scispace - formally typeset
Search or ask a question

Showing papers in "Biochemistry and biophysics reports in 2020"


Journal ArticleDOI
TL;DR: The methods of mass production of cyanobacterial biofertilizers and their applications in agriculture and industrial level are described.
Abstract: Continuous increase in global human population and depletion of natural resources of energy posing threat to environment needs, sustainable supply of food and energy. The most ecofriendly approach 'green technology' has been exploited for biofertilizer preparation. Cyanobacteria are the most successful and sustained prokaryotic organism during the course of evolution. They are considered as one of the primitive life forms found on our planet. Cyanobacteria are emerging candidates for efficiently conversion of radiant energy into chemical energy. This biological system produces oxygen as a by-product. Cyanobacterial biomass can also be used for the large scale production of food, energy, biofertilizers, secondary metabolites, cosmetics and medicines. Therefore, cyanobacteria are used in ecofriendly sustainable agricultural practice for production of biomass of very high value and decreasing the level of CO2. This review article describes the methods of mass production of cyanobacterial biofertilizers and their applications in agriculture and industrial level.

133 citations


Journal ArticleDOI
TL;DR: Improvement in quality and quantity in agriculture can be achieved by nanoparticle-mediated gene transformation and delivery of macromolecules that induces gene expression in plants.
Abstract: Nanobiotechnology provides novel set of tools to manipulate and enhance crop production using nanoparticles, nanofibres, nanoemulsions, and nanocapsules. Nanomaterials provide a platform to deliver agrochemicals and various macromolecules needed for plant growth enhancement and resistance to stresses. Smart delivery of agrochemicals increases the yield by optimizing water and nutrient conditions. Another added advantage is controlled release and site-directed delivery of agrochemicals. Further enhancement in quality and quantity in agriculture can be achieved by nanoparticle-mediated gene transformation and delivery of macromolecules that induces gene expression in plants. Various types of nanomaterials have been tested so far and the results have been promising in terms of productivity and quality enhancement.

52 citations


Journal ArticleDOI
TL;DR: It is revealed that continuous light alters the photosynthetic performance of V. radiata at a different point but also improve plant productivity.
Abstract: Continuous light can be used as a tool to understand the diurnal rhythm of plants and it can also be used to increase the plant production. In the present research, we aimed to investigate the photosynthetic performance of V. radiata under continuous light as compared with the plants grown under normal light duration. Chlorophyll a fluorescence transient (OJIP test) technique was used to understand the effect on various stages of photosynthesis and their consequences under continuous light condition. Various Chl a Fluorescence kinetic parameters such as Specific energy fluxes (per QA-reducing PSII reaction center (RC)) (ABS /RC; TR0/RC; ET0/RC; DI0/RC), phenomenological fluxes, leaf model, (ABS/CSm; TR/CSm; ETo/CSm), Quantum yields and efficiencies (φPo; φEo; Ψo) and Performance index (PIabs) was extracted and analysed in our investigation. Conclusively, our study has revealed that continuous light alters the photosynthetic performance of V. radiata at a different point but also improve plant productivity.

48 citations


Journal ArticleDOI
TL;DR: The findings indicate that this plant possesses noteworthy pharmacological activities which may be a basis for further researches to establish a possible mode of action of its different parts.
Abstract: The existing therapeutic agents for the management of pain and pyrexia are not very efficient and accompanied by numerous side effects. Thus, new effective agents are the most needed. The present study investigates bioactivities and phytochemical screening of different parts of Cissus assamica (Vitaceae), a Bangladeshi tribal medicinal plant. Three plant parts stems, leaves and roots were collected, washed, dried, powdered and then prepared for cold extraction. The methanolic stems and leaves extracts were fractioned with four and two solvents respectively. Different plant extracts were then investigated for in vivo antinociceptive activity and only methanolic leaves extract was investigated for in vivo antipyretic activity. In Swiss-albino mice, 200 and 400 mg/kg body weight doses were used for all extracts. In the peripheral antinociceptive activity, the methanolic stem extract and its dichloromethane, chloroform, pet ether fractions and methanolic roots extract at their both doses showed significant antinociceptive responses when compared to standard diclofenac sodium (60.49% inhibition). In the central antinociceptive activity, the response was found significant for methanolic stem and methanolic roots extract in their both doses compared to standard morphine. In antipyretic activity, methanolic leaves extract significantly reduced pyrexia level at 400 and 200 mg/kg body weight doses after two, three and 4 h of administration when compared to standard. So our findings indicate that this plant possesses noteworthy pharmacological activities which may be a basis for further researches to establish a possible mode of action of its different parts.

39 citations


Journal ArticleDOI
TL;DR: The upregulation of antioxidant enzymes and proline reveals that S. polyrhiza has strong biochemical strategies to deal with the heavy metal toxicity induced by the accumulation of Cu+2 and Hg+2.
Abstract: Duckweed is recognized as a phytoremediation aquatic plant due to the production of large biomass and a high level of tolerance in stressed conditions. A laboratory experiment was conducted to investigate antioxidant response and mechanism of copper and mercury tolerance of S. polyrhiza (L.) Schleid. To understand the changes in chlorophyll content, MDA, proline, and activities of ROS-scavenging enzymes (SOD, CAT, GPOD) during the accumulation of Cu+2 and Hg+2, S. polyrhiza were exposed to various concentrations of Cu+2 (0.0–40 μM) and Hg+2 (0.0–0.4 μM). antioxidant activity initially indicated enhancing trend with application of 10 μM Cu+2; 0.2 μM Hg+2 (SOD), of 20 μM Cu+2; 0.2 μM Hg+2 (CAT) and of 10 μM Cu+2;0.2 μM Hg+2 (GPOD) and then decreased consistently up to 40 μM Cu+2 and 0.4 μM Hg+2. In the experiment chlorophyll and frond multiplication initially showed increasing tendency and decreased gradually with the application of increased metal concentration. Application of heavy metal has constantly enhanced proline and MDA content while the maximum increase was observed with the application of 40 μM Cu; 0.4 μM Hg for proline and MDA respectively. The upregulation of antioxidant enzymes and proline reveals that S. polyrhiza has strong biochemical strategies to deal with the heavy metal toxicity induced by the accumulation of Cu+2 and Hg+2.

