scispace - formally typeset
Search or ask a question

Showing papers in "Cytotechnology in 2015"


Journal ArticleDOI
TL;DR: This comprehensive study shows that Wharton’s Jelly is better than UCB both in terms of rapidity, yield and ease of procedure and being autologous, they are safe and probable candidates for therapeutic future applications.
Abstract: The multipotent and immunosuppressive capacities of mesenchymal stem cells (MSCs) attract several scientists worldwide towards translational research focusing on treatment of diseases including liver failure. Though MSC’s have been isolated from different sources, researchers do not concur on the best source for expansion and clinical translation. In this study, we have compared the isolation, proliferation and expansion of MSCs from umbilical cord blood (UCB), Wharton’s Jelly (WJ), bone marrow (BM) and adipose tissue (AT). MSCs were isolated by density gradient separation from UCB, BM and AT and by both enzymatic and explant method for WJ. The MSCs are characterized by their ability to adhere to plastic, expression of positive (CD105, CD73, CD90, CD29, CD44) and negative (CD45, CD14, CD34) markers by flow cytometry and also by their in vitro adipogenic, osteogenic and chondrogenic differentiation. This comprehensive study clearly shows that WJ is better than UCB both in terms of rapidity, yield and ease of procedure. AT and BM are autologous sources for MSC’s but the specimen collection involves cumbersome and painful procedures and an invasive approach. However being autologous, they are safe and probable candidates for therapeutic future applications.

161 citations


Journal ArticleDOI
TL;DR: The real time cell analyzer (RTCA, xCELLigence, Roche) is an impedance-based technology that can be used for label-free and real-time monitoring of cell properties, such as cell adherence, proliferation, migration and cytotoxicity.
Abstract: Cell viability and cell migration capacities are critical parameters for cell culture-related studies. It is essential to monitor the dynamic changes of cell properties under various co-culture conditions to our better understanding of their behaviours and characteristics. The real time cell analyzer (RTCA, xCELLigence, Roche) is an impedance-based technology that can be used for label-free and real-time monitoring of cell properties, such as cell adherence, proliferation, migration and cytotoxicity. The practicality of this system has been proven in our recent cancer studies. In the present method, we intend to use co-cultures of pancreatic cancer cells (HP62) and mesenchymal stem cells to describe in detail, the procedures and benefits of RTCA.

107 citations


Journal ArticleDOI
TL;DR: It is found that hypoxia significantly favoured ADMSC proliferation and preserved the expression of stemness genes, i.e. Nanog and Sox2.
Abstract: The aim of the study was to obtain the highest number of multipotent adipose-derived mesenchymal stem cells (ADMSCs) by using culture conditions which favour cell expansion without loss of mesenchymal stem cells (MSC)-like properties. Based on the assumption that stem cells reside in niches characterized by hypoxic condition, we investigated if the low oxygen tension may improve the proliferation and stemness of ADMSCs. Intact adipose tissue was resected from eight subjects, and the stromal vascular fraction was obtained by using type II collagenase. The heterogeneity of cellular lineages was confirmed by immunophenotypic analysis that showed the presence of leukocytes (CD45+), endothelial cells (CD34+), and pericytes (CD140+). The immunophenotype of confluent ADMSCs was similar to that of bone marrow-derived MSCs, except for the expression of CD34, which was variable (donor-dependent) and inversely correlated to the CD36 expression. ADMSCs showed a high clonal efficiency (94.5 ± 1 %) and were able to generate osteoblastic, chondrocytic and adipocytic lineages. ADMSCs were cultured under normoxic (21 % O2) and hypoxic (1 % O2) conditions, and we found that hypoxia significantly favoured ADMSC proliferation and preserved the expression of stemness genes, i.e. Nanog and Sox2. Since hypoxia reflects the microenvironment in which ADMSCs must proliferate and differentiate, the culture in hypoxic condition allows to better understand the biology of these cells and their regenerative potential. Low oxygen concentrations promote cell proliferation and stemness, thus enriching the pool of cells potentially able to differentiate into multi-lineages, and extending the possibility of a long-term expansion.

