scispace - formally typeset
Search or ask a question

Showing papers in "Biochemistry and Cell Biology in 2016"


Journal ArticleDOI
TL;DR: This review focuses on both the advances and diversity of protein production and purification methods that have allowed this growth in structural knowledge of membrane proteins through X-ray crystallography, nuclear magnetic resonance spectroscopy, and cryo-electron microscopy (cryo-EM).
Abstract: Membrane proteins are still heavily under-represented in the protein data bank (PDB), owing to multiple bottlenecks. The typical low abundance of membrane proteins in their natural hosts makes it necessary to overexpress these proteins either in heterologous systems or through in vitro translation/cell-free expression. Heterologous expression of proteins, in turn, leads to multiple obstacles, owing to the unpredictability of compatibility of the target protein for expression in a given host. The highly hydrophobic and (or) amphipathic nature of membrane proteins also leads to challenges in producing a homogeneous, stable, and pure sample for structural studies. Circumventing these hurdles has become possible through the introduction of novel protein production protocols; efficient protein isolation and sample preparation methods; and, improvement in hardware and software for structural characterization. Combined, these advances have made the past 10-15 years very exciting and eventful for the field of membrane protein structural biology, with an exponential growth in the number of solved membrane protein structures. In this review, we focus on both the advances and diversity of protein production and purification methods that have allowed this growth in structural knowledge of membrane proteins through X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM).

92 citations


Journal ArticleDOI
TL;DR: A novel Rad51 paralogue was discovered in Caenorhabditis elegans, and its in vitro characterization has demonstrated a new function for the worm RAD51 paralogues during HR, providing a framework for understanding RAD51 and its mediators in DNA repair during multiple cellular contexts.
Abstract: In this review we focus on new insights that challenge our understanding of homologous recombination (HR) and Rad51 regulation. Recent advances using high-resolution microscopy and single molecule techniques have broadened our knowledge of Rad51 filament formation and strand invasion at double-strand break (DSB) sites and at replication forks, which are one of most physiologically relevant forms of HR from yeast to humans. Rad51 filament formation and strand invasion is regulated by many mediator proteins such as the Rad51 paralogues and the Shu complex, consisting of a Shu2/SWS1 family member and additional Rad51 paralogues. Importantly, a novel RAD51 paralogue was discovered in Caenorhabditis elegans, and its in vitro characterization has demonstrated a new function for the worm RAD51 paralogues during HR. Conservation of the human RAD51 paralogues function during HR and repair of replicative damage demonstrate how the RAD51 mediators play a critical role in human health and genomic integrity. Together, these new findings provide a framework for understanding RAD51 and its mediators in DNA repair during multiple cellular contexts.

88 citations


Journal ArticleDOI
TL;DR: The contributions made by NCL and (or) N PM1 to the different DNA repair pathways employed by mammalian cells to repair DNA insults are discussed and the implications of such activities for the regulation, pathogenesis, and therapeutic targeting of NPM1 and NCL are examined.
Abstract: The nucleolus represents a highly multifunctional intranuclear organelle in which, in addition to the canonical ribosome assembly, numerous processes such as transcription, DNA repair and replicati...

77 citations


Journal ArticleDOI
TL;DR: This review illustrates the use of S. cerevisiae as a powerful system to understand the principles of NHEJ, as well as in pioneering the direction of the field.
Abstract: DNA double strand breaks (DSBs) are dangerous sources of genome instability and must be repaired by the cell. Nonhomologous end-joining (NHEJ) is an evolutionarily conserved pathway to repair DSBs by direct ligation of the ends, with no requirement for a homologous template. While NHEJ is the primary DSB repair pathway in mammalian cells, conservation of the core NHEJ factors throughout eukaryotes makes the pathway attractive for study in model organisms. The budding yeast, Saccharomyces cerevisiae, has been used extensively to develop a functional picture of NHEJ. In this review, we will discuss the current understanding of NHEJ in S. cerevisiae. Topics include canonical end-joining, alternative end-joining, and pathway regulation. Particular attention will be paid to the NHEJ mechanism involving core factors, including Yku70/80, Dnl4, Lif1, and Nej1, as well as the various factors implicated in the processing of the broken ends. The relevance of chromatin dynamics to NHEJ will also be discussed. This review illustrates the use of S. cerevisiae as a powerful system to understand the principles of NHEJ, as well as in pioneering the direction of the field.

