scispace - formally typeset
Search or ask a question

Showing papers in "Analytical and Bioanalytical Chemistry in 2014"


Journal ArticleDOI
TL;DR: Direct analysis in real time mass spectrometry (DART-MS) has become an established technique for rapid mass spectral analysis of a large variety of samples and is suitable and well-known for analysis of ingredients of plant materials, pesticide monitoring on vegetables, forensic and safety applications.
Abstract: Direct analysis in real time mass spectrometry (DART-MS) has become an established technique for rapid mass spectral analysis of a large variety of samples. DART-MS is capable of analyzing the sample at atmospheric pressure, essentially in the open laboratory environment. DART-MS can be applied to compounds that have been deposited or adsorbed on to surfaces or that are being desorbed therefrom into the atmosphere. This makes DART-MS suitable and well-known for analysis of ingredients of plant materials, pesticide monitoring on vegetables, forensic and safety applications such as screening for traces of explosives, warfare agents, or illicit drugs on luggage, clothes, or bank notes, etc. DART can also be used for analysis of either solid or liquid bulk materials, as may be required in quality control, or to quickly investigate the identity of a compound from chemical synthesis. Even living organisms can be subjected to DART-MS. Driven by different needs in analytical practice, the combination of the DART ionization source and interface can be configured in multiple geometries and with various accessories to adapt the setup as required. Analysis by DART-MS relies on some sort of gas-phase ionization mechanism. In DART, initial generation of the ionizing species is by use of a corona discharge in a pure helium atmosphere which delivers excited helium atoms that, upon their release into the atmosphere, will initiate a cascade of gas-phase reactions. In the end, this results in reagent ions created from atmospheric water or (solvent) vapor in the vicinity of the surface subject to analysis where they effect a chemical ionization process. DART ionization processes may generate positive or negative ions, predominantly even-electron species, but odd-electron species do also occur. The prevailing process of analyte ion formation from a given sample is highly dependent on analyte properties.

357 citations


Journal ArticleDOI
TL;DR: It is concluded that analysis and averaging of multiple reference genes using a GeNorm approach gives a more reliable estimate of total cfDNA quantity.
Abstract: Circulating cell-free DNA (cfDNA) is becoming an important clinical analyte for prenatal testing, cancer diagnosis and cancer monitoring. The extraction stage is critical in ensuring clinical sensitivity of analytical methods measuring minority nucleic acid fractions, such as foetal-derived sequences in predominantly maternal cfDNA. Consequently, quality controls are required for measurement of extraction efficiency, fragment size bias and yield for validation of cfDNA methods. We evaluated the utility of an external DNA spike for monitoring these parameters in a study comparing three specific cfDNA extraction methods [QIAamp® circulating nucleic acid (CNA) kit, NucleoSpin® Plasma XS (NS) kit and FitAmp™ plasma/serum DNA isolation (FA) kit] with the commonly used QIAamp DNA blood mini (DBM) kit. We found that the extraction efficiencies of the kits ranked in the order CNA kit > DBM kit > NS kit > FA kit, and the CNA and NS kits gave a better representation of smaller DNA fragments in the extract than the DBM kit. We investigated means of improved reporting of cfDNA yield by comparing quantitative PCR measurements of seven different reference gene assays in plasma samples and validating these with digital PCR. We noted that the cfDNA quantities based on measurement of some target genes (e.g. TERT) were, on average, more than twofold higher than those of other assays (e.g. ERV3). We conclude that analysis and averaging of multiple reference genes using a GeNorm approach gives a more reliable estimate of total cfDNA quantity.

264 citations


Journal ArticleDOI
TL;DR: This report aims to review recent developments in CBDs for bioanalytical sciences along with some of the challenges involved and the future opportunities.
Abstract: During the last decade, there has been a rapidly growing trend toward the use of cellphone-based devices (CBDs) in bioanalytical sciences. For example, they have been used for digital microscopy, cytometry, read-out of immunoassays and lateral flow tests, electrochemical and surface plasmon resonance based bio-sensing, colorimetric detection and healthcare monitoring, among others. Cellphone can be considered as one of the most prospective devices for the development of next-generation point-of-care (POC) diagnostics platforms, enabling mobile healthcare delivery and personalized medicine. With more than 6.5 billion cellphone subscribers worldwide and approximately 1.6 billion new devices being sold each year, cellphone technology is also creating new business and research opportunities. Many cellphone-based devices, such as those targeted for diabetic management, weight management, monitoring of blood pressure and pulse rate, have already become commercially-available in recent years. In addition to such monitoring platforms, several other CBDs are also being introduced, targeting e.g., microscopic imaging and sensing applications for medical diagnostics using novel computational algorithms and components already embedded on cellphones. This report aims to review these recent developments in CBDs for bioanalytical sciences along with some of the challenges involved and the future opportunities.