32 citations


Journal ArticleDOI
TL;DR: The present study aims at preparation of silver nanoparticles through green route using leaves of Ocimum canum Sims, a widely distributed medicinal herb, which shows antibacterial activity against pathogenic bacterium Escherichia coli.
Abstract: Green synthesis of nanoparticles is an important area in the field of nanotechnology, which has cost effective and environment friendly benefit over physical and chemical methods. The present study aims at preparation of silver nanoparticles through green route using leaves of Ocimum canum Sims, a widely distributed medicinal herb. The synthesized silver nanoparticles were characterized by SEM and XRD. The spherical and rod like morphological shapes were proven by SEM techniques. Crystallographic structure was confirmed by XRD and average particle size of synthesized silver nanoparticles was calculated which was found to be of 15.72 nm. The antibacterial activity of these prepared silver nanoparticles against pathogenic bacterium Escherichia coli (E. coli) has shown the highest ZOI of 2.45 cm at 30 ppm.

32 citations


Journal ArticleDOI
TL;DR: The data demonstrate that the combination of MCL-1-selective inhibitors with either selective inhibitors of either BCL-XL or Bcl-2 may be potentially useful as treatment strategies for the management of cervical cancer.
Abstract: Development of resistance to chemo- and radiotherapy in patients suffering from advanced cervical cancer narrows the therapeutic window for conventional therapies. Previously we reported that a combination of the selective BCL-2 family inhibitors ABT-263 and A-1210477 decreased cell proliferation in C33A, SiHa and CaSki human cervical cancer cell lines. As ABT-263 binds to both BCL-2 and BCL-XL with high affinity, it was unclear whether the synergism of the drug combination was driven either by singly inhibiting BCL-2 or BCL-XL, or inhibition of both. In this present study, we used the BCL-2 selective inhibitor ABT-199 and the BCL-XL selective inhibitor A1331852 to resolve the individual antitumor activities of ABT-263 into BCL-2 and BCL-XL dependent mechanisms. A-1210477 was substituted for the orally bioavailable S63845. Four cervical cancer cell lines were treated with the selective BCL-2 family inhibitors ABT-199, A1331852 and S63845 alone and in combination using 2-dimensional (2D) and 3-dimensional (3D) cell culture models. The SiHa, C33A and CaSki cell lines were resistant to single agent treatment of all three drugs, suggesting that none of the BCL-2 family of proteins mediate survival of the cells in isolation. HeLa cells were resistant to single agent treatment of ABT-199 and A1331852 but were sensitive to S63845 indicating that they depend on MCL-1 for survival. Co-inhibition of BCL-2 and MCL-1 with ABT-199 and S63845, inhibited cell proliferation of all cancer cell lines, except SiHa. However, the effect of the combination was not as pronounced as combination of A1331852 and S63845. Co-inhibition of BCL-XL and MCL-1 with A1331852 and S63845 significantly inhibited cell proliferation of all four cell lines. Similar data were obtained with 3-dimensional spheroid cell culture models generated from two cervical cancer cell lines in vitro. Treatment with a combination of A1331852 and S63845 resulted in inhibition of growth and invasion of the 3D spheroids. Collectively, our data demonstrate that the combination of MCL-1-selective inhibitors with either selective inhibitors of either BCL-XL or BCL-2 may be potentially useful as treatment strategies for the management of cervical cancer.

31 citations


Journal ArticleDOI
TL;DR: Production of AtoEXOs formulation due to its therapeutic efficacy has the potential to be an adaptable approach to treat glioblastoma brain tumors.
Abstract: Exosomes (EXOs) are naturally occurring nanosized lipid bilayers that can be efficiently used as a drug delivery system to carry small pharmaceutical, biological molecules and pass major biological barriers such as the blood-brain barrier. It was hypothesized that EXOs derived from human endometrial stem cells (hEnSCs-EXOs) can be utilized as a drug carrier to enhance tumor-targeting drugs, especially for those have low solubility and limited oral bioactivity. In this study, atorvastatin (Ato) loaded EXOs (AtoEXOs) was prepared and characterized for its physical and biological activities in tumor growth suppression of 3 D glioblastoma model. The AtoEXOs were obtained in different methods to maximize drug encapsulation efficacy. The characterization of AtoEXOs was performed for its size, stability, drug release, and in vitro anti-tumor efficacy evaluated comprising inhibition of proliferation, apoptosis induction of tumor cells. Expression of apoptotic genes by Real time PCR, Annexin V/PI, tunnel assay was studied after 72 h exposing U87 cells where encapsulated in matrigel in different concentrations of AtoEXOs (5, 10 μM). The results showed that the prepared AtoEXOs possessed diameter ranging from 30–150 nm, satisfying stability and sustainable Ato release rate. The AtoEXOs was up taken by U87 and generated significant apoptotic effects while this inhibited tumor growth of U87 cells. Altogether, produced AtoEXOs formulation due to its therapeutic efficacy has the potential to be an adaptable approach to treat glioblastoma brain tumors.