58 citations


Journal ArticleDOI
TL;DR: Investigation of the effect of the immunosuppressant drug rapamycin on redox balance of erythrocytes and blood plasma of oxidatively challenged rats provides evidence thatRapamycin improves redox status and attenuates oxidative stress in oxidativelyChallenging rats and demonstrates that Rapamycin is a comparatively safe immuno-pharmaceutical.
Abstract: An imbalanced cellular redox system promotes the production of reactive oxygen species (ROS) that may lead to oxidative stress-mediated cell death. Erythrocytes are the best-studied model of antiox...

43 citations


Journal ArticleDOI
TL;DR: Interestingly, attenuation of H3K4me3 impacts pre-mRNA splicing, and inhibition of pre- m RNA splicing attenuates H3k4me4, and the mark is recognized by several proteins (readers), including lysine acetyltransferase complexes, chromatin remodelers, and RNA bound proteins involved in pre-MRNAsplicing.
Abstract: Histone H3 lysine 4 trimethylation (H3K4me3) is often stated as a mark of transcriptionally active promoters. However, closer study of the positioning of H3K4me3 shows the mark locating primarily after the first exon at the 5' splice site and overlapping with a CpG island in mammalian cells. There are several enzyme complexes that are involved in the placement of the H3K4me3 mark, including multiple protein complexes containing SETD1A, SETD1B, and MLL1 enzymes (writers). CXXC1, which is associated with SETD1A and SETD1B, target these enzymes to unmethylated CpG islands. Lysine demethylases (KDM5 family members, erasers) demethylate H3K4me3. The H3K4me3 mark is recognized by several proteins (readers), including lysine acetyltransferase complexes, chromatin remodelers, and RNA bound proteins involved in pre-mRNA splicing. Interestingly, attenuation of H3K4me3 impacts pre-mRNA splicing, and inhibition of pre-mRNA splicing attenuates H3K4me3.

43 citations


Journal ArticleDOI
TL;DR: It is shown that the omega-3 PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acids (DHA) increase Aβ-degradation by affecting insulin-degrading enzyme (IDE), the major A β-degRading enzyme secreted into the extracellular space of neuronal and microglial cells.
Abstract: Omega-3 polyunsaturated fatty acids (PUFAs) have been proposed to be highly beneficial in Alzheimer’s disease (AD). AD pathology is closely linked to an overproduction and accumulation of amyloid-β...

41 citations


Journal ArticleDOI
TL;DR: This review discusses recent findings from rodent and Drosophila models that are beginning to reveal the broad biological role and complex mechanistic functioning of EHMT proteins.
Abstract: The euchromatin histone methyltransferases (EHMTs) are an evolutionarily conserved protein family that are known for their ability to dimethylate histone 3 at lysine 9 in euchromatic regions of the genome. In mammals there are two EHMT proteins, G9a, encoded by EHMT2, and GLP, encoded by EHMT1. EHMTs have diverse roles in the differentiation of different tissues and cell types and are involved in adult-specific processes like memory, drug addiction, and immune response. This review discusses recent findings from rodent and Drosophila models that are beginning to reveal the broad biological role and complex mechanistic functioning of EHMT proteins.