263 citations


Journal ArticleDOI
TL;DR: A critical survey of the literature regarding environmental applications of conventional and modified QuEchERS methodology is provided, providing evidence for QuEChERS higher recoveries for various classes of compounds, including biopesticides, chloroalkanes, phenols, and perfluoroalkyl substances.
Abstract: Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) is an extraction and clean-up technique originally developed for recovering pesticide residues from fruits and vegetables. Since its introduction, and until December 2013, about 700 papers have been published using the QuEChERS technique, according to a literature overview carried out using SciFinder, Elsevier SciVerse, and Google search engines. Most of these papers were dedicated to pesticide multiresidue analysis in food matrices, and this topic has been thoroughly reviewed over recent years. The QuEChERS approach is now rapidly developing beyond its original field of application to analytes other than pesticides, and matrices other than food, such as biological fluids and non-edible plants, including Chinese medicinal plants. Recently, the QuEChERS concept has spread to environmental applications by analyzing not only pesticides but also other compounds of environmental concern in soil, sediments, and water. To the best of our knowledge, QuEChERS environmental applications have not been reviewed so far; therefore, in this contribution, after a general discussion on the evolution and changes of the original QuEChERS method, a critical survey of the literature regarding environmental applications of conventional and modified QuEChERS methodology is provided. The overall recoveries obtained with QuEChERS and other extraction approaches (e.g., accelerated solvent extraction, ultrasonic solvent extraction, liquid/solid extraction, and soxhlet extraction) were compared, providing evidence for QuEChERS higher recoveries for various classes of compounds, such as biopesticides, chloroalkanes, phenols, and perfluoroalkyl substances. The role of physicochemical properties of soil (i.e., clay and organic carbon content, as well as cation exchange capacity) and target analytes (i.e., log KOW, water solubility, and vapor pressure) were also evaluated in order to interpret recovery and matrix effect data.

235 citations


Journal ArticleDOI
Lijun Xie1, Ruifen Jiang1, Fang Zhu1, Hong Liu1, Gangfeng Ouyang1 
TL;DR: This review describes the application of magnetic nanoparticles functionalized with silica, octadecylsilane, carbon-based material, surfactants, and polymers as adsorbents for separation and preconcentration of analytes from a variety of matrices.
Abstract: Functionalized magnetic nanoparticles have attracted much attention in sample preparation because of their excellent performance compared with traditional sample-preparation sorbents In this review, we describe the application of magnetic nanoparticles functionalized with silica, octadecylsilane, carbon-based material, surfactants, and polymers as adsorbents for separation and preconcentration of analytes from a variety of matrices Magnetic solid-phase extraction (MSPE) techniques, mainly reported in the last five years, are presented and discussed

226 citations


Journal ArticleDOI
TL;DR: This review paper is designed as a guide for those wishing to learn about the current state of black carbon measurement instrumentation, how calibration is carried out, when one instrument may have the advantage over another, and where new techniques are needed to fill important knowledge gaps.
Abstract: Elemental-, equivalent black- and refractory black-carbon are terms that have been defined in order to dissect the more general term, black carbon, into its component parts related to its specific chemical and optical properties and its impact on climate and health. Recent publications have attempted to clarify the meaning of these terms with respect to their environmental impact, particularly on climate. Here, we focus on the measurement aspects, reviewing the most commonly implemented techniques for the direct and indirect derivation of black carbon properties, their strengths, limitations, and uncertainties, and provide a non-exhaustive bibliography where the reader can find more detailed information. This review paper is designed as a guide for those wishing to learn about the current state of black carbon measurement instrumentation, how calibration is carried out, when one instrument may have the advantage over another, and where new techniques are needed to fill important knowledge gaps.

192 citations


Journal ArticleDOI
TL;DR: An extensive critical evaluation of the application of dispersive liquid–liquid microextraction (DLLME) combined with chromatographic and atomic-spectroscopic methods for the determination of organic and inorganic compounds is presented.
Abstract: An extensive critical evaluation of the application of dispersive liquid–liquid microextraction (DLLME) combined with chromatographic and atomic-spectroscopic methods for the determination of organic and inorganic compounds is presented. The review emphasizes the procedures used for the prior treatment of food samples, which are very different from the DLLME procedures generally proposed for water samples. The main contribution of this work in the field of DLLME reviews is its critical review of the abundant literature showing the increasing interest and practical advantages of using DLLME and closely related microextraction techniques for food analysis.

172 citations


Journal ArticleDOI
TL;DR: This review summarizes the DLLME principles, historical developments, and various modes of the technique, recent trends, and selected applications, and focuses on recent technological advances and important applications of D LLME.
Abstract: During the past 7 years and since the introduction of dispersive liquid–liquid microextraction (DLLME), the method has gained widespread acceptance as a simple, fast, and miniaturized sample preparation technique. Owing to its simplicity of operation, rapidity, low cost, high recovery, and low consumption of organic solvents and reagents, it has been applied for determination of a vast variety of organic and inorganic compounds in different matrices. This review summarizes the DLLME principles, historical developments, and various modes of the technique, recent trends, and selected applications. The main focus is on recent technological advances and important applications of DLLME. In this review, six important aspects in the development of DLLME are discussed: (1) the type of extraction solvent, (2) the type of disperser solvent, (3) combination of DLLME with other extraction methods, (4) automation of DLLME, (5) derivatization reactions in DLLME, and (6) the application of DLLME for metal analysis. Literature published from 2010 to April 2013 is covered.