95 citations


Journal ArticleDOI
TL;DR: The results suggest that BPA has cardiotoxic effects which are mediated by the oxidative stress resulting from the overproduction of free radicals, the deficiency of NO and the inhibition of AchE leading to cholinergic activation.
Abstract: Bisphenol A (BPA) is an endocrine disrupting chemical used on a wide range in industry. Several studies reported that BPA may cause cardiovascular disorders in humans and animals. The present study aims to investigate the effect of BPA on the heart of adult male rats. The rats received a daily oral administration of BPA (25 mg/kg for 6 weeks and 10 mg/kg for 6 and 10 weeks). It was found that BPA at the two studied doses induced a significant increase in malondialdehyde, and a significant decrease in catalase after 6 weeks. Moreover, a significant decrease in reduced glutathione and acetylcholinesterase (AchE) activity was observed after treatment with the two doses of BPA throughout the studied time intervals. The two doses (25 and 10 mg/kg) resulted in a significant decrease in nitric oxide (NO) levels after 6 and 10 weeks, respectively. A significant increase in body weight gain occurred in all animals after BPA treatment. These results suggest that BPA has cardiotoxic effects which are mediated by the oxidative stress resulting from the overproduction of free radicals, the deficiency of NO and the inhibition of AchE leading to cholinergic activation. The obesity promoting effect of BPA may also participate in the observed cardiovascular disturbances.

93 citations


Journal ArticleDOI
TL;DR: Insight is provided into the molecular mechanisms underlying the differences between HepG2 and Hep3B and help investigators especially the beginners in the areas of liver cancer research and drug metabolism to fully understand, and thus better use and interpret the data from these two cell lines in their studies.
Abstract: As cellular models for in vitro liver cancer and toxicity studies, HepG2 and Hep3B are the two most frequently used liver cancer cell lines. Because of their similarities they are often treated as the same in experimental studies. However, there are many differences that have been largely over-sighted or ignored between them. In this review, we summarize the differences between HepG2 and Hep3B cell lines that can be found in the literature based on PubMed search. We particularly focus on the differential gene expression, differential drug responses (chemosensitivity, cell cycle and growth inhibition, and gene induction), signaling pathways associated with these differences, as well as the factors in governing these differences between HepG2 and Hep3B cell lines. Based on our analyses of the available data, we suggest that neither HBx nor p53 may be the crucial factor to determine the differences between HepG2 and Hep3B cell lines although HBx regulates the expression of the majority of genes that are differentially expressed between HepG2 and Hep3B. Instead, the different maturation stages in cancer development of the original specimen between HepG2 and Hep3B may be responsible for the differences between them. This review provides insight into the molecular mechanisms underlying the differences between HepG2 and Hep3B and help investigators especially the beginners in the areas of liver cancer research and drug metabolism to fully understand, and thus better use and interpret the data from these two cell lines in their studies.

90 citations


Journal ArticleDOI
TL;DR: The differences (in phenotype, cytokine production, quantity and quality of cells) between stem cells from umbilical cord blood, bone marrow and peripheral blood are described.
Abstract: Umbilical cord blood collected from the postpartum placenta and cord is a rich source of hematopoietic stem cells (HSCs) and is an alternative to bone marrow transplantation. In this review we wanted to describe the differences (in phenotype, cytokine production, quantity and quality of cells) between stem cells from umbilical cord blood, bone marrow and peripheral blood. HSCs present in cord blood are more primitive than their counterparts in bone marrow or peripheral blood, and have several advantages including high proliferation. With using proper cytokine combination, HSCs can be effectively developed into different cell lines. This process is used in medicine, especially in hematology.