38 citations


Journal ArticleDOI
TL;DR: The ability of SFN to modify chromatin composition and structure associated with target gene expression provides a new model by which dietary phytochemicals may exert their chemoprevention activity.
Abstract: Epidemiologic studies have revealed that diets rich in sulforaphane (SFN), an isothiocyanate present in cruciferous vegetables, are associated with a marked decrease in prostate cancer incidence. The chemo-preventive role of SFN is associated with its histone de-acetylase inhibitor activity. However, the effect of SFN on chromatin composition and dynamic folding, especially in relation to HDAC inhibitor activity, remains poorly understood. In this study, we found that SFN can inhibit the expression and activity of human telomerase reverse transcriptase (hTERT), the catalytic subunit of telomerase, in 2 prostate cancer cell lines. This decrease in gene expression is correlated with SFN-induced changes in chromatin structure and composition. The SFN-mediated changes in levels of histone post-translational modifications, more specifically acetylation of histone H3 lysine 18 and di-methylation of histone H3 lysine 4, 2 modifications linked with high risk of prostate cancer recurrence, were associated with regulatory elements within the hTERT promoter region. Chromatin condensation may also play a role in SFN-mediated hTERT repression, since expression and recruitment of MeCP2, a known chromatin compactor, were altered in SFN treated prostate cancer cells. Chromatin immuno-precipitation (ChIP) of MeCP2 showed enrichment over regions of the hTERT promoter with increased nucleosome density. These combined results strongly support a role for SFN in the mediation of epigenetic events leading to the repression of hTERT in prostate cancer cells. This ability of SFN to modify chromatin composition and structure associated with target gene expression provides a new model by which dietary phytochemicals may exert their chemoprevention activity.

32 citations


Journal ArticleDOI
TL;DR: A strong correlation between spectroscopic observations and the output of molecular dynamics simulation was observed for CAMKIV, and a significant correlation between the structure and enzymatic activities of CAMK IV was found.
Abstract: Human calcium/calmodulin-dependent protein kinase IV (CAMKIV) is a member of Ser/Thr protein kinase family. It is regulated by the calcium-calmodulin dependent signal through a secondary messenger, Ca(2+), which leads to the activation of its autoinhibited form. The over-expression and mutation in CAMKIV as well as change in Ca(2+) concentration is often associated with numerous neurodegenerative diseases and cancers. We have successfully cloned, expressed, and purified a functionally active kinase domain of human CAMKIV. To observe the effect of different pH conditions on the structural and functional properties of CAMKIV, we have used spectroscopic techniques such as circular diachroism (CD) absorbance and fluorescence. We have observed that within the pH range 5.0-11.5, CAMKIV maintained both its secondary and tertiary structures, along with its function, whereas significant aggregation was observed at acidic pH (2.0-4.5). We have also performed ATPase activity assays under different pH conditions and found a significant correlation between the structure and enzymatic activities of CAMKIV. In-silico validations were further carried out by modeling the 3-dimensional structure of CAMKIV and then subjecting it to molecular dynamics (MD) simulations to understand its conformational behavior in explicit water conditions. A strong correlation between spectroscopic observations and the output of molecular dynamics simulation was observed for CAMKIV.

31 citations


Journal ArticleDOI
TL;DR: The current knowledge of the pathways involved in XCI, how the pathways interact, and the gaps in the understanding that need to be filled are reviewed.
Abstract: During X-chromosome inactivation (XCI), nearly an entire X chromosome is permanently silenced and converted into a Barr body, providing dosage compensation for eutherians between the sexes. XCI is facilitated by the upregulation of the long non-coding RNA gene, XIST, which coats its chromosome of origin, recruits heterochromatin factors, and silences gene expression. During XCI, at least two distinct types of heterochromatin are established, and in this review we discuss the enrichment of facultative heterochromatin marks such as H3K27me3, H2AK119ub, and macroH2A as well as pericentric heterochromatin marks such as HP1, H3K9me3, and H4K20me3. The extremely stable maintenance of silencing is a product of reinforcing interactions within and between these domains. This paper "Xplores" the current knowledge of the pathways involved in XCI, how the pathways interact, and the gaps in our understanding that need to be filled.

Journal ArticleDOI
TL;DR: This review focuses on the process of promoter-proximal Pol II pausing during early transcription elongation as a key step in context-dependent interpretation of the metazoan genome.
Abstract: The RNA polymerase II (Pol II) transcribes all mRNA genes in eukaryotes and is among the most highly regulated enzymes in the cell. The classic model of mRNA gene regulation involves recruitment of the RNA polymerase to gene promoters in response to environmental signals. Higher eukaryotes have an additional ability to generate multiple cell types. This extra level of regulation enables each cell to interpret the same genome by committing to one of the many possible transcription programs and executing it in a precise and robust manner. Whereas multiple mechanisms are implicated in cell type-specific transcriptional regulation, how one genome can give rise to distinct transcriptional programs and what mechanisms activate and maintain the appropriate program in each cell remains unclear. This review focuses on the process of promoter-proximal Pol II pausing during early transcription elongation as a key step in context-dependent interpretation of the metazoan genome. We highlight aspects of promoter-proximal Pol II pausing, including its interplay with epigenetic mechanisms, that may enable cell type-specific regulation, and emphasize some of the pertinent questions that remain unanswered and open for investigation.