168 citations


Journal ArticleDOI
TL;DR: The state of the art of clinical target detection with SPR-based biosensors in complex matrices as well as in standard solution when innovative approaches or advanced instrumentations were employed for improved detection are reported.
Abstract: In the last 20 years, surface plasmon resonance (SPR) and its advancement with imaging (SPRi) emerged as a suitable and reliable platform in clinical analysis for label-free, sensitive, and real-time monitoring of biomolecular interactions. Thus, we report in this review the state of the art of clinical target detection with SPR-based biosensors in complex matrices (e.g., serum, saliva, blood, and urine) as well as in standard solution when innovative approaches or advanced instrumentations were employed for improved detection. The principles of SPR-based biosensors are summarized first, focusing on the physical properties of the transducer, on the assays design, on the immobilization chemistry, and on new trends for implementing system analytical performances (e.g., coupling with nanoparticles (NPs). Then we critically review the detection of analytes of interest in molecular diagnostics, such as hormones (relevant also for anti-doping control) and biomarkers of interest in inflammatory, cancer, and heart failure diseases. Antibody detection is reported in relation to immune disorder diagnostics. Subsequently, nucleic acid targets are considered for revealing genetic diseases (e.g., point mutation and single nucleotides polymorphism, SNPs) as well as new emerging clinical markers (microRNA) and for pathogen detection. Finally, examples of pathogen detection by immunosensing were also analyzed. A parallel comparison with the reference methods was duly made, indicating the progress brought about by SPR technologies in clinical routine analysis.

164 citations


Journal ArticleDOI
TL;DR: A general introduction to graphene and GO properties, as well as their syntheses, is provided and recent advances in optical, electrochemical, and electrical detection of heavy-metal ions using graphene or GO are highlighted.
Abstract: Graphene (G) is attracting significant attention because of its unique physical and electronic properties. The production of graphene through the reduction of graphene oxide (GO) is a low-cost method. The reduction of GO can further lead to electrically conductive reduced GO. These graphene-based nanomaterials are attractive for high-performance water sensors due to their unique properties, such as high specific surface areas, high electron mobilities, and exceptionally low electronic noise. Because of potential risks to the environment and human health arising from heavy-metal pollution in water, G-/GO-based water sensors are being developed for rapid and sensitive detection of heavy-metal ions. In this review, a general introduction to graphene and GO properties, as well as their syntheses, is provided. Recent advances in optical, electrochemical, and electrical detection of heavy-metal ions using graphene or GO are then highlighted. Finally, challenges facing G/GO-based water sensor development and outlook for future research are discussed.

162 citations


Journal ArticleDOI
TL;DR: This review provides an overview of the most immediate and relevant developments toward viable sensors for direct applications, and critically describes the pros and cons of current commercial lactate sensors.
Abstract: Many research efforts over the last few decades have been devoted to sensing lactate as an important analytical target in clinical care, sport medicine, and food processing. Therefore, research in designing lactate sensors is no longer in its infancy and now is more directed toward viable sensors for direct applications. In this review, we provide an overview of the most immediate and relevant developments toward this end, and we discuss and assess common transduction approaches. Further, we critically describe the pros and cons of current commercial lactate sensors and envision how future sensing design may benefit from emerging new technologies.

Journal ArticleDOI
TL;DR: Most bands observed in SERS spectra of these biofluids are assigned to uric acid, a metabolite whose blood concentration depends on factors such as sex, age, therapeutic treatments, and various pathological conditions, suggesting that, even when the right experimental conditions are chosen, great care must be taken in designing studies with the purpose of developing diagnostic tests.
Abstract: Surface-enhanced Raman spectroscopy (SERS) is a good candidate for the development of fast and easy-to-use diagnostic tools, possibly used on biofluids in point-of-care or screening tests. In particular, label-free SERS spectra of blood serum and plasma, two biofluids widely used in diagnostics, could be used as a metabolic fingerprinting approach for biomarker discovery. This study aims at a systematic evaluation of SERS spectra of blood serum and plasma, using various Ag and Au aqueous colloids, as SERS substrates, in combination with three excitation lasers of different wavelengths, ranging from the visible to the near-infrared. The analysis of the SERS spectra collected from 20 healthy subjects under a variety of experimental conditions revealed that intense and repeatable spectra are quickly obtained only if proteins are filtered out from samples, and an excitation in the near-infrared is used in combination with Ag colloids. Moreover, common plasma anticoagulants such as EDTA and citrate are found to interfere with SERS spectra; accordingly, filtered serum or heparin plasma are the samples of choice, having identical SERS spectra. Most bands observed in SERS spectra of these biofluids are assigned to uric acid, a metabolite whose blood concentration depends on factors such as sex, age, therapeutic treatments, and various pathological conditions, suggesting that, even when the right experimental conditions are chosen, great care must be taken in designing studies with the purpose of developing diagnostic tests.