78 citations


Journal ArticleDOI
TL;DR: In vitro and in vivo results strongly suggest that [6]-gingerol has antidiabetic potential through multiple mechanisms, thereby contributing to reductions in hepatic glucose production and hence blood glucose concentrations.
Abstract: There have been studies on health beneficial effects of ginger and its components. However, there still remain certain aspects that are not well defined in their anti-hyperglycemic effects. Our aims were to find evidence of possible mechanisms for antidiabetic action of [6]-gingerol, a pungent component of ginger, employing a rat skeletal muscle-derived cell line, a rat-derived pancreatic β-cell line, and type 2 diabetic model animals. The antidiabetic effect of [6]-gingerol was investigated through studies on glucose uptake in L6 myocytes and on pancreatic β-cell protective ability from reactive oxygen species (ROS) in RIN-5F cells. Its in vivo effect was also examined using obese diabetic db/db mice. [6]-Gingerol increased glucose uptake under insulin absent condition and induced 5′ adenosine monophosphate-activated protein kinase phosphorylation in L6 myotubes. Promotion by [6]-gingerol of glucose transporter 4 (GLUT4) translocation to plasma membrane was visually demonstrated by immunocytochemistry in L6 myoblasts transfected with glut4 cDNA-coding vector. [6]-Gingerol suppressed advanced glycation end product-induced rise of ROS levels in RIN-5F pancreatic β-cells. [6]-Gingerol feeding suppressed the increases in fasting blood glucose levels and improved glucose intolerance in db/db mice. [6]-Gingerol regulated hepatic gene expression of enzymes related to glucose metabolism toward decreases in gluconeogenesis and glycogenolysis as well as an increase in glycogenesis, thereby contributing to reductions in hepatic glucose production and hence blood glucose concentrations. These in vitro and in vivo results strongly suggest that [6]-gingerol has antidiabetic potential through multiple mechanisms.

74 citations


Journal ArticleDOI
TL;DR: Results of this study suggest that CeO2 and Fe2O3 nanoparticles are not good candidates as antibacterial agents, and they could interfere with the activity of important antibiotics.
Abstract: Metal oxide nanoparticles have been suggested as good candidates for the development of antibacterial agents. Cerium oxide (CeO2) and iron oxide (Fe2O3) nanoparticles have been utilized in a number of biomedical applications. Here, the antibacterial activity of CeO2 and Fe2O3 nanoparticles were evaluated on a panel of gram positive and gram negative bacteria in both the planktonic and biofilm cultures. Additionally, the effect of combining CeO2 and Fe2O3 nanoparticles with the broad spectrum antibiotic ciprofloxacin on tested bacteria was investigated. Thus, minimum inhibitory concentrations (MICs) of CeO2 and Fe2O3 nanoparticles that are required to inhibit bacterial planktonic growth and bacterial biofilm, were evaluated, and were compared to the MICs of the broad spectrum antibiotic ciprofloxacin alone or in the presence of CeO2 and Fe2O3 nanoparticles. Results of this study show that both CeO2 and Fe2O3 nanoparticles fail to inhibit bacterial growth and biofilm biomass for all the bacterial strains tested. Moreover, adding CeO2 or Fe2O3 nanoparticles to the broad spectrum antibiotic ciprofloxacin almost abolished its antibacterial activity. Results of this study suggest that CeO2 and Fe2O3 nanoparticles are not good candidates as antibacterial agents, and they could interfere with the activity of important antibiotics.