Journal ArticleDOI
TL;DR: This review discusses the mechanisms for nonvesicular sterol transport with an emphasis on the role of STARD4, a small, soluble, cytoplasmic sterol Transport protein, which can rapidly equilibrate sterol between membranes, especially membranes with anionic lipid headgroups.
Abstract: Cholesterol plays an important role in determining the biophysical properties of membranes in mammalian cells, and the concentration of cholesterol in membranes is tightly regulated. Cholesterol mo...

Journal ArticleDOI
TL;DR: Emerging evidence suggests that the nucleosome surface, including theucleosome acidic patch, promotes the binding and activity of several DNA damage factors on chromatin, which plays a key role in orchestrating the requisite chromatin response to maintain both genome and epigenome integrity.
Abstract: DNA damage occurs within the chromatin environment, which ultimately participates in regulating DNA damage response (DDR) pathways and repair of the lesion. DNA damage activates a cascade of signal...

Journal ArticleDOI
TL;DR: The findings suggest that the methylation mechanism is associated with decreased expression levels of miR-149, which may in turn lead to the increased levels of its oncogenic target proteins.
Abstract: Aberrant DNA methylation has been shown to inactivate tumor suppressor genes during carcinogenesis MicroRNA-149 (miR-149) was recently demonstrated to function as a tumor suppressor gene in glioblastoma multiforme (GBM) However, the potential linkage of miR-149 levels and the underlying epigenetic regulatory mechanism in human GBM has not been studied We used quantitative real-time polymerase chain reaction to investigate the levels of miR-149 in GBM tissues, their matched adjacent normal tissues, and glioblastoma U87MG cell line Using bisulfite genomic sequencing technology, DNA methylation status of upstream region of miR-149 was evaluated in study population groups and the U87MG cell line After treatment of cells with 5-aza-2′-deoxycitidine (5-aza-dC), the DNA methylation status, gene expression, and target protein levels of miR-149 were investigated Our studies revealed that methylation and expression levels of miR-149 were significantly increased and decreased, respectively in GBM patients rela

Journal ArticleDOI
TL;DR: Overall, research on histone modifications has yielded great mechanistic insights into the regulation of genomic functions, and extending these studies using nucleosomes will further elucidate the complexity of these pathways in a more physiologically relevant context.
Abstract: It has been over 50 years since Allfrey et al. proposed that histone acetylation regulates RNA synthesis, and the study of histone modifications has progressed at an extraordinary pace for the past...

Journal ArticleDOI
TL;DR: This study showed that GSK3β antagonized TRAIL-induced apoptosis in H1299 NSCLC cells, and determined that the PKCα isozyme is an upstream regulator of G SK3β that phosphorylates and inactivates GSK2β, thereby sensitizing cancer cells to TRAIL's apoptosis.
Abstract: Tumor necrosis factor related apoptosis-inducing ligand (TRAIL) is a highly promising therapeutic agent for cancer treatment, owing to its ability to selectively target tumor cells for cell death while having little effect on most normal cells. However, recent research has found that many cancers, including non-small cell lung cancer (NSCLC), display resistance to TRAIL. Therefore, it is important to elucidate the molecular mechanisms governing the resistance of tumor cells to TRAIL treatment. In this study, we show that GSK3β antagonized TRAIL-induced apoptosis in H1299 NSCLC cells, and determined that the PKCα isozyme is an upstream regulator of GSK3β that phosphorylates and inactivates GSK3β, thereby sensitizing cancer cells to TRAIL-induced apoptosis. Furthermore, we demonstrated that the anti-apoptotic effect of GSK3β is mediated by the NF-κB pathway, whereas the tripartite motif 21 (TRIM21) was able to inhibit the activation of NF-κB by GSK3β, and leads to the promotion of cell apoptosis. Taken together, our study further delineated the underpinning mechanism of resistance to TRAIL-induced apoptosis in H1299 cells, and provided new clues for sensitizing NSCLC cells to TRAIL therapy.