Journal ArticleDOI
TL;DR: The current progress being made in the development and application of quantitative MSI workflows with a focus on biomedical applications are outlined and particular emphasis is placed on the various strategies used for both signal calibration and correcting for various ion suppression effects that are invariably present in any MSI study.
Abstract: Mass spectrometry imaging (MSI) has evolved into a valuable tool across many fields of chemistry, biology, and medicine. However, arguably its greatest disadvantage is the difficulty in acquiring quantitative data regarding the surface concentration of the analyte(s) of interest. These difficulties largely arise from the high dependence of the ion signal on the localized chemical and morphological environment and the difficulties associated with calibrating such signals. The development of quantitative MSI approaches would correspond to a giant leap forward for the field, particularly for the biomedical and pharmaceutical fields, and is thus a highly active area of current research. In this review, we outline the current progress being made in the development and application of quantitative MSI workflows with a focus on biomedical applications. Particular emphasis is placed on the various strategies used for both signal calibration and correcting for various ion suppression effects that are invariably present in any MSI study. In addition, the difficulties in validating quantitative-MSI data on a pixel-by-pixel basis are highlighted.

Journal ArticleDOI
TL;DR: A method is developed and validated for sizing and quantifying nano-silver in chicken meat using single particle inductive coupled plasma mass spectrometry (ICP-MS), and it was shown that nano- silver in chickenmeat is not stable.
Abstract: The application of nanomaterials is leading to innovative developments in industry, agriculture, consumer products, and food and related sectors. However, due to the special properties of these materials there are concerns about their safety, especially because of our limited knowledge of human health effects and the fact that constantly new nanomaterials and applications thereof are being produced. The development of analytical techniques is a key element to understand the benefits as well as the risks of the application of such materials. In this study, a method is developed and validated for sizing and quantifying nano-silver in chicken meat using single particle inductive coupled plasma mass spectrometry (ICP-MS). Samples are processed using an enzymatic digestion followed by dilution of the digest and instrumental analysis of the diluted digest using single particle ICP-MS. Validation of the method in the concentration of 5–25 mg/kg 60-nm silver nanoparticles showed good performance with respect to trueness (98–99 % for size, 91–101 % for concentration), repeatability (<2 % for size, <11 % for concentration), and reproducibility (<6 % for size, <16 % for concentration). The response of the method is linear, and a detection limit as low as 0.1 mg/kg can be obtained. Additional experiments showed that the method is robust and that digests are stable for 3 weeks at 4 °C. Once diluted for single particle ICP-MS analysis, the stability is limited. Finally, it was shown that nano-silver in chicken meat is not stable. Silver nanoparticles dissolved and were transformed into silver sulfide. While this has implications for the form in which nano-silver will be present in real-life meat samples, the developed method will be able to determine the presence and quantity of nanoparticle silver in such samples.

Journal ArticleDOI
TL;DR: Asymmetrical field flow fractionation with in-line ultraviolet absorbance, dynamic light scattering, and multi-angle light scattering was applied to the size separation and characterization of non-labeled B16-F10 exosomes from an aggressive mouse melanoma cell culture line to facilitate a greater understanding of exosome function by subtype and allow for “label-free” isolation of large scale clinicalExosomes.
Abstract: Exosomes participate in cancer metastasis, but studying them presents unique challenges as a result of their small size and purification difficulties. Asymmetrical field flow fractionation with in-line ultraviolet absorbance, dynamic light scattering, and multi-angle light scattering was applied to the size separation and characterization of non-labeled B16-F10 exosomes from an aggressive mouse melanoma cell culture line. Fractions were collected and further analyzed using batch mode dynamic light scattering, transmission electron microscopy and compared with known size standards. Fractogram peak positions and computed radii show good agreement between samples and across fractions. Ultraviolet absorbance fractograms in combination with transmission electron micrographs were able to resolve subtle heterogeneity of vesicle retention times between separate batches of B16-F10 exosomes collected several weeks apart. Further, asymmetrical field flow fractionation also effectively separated B16-F10 exosomes into vesicle subpopulations by size. Overall, the flow field flow fractionation instrument combined with multiple detectors was able to rapidly characterize and separate exosomes to a degree not previously demonstrated. These approaches have the potential to facilitate a greater understanding of exosome function by subtype, as well as ultimately allow for “label-free” isolation of large scale clinical exosomes for the purpose of developing future exosome-based diagnostics and therapeutics.

Journal ArticleDOI
TL;DR: System performance, including adduct patterns, in-source fragmentation, and ion-cooler bias, was investigated on reference standards, and the overall method was used on extracts of Aspergillus carbonarius and Penicillium melanoconidium, revealing new nitrogen-containing biomarkers for both species.
Abstract: In natural-product drug discovery, finding new compounds is the main task, and thus fast dereplication of known compounds is essential. This is usually performed by manual liquid chromatography-ultraviolet (LC-UV) or visible light-mass spectroscopy (Vis-MS) interpretation of detected peaks,oftenassistedbyautomatedidentificationofpreviously identified compounds. We used a 15 min high-performance liquid chromatography-diode array detection (UHPLC- DAD)-high-resolution MS method (electrospray ionization (ESI) + or ESI � ), followed by 10-60 s of automated data analysis for up to 3000 relevant elemental compositions. By overlaying automatically generated extracted-ion chromato- grams from detected compounds on the base peak chromato- gram, all major potentially novel peaks could be visualized. Peaks corresponding to compounds available as reference standards, previously identified compounds, and major con- taminants from solvents, media, filters etc. were labeled to differentiatethesefromcompoundsonlyidentifiedbyelemen- tal composition. This enabled fast manual evaluation of both known peaks and potential novel-compound peaks, by man- ual verification of: the adduct pattern, UV-Vis, retention time compared with log D, co-identified biosynthetic related com- pounds, and elution order. System performance, including adduct patterns, in-source fragmentation, and ion-cooler bias, was investigated on reference standards, and the overall meth- od was used on extracts of Aspergillus carbonarius and Pen- icillium melanoconidium, revealing new nitrogen-containing biomarkers for both species.