29 citations


Journal ArticleDOI
TL;DR: The results suggest that low level electric treatment (ET) could increase EV secretion from both cancer and normal cells without apparent changes in EV quality.
Abstract: Exosomes, a type of extracellular vesicles, can be collected from the conditioned medium of cultured cells, and are expected to be used in disease therapy and drug delivery systems. However, since the yield of exosomes from conditioned medium is generally low, investigations to develop new methods to increase exosome secretion and to elucidate the secretion mechanism have been performed. Our previous studies demonstrated that activation of intracellular signaling including Rho GTPase and subsequent endocytosis of extraneous molecules in cells could be induced by low level electricity (0.3–0.5 mA/cm2). Since exosomes are produced in the process of endocytosis and secreted by exocytosis via certain signaling pathways, we hypothesized that low level electric treatment (ET) would increase exosome secretion from cultured cells via intracellular signaling activation. In the present study, the influence of ET (0.34 mA/cm2) on extracellular vesicle (EV) secretion from cultured cells was examined by using murine melanoma and murine fibroblast cells. The results showed that the number of EV particles collected by ultracentrifugation was remarkably increased by ET in both cell lines without cellular toxicity or changes in the particle distribution. Also, protein amounts of the collected EVs were significantly increased in both cells by ET without alteration of expression of representative exosome marker proteins. Moreover, in both cells, the ratio of particle numbers to protein amount was not significantly changed by ET. Rho GTPase inhibition significantly suppressed ET-mediated increase of EV secretion in murine melanoma, indicating that Rho GTPase activation could be involved in ET-mediated EV secretion in the cell. Additionally, there were almost no differences in uptake of each EV into each donor cell regardless of whether the cells had been exposed to ET for EV collection. Taken together, these results suggest that ET could increase EV secretion from both cancer and normal cells without apparent changes in EV quality.

28 citations


Journal ArticleDOI
TL;DR: ACE2-K26R; which is most frequent in Ashkenazi Jewish population decreased the SARS-CoV-2/ACE2 electrostatic attraction, while ACE2-I468V, R219C, K341R, D206G, G211R increased the Electrostatic attraction; ordered by binding strength from weakest to strongest.
Abstract: The susceptibility of different populations to SARS-CoV-2 infection is not yet understood. Here, we combined ACE2 coding variants' analysis in different populations and computational chemistry calculations to probe the effects on SARS-CoV-2/ACE2 interaction. ACE2-K26R; which is most frequent in Ashkenazi Jewish population decreased the SARS-CoV-2/ACE2 electrostatic attraction. On the contrary, ACE2-I468V, R219C, K341R, D206G, G211R increased the electrostatic attraction; ordered by binding strength from weakest to strongest. The aforementioned variants are most frequent in East Asian, South Asian, African and African American, European, European and South Asian populations, respectively.

27 citations


Journal ArticleDOI
TL;DR: The CE/THE AUTHORS is lower in meibum from donors with dry eye due to meibomian-gland dysfunction and major conformational changes in the hydrocarbon chains of wax and cholesteryl ester mixtures begin to occur with just 5% CB and above.
Abstract: Background With dry eye, the ratio of cholesteryl ester (CE) to wax ester (WE) decreases substantially in meibum, but the functional and structural consequences of this change are speculative. The aim of this study is to confirm this finding and to bridge this gap in knowledge by investigating the effect of varying CE/WE ratios on lipid structure and thermodynamics. Methods Infrared spectroscopy was use to quantify CE and WE in human meibum and to measure hydrocarbon chain conformation and thermodynamics in a cholesteryl behenate, stearyl stearate model system. Results The CE/WE molar ratio was 36% lower for meibum from donors with dry eye due to meibomian gland dysfunction compared with meibum from donors without dry eye. CE (5 mol %) dramatically increased the phase transition temperature of pure WE from -0.12 °C to 63 °C in the mixture. Above 5 mol % CB, the phase transition temperature increased linearly, from 68.5 °C to 85 °C. In the ordered state, CE caused an increase in lipid order from about 72% trans rotamers to about 86% trans rotamers. Above 10% CE, the hydrocarbon chains were arranged in a monoclinic geometry. Conclusions The CE/WE is lower in meibum from donors with dry eye due to meibomian-gland dysfunction. Major conformational changes in the hydrocarbon chains of wax and cholesteryl ester mixtures begin to occur with just 5% CB and above. General significance CE-WE interactions may be important for in understanding lipid layer structure and functional relationships on the surface of tears, skin and plants.

Journal ArticleDOI
TL;DR: Autophagy inducibility of TKIs differed in the context of cancer cells, but once induced, they appeared to have cytoprotective functions, suggesting that blocking TKI-induced autophagy with AZM may improve the therapeutic effect of TkIs in cancer cells.
Abstract: Tyrosine kinase inhibitors (TKIs) induce autophagy in many types of cancer cells. We previously reported that gefitinib (GEF) and imatinib (IMA) induce autophagy in epidermal growth factor receptor (EGFR) knock-out A549 and non-BCR-ABL-expressing leukemia cell lines, respectively. This evidence suggests that TKI-induced autophagy is independent of the original target molecules. The present study compared the autophagy-inducing abilities of various TKIs, regardless of their targets, by quantitative autophagy flux assay. We established stable clones expressing the GFP-LC3-mCherry-LC3ΔG plasmid in A549, PC-9, and CAL 27 cell lines and assessed autophagy inducibility by monitoring the fluorescent ratios of GFP-LC3 to mCherry-LC3ΔG using an IncuCyte live cell imaging system during exposure to TKIs viz; GEF, osimertinib (OSI), lapatinib (LAP), lenvatinib (LEN), sorafenib (SOR), IMA, dasatinib (DAS), and tivantinib (TIV). Among these TKIs, DAS, GEF, and SOR exhibited prominent autophagy induction in A549 and PC-9 cells. In CAL 27 cells, IMA, SOR, and LEN, but not GEF, TIV, or OSI, exhibited autophagy induction. In the presence of azithromycin (AZM), which showed an inhibitory effect on autophagy flux, TKIs with prominent autophagy inducibility exhibited enhanced cytotoxicity via non-apoptotic cell death relative to effects of TKI alone. Therefore, autophagy inducibility of TKIs differed in the context of cancer cells. However, once induced, they appeared to have cytoprotective functions. Thus, blocking TKI-induced autophagy with AZM may improve the therapeutic effect of TKIs in cancer cells.