Journal ArticleDOI
TL;DR: The role of epigenetic factors including chromatin, chromatin remodelers, DNA methyltransferases, and microRNAs are discussed in the context of alternative splicing, and their potential involvement inAlternative splicing during the EMT process is discussed.
Abstract: Nature has devised sophisticated cellular machinery to process mRNA transcripts produced by RNA Polymerase II, removing intronic regions and connecting exons together, to produce mature RNAs. This process, known as splicing, is very closely linked to transcription. Alternative splicing, or the ability to produce different combinations of exons that are spliced together from the same genomic template, is a fundamental means of regulating protein complexity. Similar to transcription, both constitutive and alternative splicing can be regulated by chromatin and its associated factors in response to various signal transduction pathways activated by external stimuli. This regulation can vary between different cell types, and interference with these pathways can lead to changes in splicing, often resulting in aberrant cellular states and disease. The epithelial to mesenchymal transition (EMT), which leads to cancer metastasis, is influenced by alternative splicing events of chromatin remodelers and epigenetic factors such as DNA methylation and non-coding RNAs. In this review, we will discuss the role of epigenetic factors including chromatin, chromatin remodelers, DNA methyltransferases, and microRNAs in the context of alternative splicing, and discuss their potential involvement in alternative splicing during the EMT process.

Journal ArticleDOI
TL;DR: In this paper, the structure of decylubiquinone bound to acidithiobacillus ferrooxidans SQR was analyzed using site-directed mutagenesis and kinetic approaches to analyze quinone binding.
Abstract: Sulfide:quinone oxidoreductase (SQR) is a peripheral membrane enzyme that catalyzes the oxidation of sulfide and the reduction of ubiquinone. Ubiquinone binds to a conserved hydrophobic domain and shuttles electrons from a noncovalent flavin adenine dinucleotide cofactor to the membrane-bound quinone pool. Utilizing the structure of decylubiquinone bound to Acidithiobacillus ferrooxidans SQR, we combined site-directed mutagenesis and kinetic approaches to analyze quinone binding. SQR can reduce both benzoquinones and naphthoquinones. The alkyl side-chain of ubiquinone derivatives enhances binding to SQR but limits the enzyme turnover. Pentachlorophenol and 2-n-heptyl-4-hydroxyquinoline-N-oxide are potent inhibitors of SQR with apparent inhibition constants (Ki) of 0.46 μmol·L(-1) and 0.58 μmol·L(-1), respectively. The highly conserved amino acids surrounding the quinone binding site play an important role in quinone reduction. The phenyl side-chains of Phe357 and Phe391 sandwich the benzoquinone head group and are critical for quinone binding. Importantly, conserved amino acids that define the ubiquinone-binding site also play an important role in sulfide oxidation/flavin reduction.

Journal ArticleDOI
TL;DR: Fructose-mediated apoA-I fructation resulted in the severe loss of several beneficial functions of apo-I and HDL, including anti-senescence and insulin secretion activities, accompanied with increased susceptibility to protein degradation and structural modification.
Abstract: Glycation of apolipoproteins is a major feature of the production of dysfunctional high-density lipoprotein (HDL), which is associated with the incidence of several metabolic diseases such as coronary artery disease and diabetes. In this report, fructated apoA-I (fA-I) induced by fructose treatment showed a covalently multimerized band without cross-linking, and lysine residues were irreversibly modified to prevent crosslinking. Using pancreatic β-cells, insulin secretion was impaired by fA-I in the lipid-free and reconstituted HDL (rHDL) states, by up to 35%, and 40%, respectively, under hyperglycemic conditions (25 mmol/L glucose). Treatment of human umbilical vein endothelial cells (HUVECs) with fA-I and HDL from elderly patients caused a 1.8-fold and 1.5-fold increased cellular senescence, respectively, along with increased lysosomal enlargement. In the lipid-free and rHDL states, fA-I increased embryo death by 1.5-fold and 2.5-fold, respectively, along with the production of oxidized species. Further...

