectivity and efficiency for simultaneous determination of Cu(II), Co(II), Ni(II), Hg(II), and Mn(II) in drinking, tap, and pond water samples on a single device and detection with the naked eye. The results illustrated that the proposed sensor showed good accuracy and precision agreement with the standard ICP-OES method.

Journal ArticleDOI
05 Jan 2021-Analyst
TL;DR: The review includes the five types of variables that influence the aging process and photography, optical, microscopy and electrochemical methods, and vibrational spectroscopy and mass spectrometry techniques are summarized in detail, with an emphasis on their utilization.
Abstract: Fingermarks have long been recognized as one of the most reliable and valuable evidence for personal identification. In practice, fingerprint analysis primarily concentrates on latent fingerprint visualization. However, fingerprint visualization techniques do not always enable individualization when fingermarks collected in crime scenes are fragmentary, ambiguous, or deformed. Age determination techniques based on physical and chemical composition changes in fingerprints over time have attracted researchers' attention in recent years. Nevertheless, the components of fingerprints are liable to factors including donor features, deposition conditions, substrate properties, environmental conditions and revealing methods. All the influences mainly contribute to unreliable outcomes of age estimation. Recent developments in fingermark age determination have moved forward to more precise approaches. The advanced methods can be classified into two categories including techniques based on the modifications of physical characteristics and chemical composition characteristics. Herein, the review includes the five types of variables that influence the aging process. The methodologies are subsequently highlighted along with their advantages and disadvantages. Furthermore, photography, optical, microscopy and electrochemical methods, and vibrational spectroscopy and mass spectrometry (MS) techniques are summarized in detail, with an emphasis on their utilization.

Journal ArticleDOI
01 Jun 2021-Analyst
TL;DR: The proposed method successfully measured heavy metals in river water samples with concentrations ranging from 16 to 786 μg L-1, with recovery studies ranging from 76 to 121%.
Abstract: Heavy metals are the main pollutants present in aquatic environments and their presence in human organisms can lead to many different diseases. While many methods exist for analysis, colorimetric and electrochemistry are particularly attractive for on-site analysis and their integration on a single platform can improve multiplexed metals analysis. This report describes for the first time a “plug-and-play” (PnP) assembly for coupling a microfluidic paper-based device (μPAD) and a screen-printed electrochemical paper-based device (ePAD) using a vertical and reversible foldable mechanism for multiplexed detection of Fe, Ni, Cu, Zn, Cd and Pb in river water samples. The integration strategy was based on a reversible assembly, allowing the insertion of a pretreatment zone to minimize potential chemical interfering agents and providing a better control of the aspirated sample volume as well as to a lower sample evaporation rate. In comparison with lateral flow and electrochemical assays performed using independent devices, the integrated prototype proved that the reversible coupling mechanism does not interfere on the analytical performance (95% confidence interval). The limit of detection (LOD) values calculated for metals determined varied from 0.1 to 0.3 mg L−1 (colorimetric) and from 0.9 to 10.5 μg L−1 (electrochemical). When compared to other integrated devices based on horizontal designs, the use of a foldable coupling mechanism offered linear response in a lower concentration range and better LOD values for Fe, Ni and Cu. The proposed method successfully measured heavy metals in river water samples with concentrations ranging from 16 to 786 μg L−1, with recovery studies ranging from 76 to 121%. The new method also showed good correlation with conventional atomic absorption spectroscopic methods (95% significance level). Thus, the integration of μPADs and ePADs by a vertical folding mechanism was efficient for multiplexed heavy metal analysis and could be exploited for environmental monitoring.

Journal ArticleDOI
25 Jan 2021-Analyst
TL;DR: The analysis of seroconversion with immunotests shows the complexity of the immune response to COVID-19, and Quantitative reverse transcription polymerase chain reaction (RT-qPCR) is undoubtedly the gold standard technique utilized not only for diagnostics, but also as a standard for comparison and validation of newer approaches.
Abstract: The new outbreak caused by coronavirus SARS-CoV-2 started at the end of 2019 and was declared a pandemic in March 2020. Since then, several diagnostic approaches have been re-adapted, and also improved from the previous detections of SARS and MERS coronavirus. The best strategy to handle this situation seems to rely on a triad of detection methods: (i) highly sensitive and specific techniques as the gold standard method, (ii) easier and faster point of care tests accessible for large population screening, and (iii) serology assays to complement the direct detection and to use for surveillance. In this study, we assessed the techniques and tests described in the literature, their advantages and disadvantages, and the interpretation of the results. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) is undoubtedly the gold standard technique utilized not only for diagnostics, but also as a standard for comparison and validation of newer approaches. Other nucleic acid amplification methods have been shown to be adequate as point of care (POC) diagnostic tests with similar performance as RT-qPCR. The analysis of seroconversion with immunotests shows the complexity of the immune response to COVID-19. The detection of anti-SARS-CoV-2 antibodies can also help to detect previously infected asymptomatic individuals with negative RT-qPCR tests. Nevertheless, more controlled serology cohort studies should be performed as soon as possible to understand the immune response to SARS-CoV-2.