Journal ArticleDOI
TL;DR: Present results suggested, A. trilobata could be a potential source for antioxidative, cytotoxic, thrombolytic, analgesic, antidiarrheal agents which require further study to identify the mechanism.
Abstract: Adenia trilobata, locally known as akandaphal in Bangladesh, has some traditional uses. Leaves and stems extracted with pure methanol (MEATL, MEATS) and fractioned by n-hexane (NFATL, NFATS), which was subjected to qualitative phytochemical analysis. The qualitative phytochemical analysis of four extracts showed the presence of secondary metabolites such as alkaloid, carbohydrate, glycosides, flavonoids, phenols, flavonol, and saponins. All four extracts of A. trilobata, exhibited a strong antioxidant activity while a moderately (MEATS = 328 μg/mL) to weakly toxic (NFATL = 616.85 μg/mL) LC50 observed in brine shrimp lethality bioassay. In thrombolytic test, MEATL (18.54 ± 2.18%; P < 0.01) and MEATS (25.58 ± 4.76%; P < 0.0001) showed significant percentage of clot lysis in human blood. The in vivo analgesic activity carried by acetic acid test and formalin test, while the antidiarrheal activity assayed by two standard methods e.g., castor oil-induced diarrhea and castor oil-induced gastrointestinal motility. Both, in vivo model, showed an extremely significant (P < 0.0001) dose-dependent manner percentage of inhibition in comparison to the control group. Present results suggested, A. trilobata could be a potential source for antioxidative, cytotoxic, thrombolytic, analgesic, antidiarrheal agents which require further study to identify the mechanism of A. trilobata.

Journal ArticleDOI
TL;DR: It is indicated that MBP and ECP fragments activate HCMCs, and it may occur via MRGPRX2, and the findings suggest that tryptase-digested fragments of eosinophil cationic proteins acting via the MRG PRX2 pathway may further the understanding of mast cell/eosInophil communication.
Abstract: The eosinophil granule proteins, major basic protein (MBP) and eosinophil cationic protein (ECP), activate mast cells during inflammation; however the mechanism responsible for this activity is poorly understood. We found that some theoretical tryptase-digested fragments of MBP and ECP induced degranulation of human cord blood-derived mast cells (HCMCs). The spectrum of activities of these peptides in HCMCs coincided with intracellular Ca2+ mobilization activities in Mas-related G-protein coupled receptor family member X2 (MRGPRX2)-expressing HEK293 cells. Two peptides corresponding to MBP residues 99–110 (MBP (99–110)) and ECP residues 29–45 (ECP (29–45)), respectively, induced degranulation of HCMCs and intracellular Ca2+ mobilization in MRGPRX2-expressing HEK293 cells in a concentration-dependent manner. Stimulation with MBP (99–110) or ECP (29–45) induced the production of prostaglandin D2 by HCMCs. The activities of MBP (99–110) and ECP (29–45) in both HCMCs and MRGPRX2-expressing HEK293 cells were inhibited by MRGPRX2-specific antagonists. In conclusion, these results indicated that MBP and ECP fragments activate HCMCs, and it may occur via MRGPRX2. Our findings suggest that tryptase-digested fragments of eosinophil cationic proteins acting via the MRGPRX2 pathway may further our understanding of mast cell/eosinophil communication.

Journal ArticleDOI
TL;DR: Findings from this study indicate that ANS is applicable to characterize dehydrated as well as hydrated protein aggregates, amyloids relevant to amyloid diseases, such as Alzheimer's, Parkinson, and prion diseases.
Abstract: In the current study, ANS fluorescence was established as a powerful tool to study proteins in solid-state. Silk fibroin from Bombyx mori cocoons was used as a paradigm protein. ANS incorporated into the films of silk fibroin exhibits fluorescence with two-lifetime components that can be assigned to the patches and/or cavities with distinct hydrophobicities. Decay associated spectra (DAS) of ANS fluorescence from both sites could be fit to the single log-normal component indicating their homogeneity. ANS binding sites in the protein film are specific and could be saturated by ANS titration. ANS located in the binding site that exhibits the long-lifetime fluorescence is not accessible to the water molecules and its DAS stays homogeneously broadened upon hydration of the protein film. In contrast, ANS from the sites demonstrating the short-lifetime fluorescence is accessible to water molecules. In the hydrated films, solvent-induced fluctuations produce an ensemble of binding sites with similar characters. Therefore, upon hydration, the short-lifetime DAS becomes significantly red-shifted and inhomogeneously broadened. The similar spectral features have previously been observed for ANS complexed with globular proteins in solution. The data reveal the origin of the short-lifetime fluorescence component of ANS bound to the globular proteins in aqueous solution. Findings from this study indicate that ANS is applicable to characterize dehydrated as well as hydrated protein aggregates, amyloids relevant to amyloid diseases, such as Alzheimer's, Parkinson, and prion diseases.

Journal ArticleDOI
TL;DR: In vivo study revealed that a continuous intravenous miR-146a administration into mice via tail vein, protected the mice from developing high-fat diet-induced obesity and the inflammatory cytokine gene expression was down-regulated in both adipose and periodontal tissues.
Abstract: MicroRNA (miRNA) plays an important role in diverse cellular biological processes such as inflammatory response, differentiation and proliferation, and carcinogenesis. miR-146a has been suggested as a negative regulator of the inflammatory reaction. Although, it has been reported as expressed in inflamed adipose and periodontal tissues, however, miR-146a's inhibitory effects against inflammatory response in both the tissues, are not well understood. Therefore, in this study, the inhibitory effects of miR-146a on both adipose and periodontal inflammation, was investigated. In vitro study has revealed that miR-146a transfection into either adipocytes or gingival fibroblasts, has resulted in a reduced cytokine gene expression, observed on co-culturing the cells with macrophages in the presence of lipopolysaccharides (LPS), in comparison to the control miRNA transfected. Similarly, miR-146a transfection into macrophages resulted in a reduced expression of TNF-α gene and protein in response to LPS stimulation. In vivo study revealed that a continuous intravenous miR-146a administration into mice via tail vein, protected the mice from developing high-fat diet-induced obesity and the inflammatory cytokine gene expression was down-regulated in both adipose and periodontal tissues. miR-146a appeared to be induced by macrophage-derived inflammatory signals such as TNF-α by negative feed-back mechanism, and it suppressed inflammatory reaction in both adipose and periodontal tissues. Therefore, miR-146a could be suggested as a potential therapeutic molecule and as a common inflammatory regulator for both obesity-induced diabetes and related periodontal diseases.