Journal ArticleDOI
TL;DR: The first assessment of droplet digital PCR (ddPCR) for detection and absolute quantification of two quarantine plant pathogenic bacteria that infect many species of the Rosaceae and Solanaceae families: Erwinia amylovora and Ralstonia solanacearum is reported on.
Abstract: Here we report on the first assessment of droplet digital PCR (ddPCR) for detection and absolute quantification of two quarantine plant pathogenic bacteria that infect many species of the Rosaceae and Solanaceae families: Erwinia amylovora and Ralstonia solanacearum. An open-source R script was written for the ddPCR data analysis. Analysis of a set of samples with known health status aided the assessment and selection of different threshold settings (QuantaSoft analysis, definetherain pipeline and manual threshold), which led to optimal diagnostic specificity. The interpretation of the E. amylovora ddPCR was straightforward, and the analysis approach had little influence on the final results and the concentrations determined. The sensitivity and linear range were similar to those for real-time PCR (qPCR), for the analysis of both bacterial suspensions and plant material, making ddPCR a viable choice when both detection and quantification are desired. With the R. solanacearum ddPCR, the use of a high global threshold was necessary to exclude false-positive reactions that are sometimes observed in healthy plant material. ddPCR significantly improved the analytical sensitivity over that of qPCR, and improved the detection of low concentrations of R. solanacearum in potato tuber samples. Accurate and rapid absolute quantification of both of these bacteria in pure culture was achieved by direct ddPCR. Our data confirm the suitability of these ddPCR assays for routine detection and quantification of plant pathogens and for preparation of defined in-house reference materials with known target concentrations.

Journal ArticleDOI
TL;DR: This review focuses on the most recent trends in which inductively coupled plasma mass spectrometry (ICP-MS) and ICP optical emission spectroscopic techniques are applied for single-cell analysis using metal atoms being intrinsically present in cells, taken up by cells, or which are artificially bound to a cell.
Abstract: The analysis of single cells is a growing research field in many disciplines such as toxicology, medical diagnosis, drug and cancer research or metallomics, and different methods based on microscopic, mass spectrometric, and spectroscopic techniques are under investigation. This review focuses on the most recent trends in which inductively coupled plasma mass spectrometry (ICP-MS) and ICP optical emission spectrometry (ICP-OES) are applied for single-cell analysis using metal atoms being intrinsically present in cells, taken up by cells (e.g., nanoparticles), or which are artificially bound to a cell. For the latter, especially element tagged antibodies are of high interest and are discussed in the review. The application of different sample introduction systems for liquid analysis (pneumatic nebulization, droplet generation) and elemental imaging by laser ablation ICP-MS (LA-ICP-MS) of single cells are highlighted. Because of the high complexity of biological systems and for a better understanding of processes and dynamics of biologically or medically relevant cells, the authors discuss the idea of “multimodal spectroscopies.”

Journal ArticleDOI
TL;DR: It is concluded that formula assignment in complex mixtures can be improved by group-wise decisions based on the frequency and the [DBE minus o] values of multiple formula assignments.
Abstract: Formula assignment is one of the key challenges in evaluation of dissolved organic matter analyses using ultrahigh resolution mass spectrometry (FTICR MS). The number of possible solutions for elemental formulas grows exponentially with increasing nominal mass, especially when non-oxygen heteroatoms like N, S or P are considered. Until now, no definitive solution for finding the correct elemental formula has been given. For that reason an approach from the viewpoint of chemical feasibility was elucidated. To illustrate the new chemical formula assignment principle, a literature data set was used and evaluated by simplified chemical constraints. Only formulas containing a maximum of one sulphur and five nitrogen atoms were selected for further data processing. The resulting data table was then divided into mass peaks with unique component solutions (singlets, representing unequivocal formula assignments) and those with two or more solutions (multiple formula assignments, representing equivocal formula assignments). Based on a [double bond equivalent (DBE) versus the number of oxygen atoms (o)] frequency contour plot and a frequency versus [DBE minus o] diagram, a new assessment and decision strategy was developed to differentiate multiple formula assignments into chemically reliable and less reliable molecular formulas. Using this approach a considerable number of reliable components were identified within the equivocal part of the data set. As a control, a considerable proportion of the assigned formulas deemed to be reliable correspond to those which would have been obtained by CH 2 -based Kendrick mass defect analysis. We conclude that formula assignment in complex mixtures can be improved by group-wise decisions based on the frequency and the [DBE minus o] values of multiple formula assignments.