73 citations


Journal ArticleDOI
TL;DR: Leaves extract of S. nux vomica possess potent cytotoxic, analgesic, antipyretic and anti-inflammatory activities, which could be due to the presence of phenolic compounds revealed by phytochemical investigations.
Abstract: The strychnine tree (Strychnos nux-vomica L.) (S. nux-vomica) belonging to family Loganiaceae has been a very promising medication for certain disorders. Different chromatographic methods were used to isolate the phenolic compounds from the aqueous methanolic extract of the S. nux-vomica leaves. Their identification was achieved through spectroscopic techniques. Cytotoxicity, analgesic, antipyretic and anti-inflammatory activities of S. nux-vomica leaves extract were evaluated. Five phenolic compounds were isolated and identified; Kaempferol-7 glucoside 1, 7-Hydroxy coumarin 2, Quercetin-3-rhamnoside 3, Kaempferol 3-rutinoside 4, and Rutin 5. Furthermore, the cytotoxic activity of the extract was evaluated against different cancer cell lines. The extract showed potential cytotoxic activity against human epidermoid larynx carcinoma cells (Hep-2) and against breast carcinoma cell line (MCF-7). Colon carcinoma cells (HCT) were the least one affected by the extract. In addition, the extract exhibited promising analgesic, antipyretic as well as anti-inflammatory activities. It is concluded that, leaves extract of S. nux vomica possess potent cytotoxic, analgesic, antipyretic and anti-inflammatory activities. These activities could be due to the presence of phenolic compounds revealed by our phytochemical investigations.

73 citations


Journal ArticleDOI
TL;DR: In vitro and in vivo results strongly suggest that green rooibos extract (GRE) has antidiabetic potential through multiple modes of action.
Abstract: Previous studies have demonstrated antidiabetic effects for rooibos (Aspalathus linearis) and aspalathin (ASP), one of its main polyphenols. Rooibos, an endemic plant of South Africa, is well-known for its use as herbal tea. Green (‘unfermented’) rooibos has been shown to contain more ASP than ‘fermented’ rooibos tea, currently the major product. In the present study, we investigated the antidiabetic effect of green rooibos extract (GRE) through studies on glucose uptake in L6 myotubes and on pancreatic β-cell protective ability from reactive oxygen species (ROS) in RIN-5F cells. Its in vivo effect was also examined using obese diabetic KK-Ay mice. GRE increased glucose uptake under insulin absent condition and induced phosphorylation of 5′-adenosine monophosphate-activated protein kinase (AMPK) in L6 myotubes as previously demonstrated for ASP. In addition to AMPK, GRE also promoted phosphorylation of Akt, another promoter of glucose transporter 4 (GLUT4) translocation, in L6 myotubes unlike ASP, suggesting an involvement of GRE component(s) other than ASP in Akt phosphorylation. Promotion of GLUT4 translocation to the plasma membrane by GRE in L6 myotubes was demonstrated by Western blotting analysis. GRE suppressed the advanced glycation end products (AGEs)-induced increase in ROS levels in RIN-5F pancreatic β-cells. Subchronic feeding with GRE suppressed the increase in fasting blood glucose levels in type 2 diabetic model KK-Ay mice. These in vitro and in vivo results strongly suggest that GRE has antidiabetic potential through multiple modes of action.

59 citations


Journal ArticleDOI
TL;DR: The findings indicate that apigenin may have critical effects on bone maintenance in vivo, and one of the major polyphenols in olives and parsley, on bone formation.
Abstract: Polyphenol have been reported to have physiological effects with respect to alleviating diseases such as osteoporosis and osteopetrosis. We recently reported that the olive polyphenol hydroxytyrosol accelerates bone formation both in vivo and in vitro. The present study was designed to evaluate the in vivo and in vitro effects of apigenin (4′,5,7-trihydroxyflavone), one of the major polyphenols in olives and parsley, on bone formation by using cultured osteoblasts and osteoclasts and ovariectomized (OVX) mice, respectively. Apigenin markedly inhibited cell proliferation and indices of osteoblast differentiation, such as collagen production, alkaline phosphatase activity, and calcium deposition in osteoblastic MC3T3-E1 cells at concentrations of 1–10 μM. At 10 μM, apigenin completely inhibited the formation of multinucleated osteoclasts from mouse splenic cells. Moreover, injection of apigenin at 10 mg kg−1 body weight significantly suppressed trabecular bone loss in the femurs of OVX mice. Our findings indicate that apigenin may have critical effects on bone maintenance in vivo.