Journal ArticleDOI
TL;DR: In silico prediction of activity study showed that protective role of xanthones could be due to its efficacy to activate the Nrf-2, regulate the intracellular [Ca2+], as well as downregulate the NF-kB, MAPK pathway.
Abstract: Xanthones from a tropical fruit of Garcinia mangostana L. is known to possess a wide spectrum of pharmacologic properties, including antioxidant, anti-bacterial, anti-inflammatory, and antidiabetic activities. The current study aimed to assess the possible protective effects of xanthones against lead acetate (PbAc)-induced chronic kidney disease (CKD). To accomplish, in vitro antioxidant assays of xanthones, in vivo oxidative stress parameters, histopathology, inflammatory parameters were evaluated using PbAc-induced IRC male mice. The study was supported by in silico molecular docking of respective organ receptor protein-ligand interaction. Results revealed that xanthones potentially scavenged the DPPH, superoxide, hydroxyl, and nitric oxide radicals. Oxidative stress, kidney dysfunction, inflammatory markers, and kidney apoptosis increased by PbAc were attenuated with the co-treatment of xanthones. The treatment remarkably improved the tissue architecture. Of note, in silico prediction of activity study showed that protective role of xanthones could be due to its efficacy to activate the Nrf-2, regulate the intracellular [Ca2+], as well as downregulate the NF-kB, MAPK pathway. In a nutshell, xanthones could be a potential candidate for the management of PbAc-induced kidney damage.

Journal ArticleDOI
TL;DR: A carrageenan-induced pleurisy model of acute inflammation in rats confirms a protective role for NO at the inflammatory site, which appears to be mediated via NOS induction of the HO-1/CO pathway, and indicates that NO supplementation may be a potential new treatment for oxidative stress-associated inflammatory diseases.
Abstract: Nitric oxide (NO) is an important part of the host defense mechanism; however, it displays both pro- and anti-inflammatory properties depending on its location and concentration. Importantly, excessive or inappropriate NO production can cause tissue damage. Systemic and local administration of NO synthase (NOS) inhibitors ameliorates and may exacerbate the inflammatory response, respectively. Here, we used a carrageenan-induced pleurisy model of acute inflammation in rats to confirm the location-dependent effects of NO and investigate the underlying mechanisms. As expected, localized suppression of NO production exacerbated inflammation, as evidenced by increased pleural exudate volumes and leukocyte counts and enhanced activity of enzymes related to oxidative stress. In contrast, local NO supplementation reduced leukocyte infiltration, vascular permeability, and the activity of oxidative stress-related enzymes. Interestingly, inhibition of heme oxygenase-1 (HO-1) reversed the anti-inflammatory effects of localized NO production, while the addition of hemin (HO-1 substrate) or carbon monoxide (CO; HO-1 metabolite) decreased leukocyte migration and exudation. Together, these findings confirm a protective role for NO at the inflammatory site, which appears to be mediated via NOS induction of the HO-1/CO pathway. Thus, NO supplementation may be a potential new treatment for oxidative stress-associated inflammatory diseases.

Journal ArticleDOI
TL;DR: An anti-PODXL cancer-specific mAb (CasMab), named as PcMab-60 (IgM, kappa) is developed by immunizing mice with soluble PODXL, which is overexpressed in LN229 glioblastoma cells, and in vivo analysis revealed that 60-mG2a-f exerted antitumor activity in MIA PaCa-2 xenograft models.
Abstract: Overexpression of podocalyxin (PODXL) is associated with progression, metastasis, and poor outcomes in several cancers. PODXL also plays an important role in the development of normal tissues. For antibody-based therapy to target PODXL-expressing cancers using monoclonal antibodies (mAbs), cancer-specificity is necessary to reduce the risk of adverse effects to normal tissues. In this study, we developed an anti-PODXL cancer-specific mAb (CasMab), named as PcMab-60 (IgM, kappa) by immunizing mice with soluble PODXL, which is overexpressed in LN229 glioblastoma cells. The PcMab-60 reacted with the PODXL-overexpressing LN229 (LN229/PODXL) cells and MIA PaCa-2 pancreatic cancer cells in flow cytometry but did not react with normal vascular endothelial cells (VECs), whereas one of non-CasMabs, PcMab-47 showed high reactivity for not only LN229/PODXL and MIA PaCa-2 cells but also VECs, indicating that PcMab-60 is a CasMab. Next, we engineered PcMab-60 into a mouse IgG2a-type mAb, named as 60-mG2a, to add antibody-dependent cellular cytotoxicity (ADCC). We further developed a core fucose-deficient type of 60-mG2a, named as 60-mG2a-f, to augment its ADCC activity. In vivo analysis revealed that 60-mG2a-f exerted antitumor activity in MIA PaCa-2 xenograft models at a dose of 100 μg/mouse/week administered three times. These results suggested that 60-mG2a-f could be useful for antibody-based therapy against PODXL-expressing pancreatic cancers.