Journal ArticleDOI
TL;DR: Three major ligand-observed NMR methods that depend on the nuclear Overhauser effect Spectroscopy, saturation transfer difference spectroscopy and water–ligand interactions observed via gradient spectroscopic experiments are reviewed with the aim of reporting recent developments and applications for the characterization of protein–ligands complexes, including affinity measurements and structural determination.
Abstract: Physiological processes are mainly controlled by intermolecular recognition mechanisms involving protein–protein and protein–ligand (low molecular weight molecules) interactions. One of the most important tools for probing these interactions is high-field solution nuclear magnetic resonance (NMR) through protein-observed and ligand-observed experiments, where the protein receptor or the organic compounds are selectively detected. NMR binding experiments rely on comparison of NMR parameters of the free and bound states of the molecules. Ligand-observed methods are not limited by the protein molecular size and therefore have great applicability for analysing protein–ligand interactions. The use of these NMR techniques has considerably expanded in recent years, both in chemical biology and in drug discovery. We review here three major ligand-observed NMR methods that depend on the nuclear Overhauser effect—transferred nuclear Overhauser effect spectroscopy, saturation transfer difference spectroscopy and water–ligand interactions observed via gradient spectroscopy experiments—with the aim of reporting recent developments and applications for the characterization of protein–ligand complexes, including affinity measurements and structural determination.

Journal ArticleDOI
TL;DR: This review summarizes the state of the art regarding human exposure to, (non-invasive) HBM of, and metabolism of major organophosphate ester, emerging flame retardants, perfluoroalkyl substances, and phthalate esters currently detected in the environment.
Abstract: Human biomonitoring (HBM) is a scientific technique that allows us to assess whether and to what extent environmental pollutants enter humans. We review here the current HBM efforts for organophosphate esters, emerging flame retardants, perfluoroalkyl substances, and phthalate esters. Use of some of these chemicals has already been banned or restricted; they are regularly detected in the environment, wildlife, and human matrices. Traditionally, blood and urine collection have been widely used as sampling methods. New non-invasive approaches (e.g., saliva, hair, nails) are emerging as valid alternatives since they offer advantages with respect to sampling, handling, and ethical aspects, while ensuring similar reliability and sensitivity. Nevertheless, the identification of biomarkers of exposure is often difficult because chemicals may be metabolized in the human body. For many of the above-mentioned compounds, the mechanisms of the favorable metabolization pathways have not been unraveled, but research on important metabolites that could be used as biomarkers of exposure is growing. This review summarizes the state of the art regarding human exposure to, (non-invasive) HBM of, and metabolism of major organophosphate esters, emerging flame retardants, perfluoroalkyl substances, and phthalate esters currently detected in the environment.

Journal ArticleDOI
TL;DR: In this article, high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) has been successfully applied to cannabis plant extracts in order to identify cannabinoid compounds after their quantitative isolation by means of supercritical fluid extraction.
Abstract: High performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) has been successfully applied to cannabis plant extracts in order to identify cannabinoid compounds after their quantitative isolation by means of supercritical fluid extraction (SFE). MS conditions were optimized by means of a central composite design (CCD) approach, and the analysis method was fully validated. Six major cannabinoids [tetrahydrocannabinolic acid (THCA), tetrahydrocannabinol (THC), cannabidiol (CBD), tetrahydrocannabivarin (THCV), cannabigerol (CBG), and cannabinol (CBN)] were quantified (RSD < 10%), and seven more cannabinoids were identified and verified by means of a liquid chromatograph coupled to a quadrupole-time-of-flight (Q-ToF) detector. Finally, based on the distribution of the analyzed cannabinoids in 30 Cannabis sativa L. plant varieties and the principal component analysis (PCA) of the resulting data, a clear difference was observed between outdoor and indoor grown plants, which was attributed to a higher concentration of THC, CBN, and CBD in outdoor grown plants.

Journal ArticleDOI
TL;DR: The fundamental surface interactions between DNA and GO and the related fluorescence-quenching mechanism are summarized and the various sensor design strategies are critically compared.
Abstract: In the past few years, graphene oxide (GO) has emerged as a unique platform for developing DNA-based biosensors, given the DNA adsorption and fluorescence-quenching properties of GO. Adsorbed DNA probes can be desorbed from the GO surface in the presence of target analytes, producing a fluorescence signal. In addition to this initial design, many other strategies have been reported, including the use of aptamers, molecular beacons, and DNAzymes as probes, label-free detection, utilization of the intrinsic fluorescence of GO, and the application of covalently linked DNA probes. The potential applications of DNA-functionalized GO range from environmental monitoring and cell imaging to biomedical diagnosis. In this review, we first summarize the fundamental surface interactions between DNA and GO and the related fluorescence-quenching mechanism. Following that, the various sensor design strategies are critically compared. Problems that must be overcome before this technology can reach its full potential are described, and a few future directions are also discussed.