Journal ArticleDOI
TL;DR: It is confirmed that a group of five amino acids, constituting the highest mass fraction of the product, shows the highest depletion rates and could become limiting for product expression.
Abstract: Most commercial media for mammalian cell culture are designed to satisfy the amino acid requirements for cell growth, but not necessarily those for recombinant protein production. In this study, we analyze the amino acid consumption pattern in naive and recombinant Chinese hamster ovary (CHO) cell cultures. The recombinant model we chose was a CHO-S cell line engineered to produce a monoclonal antibody. We report the cell concentration, product concentration, and amino acid concentration profiles in naive and recombinant cell cultures growing in CD OptiCHO™ medium with or without amino acid supplementation with a commercial supplement (CHO CD EfficientFeed™ B). We quantify and discuss the amino acid demands due to cell growth and recombinant protein production during long term fed batch cultivation protocols. We confirmed that a group of five amino acids, constituting the highest mass fraction of the product, shows the highest depletion rates and could become limiting for product expression. In our experiments, alanine, a non-important mass constituent of the product, is in high demand during recombinant protein production. Evaluation of specific amino acid demands could be of great help in the design of feeding/supplementation strategies for recombinant mammalian cell cultures.

Journal ArticleDOI
TL;DR: A protocol was optimized for establishment of callus and cell suspension culture of Scrophularia striata Boiss to obtain an in vitro acteoside producing cell line for the first time and provided an efficient way to further regulation of phenylethanoid glycoside biosynthesis and production of valuable acteooside on scale-up in S. striata.
Abstract: In the present study, a protocol was optimized for establishment of callus and cell suspension culture of Scrophularia striata Boiss. as a strategy to obtain an in vitro acteoside producing cell line for the first time. The effects of growth regulators were analyzed to optimize the biomass growth and acteoside production. The stem explant of S. striata was optimum for callus induction. Modified Murashige and Skoog medium supplemented with 0.5 mg/l naphthalene acetic acid + 2.0 mg/l benzyl adenine was the most favorable medium for callus formation with the highest induction rate (100 %), the best callus growth and the highest acteoside content (1.6 μg/g fresh weight). Incompact and rapid growing suspension cells were established in the liquid medium supplemented with 0.5 mg/l naphthalene acetic acid + 2.0 mg/l benzyl adenine. The optimum time of subculture was found to 17–20 days. Acteoside content in the cell suspension was high during exponential growth phase and decreased subsequently at the stationary phase. The maximum content of acteoside (about 14.25 μg/g cell fresh weight) was observed on the 17th day of the cultivation cycle. This study provided an efficient way to further regulation of phenylethanoid glycoside biosynthesis and production of valuable acteoside, a phenylethanoid glycoside, on scale-up in S. striata cell suspension culture.

Journal ArticleDOI
TL;DR: Several growth factors, chemokines, and biologically active proteins not previously identified in Matrigel are found, and this may have significance to the interpretations of observed cellular responses when cells are grown on or inMatrigel.
Abstract: Matrigel and similar commercial products are extracts of the Engelbreth-Holm–Swarm sarcoma that provide a basement-membrane-like attachment substrate or gel that is used to grow cells on or in, respectively. To ascertain further what proteins may be present in Matrigel, besides its major basement-membrane constituents, an analysis of the expressed liquid of gelled Matrigel was performed using proteome array technology. Among the growth factors/cytokines assayed, high positive detection was found for IGFBP1, IGFBP3, LIF, platelet factor 4, PlGF-2, and VEGF; moderate reactivity was found for cyr61, IGFBP2, IGFBP6, IL-1ra, and NOV; and low, but detectable, responses occurred for aFGF, IL-13, IL-23, M-CSF, and VEGF-B. Among the chemokines assayed, high positive detection was found for MIG and serpin E1; moderate reactivity was found for IP-10, MCP-1, and MCP-5, and low, but detectable, responses occurred for CXCL16, I-TAC, and MIP-1α. Among the other biologically active proteins assayed, high positive detection was found for adiponectin, C5a, endocan, lipocalin-2, sICAM-1, MMP-3, and TIMP-1; moderate reactivity was found for C-reactive protein, coagulation factor III, endoglin, endostatin/collagen XVIII, endothelin-1, ICAM-1, MMP-9, osteopontin, pentraxin-3, and RANTES; and low, but detectable, responses occurred for fetuin A, MMP-8, pentraxin-2, RBP4, resistin, and TIMP-4. The study found several growth factors, chemokines, and biologically active proteins not previously identified in Matrigel, and this may have significance to the interpretations of observed cellular responses when cells are grown on or in Matrigel.