Journal ArticleDOI
TL;DR: This study focuses on identifying mutations in one of the crucial complex of SARS-CoV-2, the Nsp 10-Nsp16 2′-O-methyltransferase complex, which plays indispensable role in the post-transcriptional modifications of viral RNA by its capping.
Abstract: A recent outburst of the pandemic caused by a member of the coronaviridae family identified as SARS-CoV-2. The highly contagious nature of the virus allows it to spread rapidly worldwide and caused severe healthcare and economic distress. So far, no proper line of treatment or vaccines has been available against SARS-CoV-2. Since, the infected people rapidly increased, causing the saturation of healthcare systems with coronavirus disease (COVID-19) patients. As the virus spread to new locations it also acquired various mutations. Here, in this study, we focused on identifying mutations in one of the crucial complex of SARS-CoV-2, the Nsp10-Nsp16 2'-O-methyltransferase complex. This complex plays indispensable role in the post-transcriptional modifications of viral RNA by its capping. We analysed 208 sequences of Nsp10-Nsp16 reported from India and compared with first reported sequence from Wuhan, China. Our analysis revealed a single mutation in Nsp10 and five mutations in Nsp16 protein. We also show that these mutations are leading to alteration in the secondary structure of Nsp10-Nsp16. Further, the protein modelling studies revealed that the mutation of both Nsp10-Nsp16 impacts the protein dynamicity and stability. Altogether, this study provides novel insights into the variations observed in the proteins of SARS-CoV-2 that might have functional consequences.

Journal ArticleDOI
TL;DR: Results show that the RIEDL tag system can be useful for the detection and one-step purification of membrane proteins when inserted at either the N-terminus or inserted in an internal loop structure of multi-pass transmembrane proteins.
Abstract: Affinity tag systems are an essential tool in biochemistry, biophysics, and molecular biology. Although several different tag systems have been developed, the epitope tag system, composed of a polypeptide “tag” and an anti-tag antibody, is especially useful for protein purification. However, almost all tag sequences, such as the FLAG tag, are added to the N- or C-termini of target proteins, as tags inserted in loops tend to disrupt the functional structure of multi-pass transmembrane proteins. In this study, we developed a novel “RIEDL tag system,” which is composed of a peptide with only five amino acids (RIEDL) and an anti-RIEDL monoclonal antibody (mAb), LpMab-7. To investigate whether the RIEDL tag system is applicable for protein purification, we conducted the purification of two kinds of RIEDL-tagged proteins using affinity column chromatography: whale podoplanin (wPDPN) with an N-terminal RIEDL tag (RIEDL-wPDPN) and human CD20 with an internal RIEDL tag insertion (CD20-169RIEDL170). Using an LpMab-7-Sepharose column, RIEDL-wPDPN and CD20-169RIEDL170 were efficiently purified in one-step purification procedures, and were strongly detected by LpMab-7 using Western blot and flow cytometry. These results show that the RIEDL tag system can be useful for the detection and one-step purification of membrane proteins when inserted at either the N-terminus or inserted in an internal loop structure of multi-pass transmembrane proteins.

Journal ArticleDOI
TL;DR: In vivo analysis revealed that 13-mG2a-f significantly reduced tumor development in SAS and HSC-2 xenografts in comparison to control mouse IgG, even after injection seven days post-tumor inoculation, and in vitro analysis demonstrated that 12-mMab-13 showed moderate ADCC and CDC activities against SAS andHSC- 2 oral cancer cells.
Abstract: Programmed cell death ligand-1 (PD-L1) is a type I transmembrane glycoprotein expressed on antigen-presenting cells and several tumor cells, including melanoma and lung cancer cells. A strong correlation has been reported between PD-L1 expression in tumor cells and negative prognosis in cancer patients. Previously, we established an anti-PD-L1 monoclonal antibody (mAb), L1Mab-13 (IgG1, kappa), by immunizing mice with PD-L1-overexpressing CHO-K1 cells. L1Mab-13 specifically reacts with endogenous PD-L1 in lung cancer cell lines in flow cytometry and Western blot applications, and stains a plasma membrane-like pattern in lung cancer tissues via immunohistochemical analysis. In this study, we investigated whether L1Mab-13 reacts with oral cancer cell lines and exerts antitumor activities. Because L1Mab-13 lacks antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC), we first converted the subclass of L1Mab-13 from IgG1 into IgG2a (13-mG2a), and further produced a defucosylated version (13-mG2a-f) using FUT8-deficient ExpiCHO-S (BINDS-09) cells. Defucosylation of 13-mG2a-f was confirmed using fucose-binding lectins, such as Aleuria aurantia and Pholiota squarrosa lectins. The dissociation constants (KD) for 13-mG2a-f in SAS and HSC-2 oral cancer cells were determined via flow cytometry to be 2.8 × 10−9 M and 4.8 × 10−9 M, respectively, indicating that 13-mG2a-f possesses extremely high binding affinity. In vitro analysis demonstrated that 13-mG2a-f showed moderate ADCC and CDC activities against SAS and HSC-2 oral cancer cells. In vivo analysis revealed that 13-mG2a-f significantly reduced tumor development in SAS and HSC-2 xenografts in comparison to control mouse IgG, even after injection seven days post-tumor inoculation. Taken together, these data demonstrate that treatment with 13-mG2a-f may represent a useful therapy for patients with PD-L1-expressing oral cancers.

Journal ArticleDOI
TL;DR: Exposure to 2-ME should be strictly avoided as it could trigger hepatic damage through the disorganization of the antioxidant system, up-regulation of inflammatory, apoptotic, and oncogenic markers in rats.
Abstract: 2-methoxyethanol (2-ME) is an organic solvent widely used in the manufacture of brake fluids, paints, resins, varnish, nail polish, acetate cellulose, wood coloring, and as a plasticizer in plastics manufacturing. We therefore, investigated its effect on the liver, in a time-course study in male Wistar rats. Animals were orally administered 50 mg/kg body weight of 2-ME for a period of 7, 14, and 21 days. Following 7 days of administration of 2-ME, there was a significant increase in the level of Bax, c-Myc, K-Ras, TNF-α, IL-1β, IL-6, MDA and GPx activity, while the levels of Bcl-2, NO and GSH were significantly reduced compared with control. At the end of 14 days exposure, Bcl-2, and GSH levels, as well as GST activity, were significantly decreased, while levels of Bax, c-Myc, K-Ras, caspase-3, TNF-α, IL-1β, IL-6, MDA and NO were significantly increased compared with control. After 21 days of 2-ME administration, Bcl-2, IL-10, and GSH levels, as well as SOD and GST activities, were significantly decreased, while levels of Bax, c-Myc, K-Ras, caspase-3, p53, TNF-α, IL-1β, IL-6, MDA and NO were significantly increased compared with control. Lastly, liver histopathology confirmed and corroborated the biochemical findings reported above. We therefore, advised that exposures to 2-ME should be strictly avoided as it could trigger hepatic damage through the disorganization of the antioxidant system, up-regulation of inflammatory, apoptotic, and oncogenic markers in rats.