Journal ArticleDOI
05 Jan 2021-Analyst
TL;DR: This work proved that fabricating a single nanozyme-based sensor array was a simplified and reliable strategy for simultaneously probing multiple antioxidants.
Abstract: Identifying the species and concentrations of antioxidants is really important because antioxidants play important roles in various biological processes and numerous diseases. Compared with an individual sensor detecting a single antioxidant with limited specificity, a sensor array could simultaneously identify various antioxidants, in which 3-5 types of nanomaterials with peroxidase-like activity are absolutely necessary. Herein, as a single-atom nanozyme, Fe-N/C with oxidase-mimicking activity was applied to construct a triple-channel colorimetric sensor array: (1) Fe-N/C catalytically oxidized three substrates 3,3',5,5'-tetramethylbenzidine (TMB), 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and o-phenylenediamine (OPD) to produce blue oxidized TMB (oxTMB), green oxidized ABTS (oxABTS) and yellow oxidized OPD (oxOPD), respectively; (2) with oxTMB, oxABTS and oxOPD as three sensing channels, a colorimetric sensor array was constructed for simultaneously discriminating glutathione (GSH), l-cysteine (l-Cys), ascorbic acid (AA), uric acid (UA), and melatonin (MT), even quantifying concentrations (with GSH as a model analyst). The performance of the sensor array was validated through accurately identifying 15 blind samples containing GSH, l-Cys, AA, UA and MT in buffer solution and human serum samples, and also in binary and ternary mixtures. This work proved that fabricating a single nanozyme-based sensor array was a simplified and reliable strategy for simultaneously probing multiple antioxidants.

Journal ArticleDOI
Qi Wu1, LiHeng Feng1, Jian Bin Chao1, Yu Wang1, Shaomin Shuang1 
29 Jun 2021-Analyst
TL;DR: In this paper, a new fluorescent probe, 3-(benzo[d]thiazol]-2-yl)-5-bromosalicylaldehyde-4N-phenyl thiosemicarbazone (BTT), for ratiometric sensing of Zn2+ ions in methanol/HEPES buffer solution (3 : 2, pH = 7.4) is reported.
Abstract: A new fluorescent probe, 3-(benzo[d]thiazol-2-yl)-5-bromosalicylaldehyde-4N-phenyl thiosemicarbazone (BTT), for ratiometric sensing of Zn2+ ions in methanol/HEPES buffer solution (3 : 2, pH = 7.4) is reported in this paper. The presence of Zn2+ ions yields a significant blue shift in the maximum emission of BTT from 570 nm to 488 nm, accompanied by a clear color change from orange to green. This emission change of BTT upon binding to Zn2+ in a 1 : 1 ratio may be due to the block of excited state intramolecular proton transfer (ESIPT) as well as chelation enhanced fluorescence (CHEF) on complex formation. The limit of detection (LOD) determined for Zn2+ quantitation was down to 37.7 nM. In addition, the probe BTT displays the ability to image both exogenous Zn2+ ions loaded into HeLa cells and endogenous Zn2+ distribution in living SH-SY5Y neuroblastoma cells.

Journal ArticleDOI
14 Jun 2021-Analyst
TL;DR: In this paper, the fabrication of an MMP-1 immunosensor based on a gold nanoparticle/polyethyleneimine/reduced graphene oxide (AuNP/PEI/rGO)-modified disposable screen-printed electrode (SPE) was described.
Abstract: Matrix metalloproteinase-1 (MMP-1) is associated with many types of cancers, including oral, colorectal, and brain cancers. This paper describes the fabrication of an MMP-1 immunosensor based on a gold nanoparticle/polyethyleneimine/reduced graphene oxide (AuNP/PEI/rGO)-modified disposable screen-printed electrode (SPE). A microwave-assisted single-step method was employed for the simultaneous reduction of gold and graphene oxide in a PEI environment to avoid AuNP agglomeration. The crystal structure, chemical composition, optical properties, and interior morphology of the materials were probed by X-ray diffraction, Raman spectroscopy, UV-visible spectrometry, and transmission electron microscopy techniques. To assemble a label-free MMP-1 immunosensor layer-by-layer, 3-mercaptopropionic acid was utilized due to its strong sulfur-gold bonding ability, and its tail end was attached to a carboxyl group, allowing the MMP-1 antibody (anti-MMP-1) to be subsequently cross-linked using the traditional N-(3-dimethylaminopropyl) and N′ ethylcarbodiimide hydrochloride method. Differential pulse voltammetry analysis showed a linear relationship with MMP-1 concentration in the range of 1–50 ng ml−1 with an R2 value of ∼0.996 (n = 5, RSD < 5%). This immunosensor was successfully applied for MMP-1 detection in urine, saliva, bovine serum, and cell culture media (HSC-3 & C6) of oral and brain cancers showing results comparable to those of the credible ELISA method.