Journal ArticleDOI
TL;DR: This is the first study to demonstrate that gentiopicroside and sweroside show insulin-mimicking effects on the regulation of Pck1 expression and induce phosphorylation of components in the insulin signalling cascade.
Abstract: The use of phytochemicals and herbal medicines has accompanied human history. Advances in modern biomedical sciences have allowed us to investigate the functional mechanisms of herbal medicines and...

Journal ArticleDOI
Ruiting Li1, Yinghui Li1, Xin Hu1, Haiwei Lian1, Lei Wang1, Hui Fu1 
TL;DR: It is shown that high levels of TCF3 in gliomas potentially promote glioma development through the Akt and Erk pathways, and this upregulation of theTCF3 gene probably has functional significance in brain-tumor progression.
Abstract: Transcription factor 3 (TCF3) is a member of the T-cell factor/lymphoid enhancer factor (TCF/LEF) transcription factor family. Recent studies have demonstrated its potential carcinogenic properties. Here we show that TCF3 was upregulated in glioma tissues compared with normal brain tissues. This upregulation of the TCF3 gene probably has functional significance in brain-tumor progression. Our studies on glioblastoma multiforme (GBM) cell lines show that knock-down of TCF3 induced apoptosis and inhibited cell migration. Further analysis revealed that down-regulation of TCF3 gene expression inhibits Akt and Erk1/2 activation, suggesting that the carcinogenic properties of TCF3 in GBM are partially mediated by the phosphatidylinositol 3-kinase-Akt and MAPK-Erk signaling pathways. Considered together, the results of this study demonstrate that high levels of TCF3 in gliomas potentially promote glioma development through the Akt and Erk pathways.

Journal ArticleDOI
TL;DR: The data suggest that the incorporation of rapamycin during radiation therapy could be a potent way to improve the sensitivity and effectiveness of radiation therapy as well as to protect normal cells from being damaged by irradiation.
Abstract: Radiotherapy has been used for a long time as a standard therapy for cancer; however, there have been no recent research breakthroughs. Radioresistance and various side-effects lead to the unexpected outcomes of radiation therapy. Specific and accurate targeting as well as reduction of radioresistance have been major challenges for irradiation therapy. Recent studies have shown that rapamycin shows promise for inhibiting tumorigenesis by suppressing mammalian target of rapamycin (mTOR). We found that the combination of rapamycin with irradiation significantly diminished cell viability and colony formation, and increased cell apoptosis, as compared with irradiation alone in lung cancer cell line A549, suggesting that rapamycin can enhance the effectiveness of radiation therapy by sensitizing cancer cells to irradiation. Importantly, we observed that the adverse effects of irradiation on a healthy lung cell line (WI-38) were also offset. No enhanced protein expression of mTOR signaling was observed in WI-38 cells, which is normally elevated in lung cancer cells. Moreover, DNA damage was significantly less with the combination therapy than with irradiation therapy alone. Our data suggest that the incorporation of rapamycin during radiation therapy could be a potent way to improve the sensitivity and effectiveness of radiation therapy as well as to protect normal cells from being damaged by irradiation.