Journal ArticleDOI
TL;DR: Results suggest that the differentially expressed circulating miRNAs observed in this work may be candidates for biomarkers in the prognosis of liver disease.
Abstract: A major challenge in hepatitis C research is the detection of early potential for progressive liver disease. MicroRNAs (miRNAs) are small RNAs that regulate gene expression and can be biomarkers of pathological processes. In this study, we compared circulating miRNAs identified in hepatitis C virus (HCV)-infected patients presenting two extremes of liver disease: mild/moderate fibrosis and cirrhosis. The patients in the cirrhosis group subsequently developed hepatocellular carcinoma (HCC). We identified 163 mature miRNAs in the mild/moderate fibrosis group and 171 in the cirrhosis group, with 144 in common to both groups. Differential expression analysis revealed 5 upregulated miRNAs and 2 downregulated miRNAs in the cirrhosis group relative to the mild/moderate fibrosis group. Functional analyses of regulatory networks (target gene and miRNA) identified gene categories involved in cell cycle biological processes and metabolic pathways related to cell cycle, cancer, and apoptosis. These results suggest that the differentially expressed circulating miRNAs observed in this work (miR-215-5p, miR-483-5p, miR-193b-3p, miR-34a-5p, miR-885-5p, miR-26b-5p and miR -197-3p) may be candidates for biomarkers in the prognosis of liver disease.

Journal ArticleDOI
TL;DR: The present study unlocks the new paths for the mushroom-mediated environmentally friendly, economic synthesis of trimetallic nanoparticles, which can be effectively used in cancer nanomedicine.
Abstract: In the current scenario of the fight against cancer Integration of potential elements seems to be the best alternative since it overcomes the weaknesses of individuals and the combination of elements makes them formidable in the fight against the cancer war. Inspired by this objective and trusting our knowledge of paddy straw grown oyster mushroom, Pleurotus florida (Pf) mediated synthesis; a first-of-kind approach has been developed for the rapid synthesis of Au-Pt-Ag trimetallic nanoparticles (TMNPs). The developed method was successful, which was confirmed by Ultraviolet-Visible, X-ray diffraction, Transmission Electron Microscopy, Energy Dispersive Spectroscopy. Specifically, prepared TMNPs have been studied for their stability and size as a primary prerequisite for nanomedicine. Finally, the stable nanomedicine developed has been assessed for its performance against the highly metastatic breast cancer cell line (mda-mb-231). The performance was assessed using MTT assay and morphological readings, which were integrated with the cell viability data. We also determined the IC50 value, which was far superior to individual components and motivated us to postulate the possible breast cancer cell killing mechanism of TMNPs. The present study unlocks the new paths for the mushroom-mediated environmentally friendly, economic synthesis of trimetallic nanoparticles, which can be effectively used in cancer nanomedicine.

Journal ArticleDOI
TL;DR: This study investigated whether these EMT inducers affect the kinds of components in exosomes secreted from RPE cells and to assess their angiogenic effects and provided insight into the mechanisms underlying the relation between angiogenesis and exosome derived from R PE cells.
Abstract: Exosomes are informative microvesicles associated with intercellular communication via the transfer of many molecular constituents such as proteins, lipids, and nucleic acids; environmental changes and the cellular status around cells greatly affect exosome components. Cells of the retinal pigment epithelium (RPE) are key players in retinal homeostasis. Transforming growth factor (TGF)-β and tumour necrosis factor (TNF)-α are increased in the vitreous and retina in several retinal diseases and activate and undergo epithelial-mesenchymal transition (EMT) in RPE cells. EMT is closely associated with mechanisms of wound healing, including fibrosis and related angiogenesis; however, whether exosome components depend on the cell status, epithelium or mesenchyme and whether these exosomes have pro- or anti-angiogenic roles in the retina are unknown. We performed this study to investigate whether these EMT inducers affect the kinds of components in exosomes secreted from RPE cells and to assess their angiogenic effects. Exosomes were collected from culture media supernatants of a human RPE cell line (ARPE-19) stimulated with or without 10 ng/ml TNF-α and/or 5 ng/ml TGF-β2. NanoSight tracking analysis and immunoblot analysis using exosome markers were used to qualify harvested vesicles. Angiogenic factor microarray analysis revealed that exosomes derived from ARPE-19 cells cultured with TNF-α alone (Exo-TNF) and co-stimulated with TNF-α and TGF-β2 (Exo-CO) contained more angiogenic factors than exosomes derived from control cells (Exo-CTL) or ARPE-19 cells cultured with TGF-β2 alone (Exo-TGF). To assess the effect on angiogenesis, we performed chemotaxis, tube formation, and proliferation assays of human umbilical vein endothelial cells (HUVECs) stimulated with or without exosomes. HUVECs migrated to RPE-derived exosomes, and exosomes derived from ARPE-19 cells accelerated HUVEC tube formation. In contrast, Exo-TNF and Exo-CO reduced HUVEC proliferation. Our findings provide insight into the mechanisms underlying the relation between angiogenesis and exosomes derived from RPE cells.