Journal ArticleDOI
TL;DR: This first one-step reverse-transcription droplet digital PCR-based absolute quantification of a RNA virus (rotavirus) in different types of surface water samples proved to be more precise and more tolerant to inhibitory substances than the benchmarking reverse- Transcription real-time PCR (RT-qPCR), and needs no standard curve.
Abstract: Water contamination by viruses has an increasing worldwide impact on human health, and has led to requirements for accurate and quantitative molecular tools. Here, we report the first one-step reverse-transcription droplet digital PCR-based absolute quantification of a RNA virus (rotavirus) in different types of surface water samples. This quantification method proved to be more precise and more tolerant to inhibitory substances than the benchmarking reverse-transcription real-time PCR (RT-qPCR), and needs no standard curve. This new tool is fully amenable for the quantification of viruses in the particularly low concentrations usually found in water samples.

Journal ArticleDOI
TL;DR: Focusing on inductively coupled plasma–mass spectrometry, the total concentration of the ENP suspensions was determined by direct measurement, after acidification and after microwave-assisted digestion, and ultrafiltration in combination with microwave digestion was identified as best practice.
Abstract: Validated and easily applicable analytical tools are required to develop and implement regulatory frameworks and an appropriate risk assessment for engineered nanoparticles (ENPs). Concerning metal-based ENPs, two main aspects are the quantification of the absolute mass concentration and of the “dissolved” fraction in, e.g., (eco)toxicity and environmental studies. To provide information on preparative aspects and on potential uncertainties, preferably simple off-line methods were compared to determine (1) the total concentration of suspensions of five metal-based ENP materials (Ag, TiO2, CeO2, ZnO, and Au; two sizes), and (2) six methods to quantify the “dissolved” fraction of an Ag ENP suspension. Focusing on inductively coupled plasma–mass spectrometry, the total concentration of the ENP suspensions was determined by direct measurement, after acidification and after microwave-assisted digestion. Except for Au 10 nm, the total concentrations determined by direct measurements were clearly lower than those measured after digestion (between 61.1 % for Au 200 nm and 93.7 % for ZnO). In general, acidified suspensions delivered better recoveries from 89.3 % (ZnO) to 99.3 % (Ag). For the quantification of dissolved fractions two filtration methods (ultrafiltration and tangential flow filtration), centrifugation and ion selective electrode were mainly appropriate with certain limitations, while dialysis and cloud point extraction cannot be recommended. With respect to precision, time consumption, applicability, as well as to economic demands, ultrafiltration in combination with microwave digestion was identified as best practice.

Journal ArticleDOI
TL;DR: This article reviews recent innovations in matrix-assisted laser desorption/ionization mass spectrometry and gives the author’s personal outlook of possible future developments.
Abstract: Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is widely used for characterization of large, thermally labile biomolecules. Advantages of this analytical technique are high sensitivity, robustness, high-throughput capacity, and applicability to a wide range of compound classes. For some years, MALDI-MS has also been increasingly used for mass spectrometric imaging as well as in other areas of clinical research. Recently, several new concepts have been presented that have the potential to further advance the performance characteristics of MALDI. Among these innovations are novel matrices with low proton affinities for particularly efficient protonation of analyte molecules, use of wavelength-tunable lasers to achieve optimum excitation conditions, and use of liquid matrices for improved quantification. Instrumental modifications have also made possible MALDI-MS imaging with cellular resolution as well as an efficient generation of multiply charged MALDI ions by use of heated vacuum interfaces. This article reviews these recent innovations and gives the author’s personal outlook of possible future developments.

Journal ArticleDOI
TL;DR: 3D paper-based microfluidic device developed for colorimetric determination of selected heavy metals in water samples by stacking layers of wax patterned paper and double-sided adhesive tape has the capability of wicking fluids and distributing microliter volumes of samples from single inlet into affrays of detection zones without external pumps, thus a range of metal assays can be simply and inexpensively performed.
Abstract: A 3D paper-based microfluidic device has been developed for colorimetric determination of selected heavy metals in water samples by stacking layers of wax patterned paper and double-sided adhesive tape. It has the capability of wicking fluids and distributing microliter volumes of samples from single inlet into affrays of detection zones without external pumps, thus a range of metal assays can be simply and inexpensively performed. We demonstrate a prototype of four sample inlets for up to four heavy metal assays each, with detection limits as follows: Cu (II) = 0.29 ppm, Ni(II) = 0.33 ppm, Cd (II) = 0.19 ppm, and Cr (VI) = 0.35 ppm, which provided quantitative data that were in agreement with values gained from atomic absorption. It has the ability to identify these four metals in mixtures and is immune to interferences from either nontoxic metal ions such as Na(I) and K(I) or components found in reservoir or beach water. With the incorporation of a portable detector, a camera mobile phone, this 3D paper-based microfluidic device should be useful as a simple, rapid, and on-site screening approach of heavy metals in aquatic environments.