Journal ArticleDOI
TL;DR: OOP demonstrated potent anti-oxidant and anti-inflammatory effects on in vitro model of oxidative stress-induced lung injury on hydrogen peroxide (H2O2)-induced human lung alveolar cells.
Abstract: In this study, the anti-oxidant and anti-inflammatory efficacy of ozone oxidative preconditioning (OOP) were investigated on hydrogen peroxide (H2O2)-induced human lung alveolar cells. In MTT and trypan blue viability tests, while 100 μmol/L H2O2 caused a 17.3% and 21.9% decrease in the number of living cells, respectively, ozone at 20 μmol/L regenerated cell proliferation and prevented 9.6% and 11.0% of cell loss, respectively. In addition, H2O2 decreased the transcription levels of catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD) 5.43-, 2.89-, and 5.33-fold, respectively, while it increased Bax, NF-κβ, TNF-α, and iNOS expression 1.57-, 1.32-, 1.40-, and 1.41-fold, respectively. Ozone pretreatment, however, increased CAT, GPx, and SOD transcription levels 7.08-, 5.17-, and 6.49-fold and decreased Bax, NF-κβ, TNF-α, and iNOS transcriptions by 1.25-, 0.76-, 3.63-, and 7.91-fold, respectively. Moreover, intracellular glutathione (GSH) level and SOD activity were decreased by 46.2% and 45.0% in the H2O2 treatment group, and OOP recovered 58.5% and 20.1% of the decreases caused by H2O2. H2O2 also increased nitrite levels 7.84-fold, and OOP reduced this increase by half. Consequently, OOP demonstrated potent anti-oxidant and anti-inflammatory effects on in vitro model of oxidative stress-induced lung injury.

Journal ArticleDOI
TL;DR: Investigation of the association of the microRNA-196a2 rs11614913 (C/T) polymorphism with susceptibility to asthma and clinical outcomes in children and adolescents found it might be associated with asthma severity in a sample of the Egyptian population.
Abstract: There is emerging evidence to support the role of microRNAs in allergic airway diseases and inflammation. Genetic variants in microRNA genes might affect microRNA-mediated cell regulation. This preliminary study was designed to investigate the association of the microRNA-196a2 rs11614913 (C/T) polymorphism with susceptibility to asthma and clinical outcomes in children and adolescents. Genotyping of rs11614913 polymorphism was determined in 96 patients with bronchial asthma (6-18 years of age) and 96 unrelated controls, using real-time polymerase chain reaction technology. In-silico target prediction and network core analyses were performed. The asthmatics did not show significant differences in genotype distribution (p = 0.609) and allele frequencies (p = 0.428) compared with the controls. There were also no associations with disease duration, age at onset, asthma phenotype, asthma control, therapeutic level, airway hyper-responsiveness, or biochemical parameters in the blood. However, the CC genotype was associated with a more severe degree of asthma (p = 0. 023) and higher frequency of nocturnal asthma (p = 0.002). Carriers for CC were 17 times more likely to develop nocturnal asthma, and had a more than 2.5-fold increased risk for poor disease outcome compared with CT and TT individuals. In conclusion, microRNA-196a2 rs11614913 polymorphism might be associated with asthma severity in our sample of the Egyptian population. Further investigations in studies with a larger sample size and functional tests are needed to validate our findings and to explore the detailed biological mechanisms.

Journal ArticleDOI
TL;DR: Morphological analysis by TEM revealed that sAvBD-9 induces shortening and swelling of Staphylococcus aureus and Shigella sonni cells, opens holes and deep craters in their envelopes, and leads to the release of their cytoplasmic content.
Abstract: In this study we identified the expression patterns of β-defensin-9 in chickens from Saudi Arabia, evaluated the antimicrobial activities of synthetic chicken β-defensin-9 (sAvBD-9) against pathogenic bacteria and fungi, and investigated the mode of action of sAvBD-9 on bacterial cells. The AvBD-9 gene of Saudi chickens encodes a polypeptide of 67 amino acids, which is highly similar to the polypeptide in duck, quail, and goose (97%, 86%, and 87%, respectively) and shares a low sequence similarity with the mammalian defensins. AvBD-9 is expressed in various organs and tissues of Saudi chickens and inhibits the growth of both Gram-negative and Gram-positive bacteria, as well as showing activity against unicellular and multicellular fungi (Aspergillus flavus, A. niger, and Candida albicans). sAvBD-9 completely inhibited the growth of both Gram-positive and Gram-negative bacterial strains as well as Candida albicans. The haemolytic effects of sAvBD-9 were limited. Morphological analysis by TEM revealed that sAvBD-9 induces shortening and swelling of Staphylococcus aureus and Shigella sonni cells, opens holes and deep craters in their envelopes, and leads to the release of their cytoplasmic content. Our data shed light on the potential applications of sAvBD-9 in the pharmaceutical industry.