Journal ArticleDOI
TL;DR: The results of this study point to the possibility of developing Dhanwantaram Kashayam as a dietary supplement which can alleviate the complications associated with diabetes or prevent them altogether.
Abstract: Background Hyperglycemia and hyper oxidative stress are indicators of diabetes mellitus which is also accompanied with decreased levels of antioxidant enzymes. While oxidative stress is important in increasing insulin secretion and controlling blood sugar level at the same time excess oxidative stress leads to the destruction of beta cells of pancreas resulting in to low insulin production and hyperglycemia. A balance between the levels of oxidative radicals and insulin production is needed, but is not defined yet. Hyperglycemia also leads to hyperlipidemia which can contribute to various health conditions like cardiovascular diseases. Objectives This study was designed to study the oxidative stress and lipid levels in diabetic rats. This also was designed to elucidate the effect of Dhanwantaram Kashayam, an Ayurvedic polyphenolic derived from plants on lipid metabolism and oxidative radical scavenging in diabetic rats. Methods Rats were made diabetic by injecting streptozotocin. Different enzymes involved in oxidative radical scavenging and lipid profiles including triglycerides, total cholesterol, free fatty acids and phospholipids were estimated using standard methods reported elsewhere. Results Level of antioxidant enzymes were lower in diabetic rats compared to normal controls. Administration of Dhanwantaram Kashayam restored the enzyme activity as well as reduced levels of different lipids in diabetic rats. Conclusions Administration of Dhanwantaram Kashayam increased the activity levels of antioxidant enzymes and reduced the levels of total cholesterol, phospholipids and triglycerides. The results of this study point to the possibility of developing Dhanwantaram Kashayam as a dietary supplement which can alleviate the complications associated with diabetes or prevent them altogether.

Journal ArticleDOI
TL;DR: A novel role for sarcolipin on calcium homeostasis in heart and open perspectives for future therapeutic interventions to LMNA cardiomyopathy are showed.
Abstract: Cardiomyopathy caused by A-type lamins gene (LMNA) mutations (LMNA cardiomyopathy) is associated with dysfunction of the heart, often leading to heart failure. LMNA cardiomyopathy is highly penetrant with bad prognosis with no specific therapy available. Searching for alternative ways to halt the progression of LMNA cardiomyopathy, we studied the role of calcium homeostasis in the evolution of this disease. We showed that sarcolipin, an inhibitor of the sarco/endoplasmic reticulum (SR) Ca2+ ATPase (SERCA) was abnormally elevated in the ventricular cardiomyocytes of mutated mice compared with wild type mice, leading to an alteration of calcium handling. This occurs early in the progression of the disease, when the left ventricular function was not altered. We further demonstrated that down regulation of sarcolipin using adeno-associated virus (AAV) 9-mediated RNA interference delays cardiac dysfunction in mouse model of LMNA cardiomyopathy. These results showed a novel role for sarcolipin on calcium homeostasis in heart and open perspectives for future therapeutic interventions to LMNA cardiomyopathy.

Journal ArticleDOI
Chong J. Gan1, Wen F. Li1, Chun N. Li1, Ling L. Li1, Wen Y. Zhou1, Xiao M. Peng1 
TL;DR: EGFR inhibitors demonstrated a comprehensive anti-HBV potential, highlighting a new strategy to cure HBV infection and suggesting animal model-related studies or clinical try in the future.
Abstract: Current antiviral therapy can not cure chronic hepatitis B virus (HBV) infection or eliminate the risk of hepatocellular carcinoma. The licensed epidermal growth factor receptor (EGFR) inhibitors have found to inhibit hepatitis C virus replication via downregulation of signal transducers and activators of transcription 3 (STAT3) phosphorylation. Since STAT3 is also involved in HBV replication, we further studied the anti-HBV efficacy of the EGFR inhibitors in this study. HBV-transfected HepG2.2.15 cells and HBV-infected HepG2-NTCP cells were used as cell models, and HBV replication, the syntheses of viral antigens and the magnitude of the covalently closed circular DNA (cccDNA) reservoir were used as indictors to test the anti-HBV effects of EGFR inhibitors erlotinib and gefitinib. Erlotinib inhibited HBV replication with a half-maximal inhibitory concentration of 1.05 μM. It also reduced the syntheses of viral antigens at concentrations of 2.5 μM or higher. The underlying mechanism was possibly correlated with its inhibition on STAT3 phosphorylation via up-regulation of suppressor of cytokine signaling 3. Gefitinib also inhibited HBV replication and antigen syntheses. Compared with the commonest antiviral drug entecavir, these EGFR inhibitors additionally reduced hepatitis B e antigen and erlotinib also marginally affected the cccDNA reservoir in HBV-infected HepG2-NTCP cells. Interestingly, these promising anti-HBV effects were significantly enhanced by extension of treatment duration. In conclusion, EGFR inhibitors demonstrated a comprehensive anti-HBV potential, highlighting a new strategy to cure HBV infection and suggesting animal model-related studies or clinical try in the future.

Journal ArticleDOI
TL;DR: Results suggest that attenuation of colitis and ileitis is a result of Reg3β′s real function.
Abstract: Regenerating islet-derived protein (Reg)3β belongs to a member of the Reg family of proteins and has pleiotropic functions, including antimicrobial activity and tissue repair. However, whether Reg3β plays a protective role in the development of colitis and ileitis has not been fully investigated. We generated transgenic mice expressing a short form of cellular FLICE-inhibitory protein (cFLIPs) that promotes necroptosis, a regulated form of cell death. cFLIPs transgenic (CFLARs Tg) mice develop severe ileitis in utero. Although Reg3β is undetectable in the small intestine of wild-type embryos, its expression is aberrantly elevated in the small intestine of CFLARs Tg embryos. To test whether elevated Reg3β attenuates or exacerbates ileitis in CFLARs Tg mice, we generated a Reg3b−/− strain. Reg3b−/− mice grew to adulthood without apparent abnormalities. Deletion of Reg3b in CFLARs Tg mice exacerbated the embryonic lethality of CFLARs Tg mice. Dextran sulfate sodium-induced colitis, characterized by body weight loss and infiltration of neutrophils, was exacerbated in Reg3b−/− compared to wild-type mice. Moreover, the expression of Interleukin 6, an inflammatory cytokine and Chitinase-like 3, a marker for tissue repair macrophages was elevated in the colon of Reg3b−/− mice compared to wild-type mice after DSS treatment. Together, these results suggest that attenuation of colitis and ileitis is a result of Reg3β′s real function.