Journal ArticleDOI
TL;DR: The novel methodology described herein maximizes the information on the environmental analysis of these substances and also provides a first profile of 68 drugs in a Greek touristic area.
Abstract: The present work describes the development and validation of a highly sensitive analytical method for the simultaneous determination of 68 compounds, including illicit drugs (opiates, opioids, cocaine compounds, amphetamines, and hallucinogens), psychiatric drugs (benzodiazepines, barbiturates, anesthetics, antiepileptics, antipsychotics, antidepressants, and sympathomimetics), and selected human metabolites in influent and effluent wastewater (IWW and EWW) by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The method involves a pre-concentration and cleanup step, carried out by solid-phase extraction (SPE) using the adsorbent Strata-XC, followed by the instrumental analysis performed by LC-MS/MS, using a Kinetex pentafluorophenyl (PFP) reversed-phase fused-core column and electrospray ionization (ESI) in both positive and negative modes. A systematic optimization of mobile phases was performed to cope with the wide range of physicochemical properties of the analytes. The PFP column was also compared with two reversed-phase columns: fused-core C18 and XB-C18 (with a cross-butyl C18 ligand). SPE optimization and critical aspects associated with the trace level determination of the target compounds (e.g., matrix effects) have been also considered and discussed. Fragmentation patterns for all the classes were proposed. The validated method provides absolute recoveries between 75 and 120% for most compounds in IWW and EWW. Low method limits of detection were achieved (between 0.04 and 10.0 ng/L for 87% of the compounds), allowing a reliable and accurate quantification of the analytes at trace level. The method was successfully applied to the analysis of these compounds in five wastewater treatment plants in Santorini, a touristic island of the Aegean Sea, Greece. Thirty-two out of 68 compounds were detected in all IWW samples in the range between 0.6 ng/L (for nordiazepam) and 6,822 ng/L (for carbamazepine) and 22 out of 68 in all EWW samples, with values between 0.4 ng/L (for 9-OH risperidone) and 2,200 ng/L (for carbamazepine). The novel methodology described herein maximizes the information on the environmental analysis of these substances and also provides a first profile of 68 drugs in a Greek touristic area.

Journal ArticleDOI
TL;DR: This work has developed and validated a new one-phase extraction (OPE) method that opens the door to the use of human serum lipid profiling for large-scale applications in scientific research and clinical trials.
Abstract: Over the last decade, technological advances have improved the sensitivity and selectivity of LC/MS analyzers, providing very efficient tools for lipidomics research. In particular, the nine lipid classes that constitute 99 % of the human serum lipidome (sterols, cholesteryl esters, phosphocholines, phosphoethanolamines, sphingomyelins, triacylglycerols, fatty acids, lysophosphocholines, and diacylglycerols) can be easily detected. However, until today there has not been a unique technique for sample preparation that provides a satisfactory recovery for all of these nine classes together. In this work, we have developed and validated a new one-phase extraction (OPE) method that overcomes this limitation. This method was also compared with the gold standard lipid extraction methods such as Folch, Bligh & Dyer, and recently developed methods with methanol and methyl-tert-butyl ether. Results demonstrate that the mixture of methanol/chloroform/MTBE (MMC) provides a recovery very close to 100 % for all nine lipid classes of the human serum investigated. For this extraction method, 100 μL of human serum is incubated with 2 mL of the solvents mixture, then vortexed and centrifuged. For its simplicity of execution, rapidity, reproducibility, and the reduced volume of sample required, this method opens the door to the use of human serum lipid profiling for large-scale applications in scientific research and clinical trials.

Journal ArticleDOI
TL;DR: Metabolism of synthetic cannabinoids PB-22 and 5F-PB-22 by human hepatocyte incubation and high-resolution mass spectrometry shows ester hydrolysis yielding a wide variety of (5-fluoro)pentylindole-3-carboxylic acid metabolites.
Abstract: PB-22 (1-pentyl-8-quinolinyl ester-1H-indole-3-carboxylic acid) and 5F-PB-22 (1-(5-fluoropentyl)-8-quinolinyl ester-1H-indole-3-carboxylic acid) are new synthetic cannabinoids with a quinoline substructure and the first marketed substances with an ester bond linkage. No human metabolism data are currently available, making it difficult to document PB-22 and 5F-PB-22 intake from urine analysis, and complicating assessment of the drugs’ pharmacodynamic and toxicological properties. We incubated 10 μmol/l PB-22 and 5F-PB-22 with pooled cryopreserved human hepatocytes up to 3 h and analyzed samples on a TripleTOF 5600+ high-resolution mass spectrometer. Data were acquired via TOF scan, followed by information-dependent acquisition triggered product ion scans with mass defect filtering (MDF). The accurate mass full scan MS and MS/MS metabolite datasets were analyzed with multiple data processing techniques, including MDF, neutral loss and product ion filtering. The predominant metabolic pathway for PB-22 and 5F-PB-22 was ester hydrolysis yielding a wide variety of (5-fluoro)pentylindole-3-carboxylic acid metabolites. Twenty metabolites for PB-22 and 22 metabolites for 5F-PB-22 were identified, with the majority generated by oxidation with or without glucuronidation. For 5F-PB-22, oxidative defluorination occurred forming PB-22 metabolites. Both compounds underwent epoxide formation followed by internal hydrolysis and also produced a cysteine conjugate. Human hepatic metabolic profiles were generated for PB-22 and 5F-PB-22. Pentylindole-3-carboxylic acid, hydroxypentyl-PB-22 and PB-22 pentanoic acid for PB-22, and 5′-fluoropentylindole-3-carboxylic acid, PB-22 pentanoic acid and the hydroxy-5F-PB-22 metabolite with oxidation at the quinoline system for 5F-PB-22 are likely the best targets to incorporate into analytical methods for urine to document PB-22 and 5F-PB-22 intake.