Journal ArticleDOI
TL;DR: This work compared the effect of photobleaching versus established chemical quenchers on the quality of fluorescent staining in formalin-fixed brain tissue of frontotemporal dementia with tau-positive inclusions and found photOBleaching treatment had no effect on probe fluorescence intensity while it effectively reduced background and lipofuscin fluorescence.
Abstract: Autofluorescence of aldehyde-fixed tissues greatly hinders fluorescence microscopy. In particular, lipofuscin, an autofluorescent component of aged brain tissue, complicates fluorescence imaging of tissue in neurodegenerative diseases. Background and lipofuscin fluorescence can be reduced by greater than 90% through photobleaching using white phosphor light emitting diode arrays prior to treatment with fluorescent probes. We compared the effect of photobleaching versus established chemical quenchers on the quality of fluorescent staining in formalin-fixed brain tissue of frontotemporal dementia with tau-positive inclusions. Unlike chemical quenchers, which reduced fluorescent probe signals as well as background, photobleaching treatment had no effect on probe fluorescence intensity while it effectively reduced background and lipofuscin fluorescence. The advantages and versatility of photobleaching over established methods are discussed.

Journal ArticleDOI
TL;DR: Greater understanding of the epigenetic influences of these environmental factors will depend on increased availability of relevant species-specific genomic sequence information to facilitate chromatin immunoprecipitation and DNA methylation experiments.
Abstract: Herpetofauna (amphibians and reptiles) and fish represent important sentinel and indicator species for environmental and ecosystem health. It is widely accepted that the epigenome plays an important role in gene expression regulation. Environmental stimuli, including temperature and pollutants, influence gene activity, and there is growing evidence demonstrating that an important mechanism is through modulation of the epigenome. This has been primarily studied in human and mammalian models; relatively little is known about the impact of environmental conditions or pollutants on herpetofauna or fish epigenomes and the regulatory consequences of these changes on gene expression. Herein we review recent studies that have begun to address this deficiency, which have mainly focused on limited specific epigenetic marks and individual genes or large-scale global changes in DNA methylation, owing to the comparative ease of measurement. Greater understanding of the epigenetic influences of these environmental fact...

Journal ArticleDOI
TL;DR: The predicted function of a gene locus that is capable of contributing to starch hydrolysis in the human colon is demonstrated, and the flexibility of this bacterium is revealed with respect to utilizing a range of starch-derived glycans with an emphasis on branched substrates.
Abstract: The human digestive system is host to a highly populated ecosystem of bacterial species that significantly contributes to our assimilation of dietary carbohydrates. Bacteroides thetaiotaomicron is ...

Journal ArticleDOI
TL;DR: In this article, the authors measured AKR1C3 transcript and protein levels in nontumoral and primary tumoral gastric tissues, and evaluated their association with some clinicopathological features of gastric cancer (GC).
Abstract: Steroid hormones have been shown to play a role in gastric carcinogenesis. Large amounts of steroid hormones are locally produced in the peripheral tissues of both genders. Type 5 of 17β-hydroxysteroid dehydrogenase, encoded by the AKR1C3 gene, plays a pivotal role in both androgen and estrogen metabolism, and its expression was found to be deregulated in different cancers. In this study we measured AKR1C3 transcript and protein levels in nontumoral and primary tumoral gastric tissues, and evaluated their association with some clinicopathological features of gastric cancer (GC). We found decreased levels of AKR1C3 transcript (p < 0.0001) and protein (p = 0.0021) in GC tissues compared with the adjacent, apparently histopathologically normal, mucosa. Lower levels of AKR1C3 transcript were observed in diffuse and intestinal types of GC, whereas AKR1C3 protein levels were decreased in tumors with multisite localization, in diffuse histological type, T3, T4, and G3 grades. We also determined the effect of the histone deacetylase inhibitor sodium butyrate (NaBu) on AKR1C3 expression in EPG 85-257 and HGC-27 GC cell lines. We found that NaBu elevates the levels of both AKR1C3 transcript and protein in the cell lines we investigated. Together, our results suggest that decreased expression of AKR1C3 may be involved in development of GC and can be restored by NaBu.