Journal ArticleDOI
TL;DR: It could be concluded that AFB1 and FB1 have synergistic genotoxic effects and PGE induced protective effects against their oxidative stress and genotoxicity through its antioxidant properties.
Abstract: Aflatoxins and fumonisins are important food-borne mycotoxins implicated in human health and have cytotoxic effects. The aims of the current study were to evaluate the protective role of Panax ginseng extract (PGE) against the synergistic effect of subchronic administration of aflatoxin B1 (AFB1) and fumonisin B1 (FB1) on DNA and gene expression in rat. Female Sprague–Dawley rats were divided into eight groups (ten rats/group) and treated for 12 weeks including the control group, the group having received AFB1 (80 µg/kg bw), the group having received FB1 (100 µg/kg bw), the group having received AFB1 plus FB1 and the groups having received PGE (20 mg/kg bw) alone or with AFB1 and/or FB1. At the end of experiment, liver and kidney were collected for the determination of DNA fragmentation, lipid peroxidation (LP), glutathione (GSH) contents and alterations in gene expression. The results indicated that these mycotoxins increased DNA fragmentation, LP and decreased GSH content in liver and kidney and down-regulated gene expression of antioxidants enzymes. The combined treatments with AFB1 and/or FB1 plus PGE suppressed DNA fragmentation only in the liver, normalized LP and increased GSH in the liver and kidney as well as up-regulated the expression of GPx, SOD1 and CAT mRNA. It could be concluded that AFB1 and FB1 have synergistic genotoxic effects. PGE induced protective effects against their oxidative stress and genotoxicity through its antioxidant properties.

Journal ArticleDOI
TL;DR: The results indicated that escin has potent antiproliferative effects against C6 glioma and A549 cells, both dose and time dependent.
Abstract: Aesculus hippocastanum (the horse chestnut) seed extract has a wide variety of biochemical and pharmacological effects including anti-inflammatory, antianalgesic, and antipyretic activities The main active compound of this plant is escin It is known that several medicinal herbs with anti-inflammatory properties have been found to have a role in the prevention and treatment of cancer In the present study, the cytotoxic effects of escin in the C6 glioma and A549 cell lines were analyzed by MTT Apoptotic effects of escin on both cell lines were evaluated by Annexin V binding capacity with flow cytometric analysis Structural and ultrastructural changes were also evaluated using transmission electron microscopy The results indicated that escin has potent antiproliferative effects against C6 glioma and A549 cells These effects are both dose and time dependent Taken together, escin possesses cell cycle arrest on G0/G1 phase and selective apoptotic activity on A549 cells as indicated by increased Annexin V-binding capacity, bax protein expression, caspase-3 activity and morphological changes obtained from micrographs by transmission electron microscopy

Journal ArticleDOI
TL;DR: Comparison of TB exclusion and fluorescence-based viability detection methods using image cytometry to observe morphological changes due to the effect of TB on dead cells showed that as the viability of a naturally-dying Jurkat cell sample decreased below 70 %, many TB-stained cells began to exhibit non-uniform morphological characteristics.
Abstract: The ability to accurately determine cell viability is essential to performing a well-controlled biological experiment. Typical experiments range from standard cell culturing to advanced cell-based assays that may require cell viability measurement for downstream experiments. The traditional cell viability measurement method has been the trypan blue (TB) exclusion assay. However, since the introduction of fluorescence-based dyes for cell viability measurement using flow or image-based cytometry systems, there have been numerous publications comparing the two detection methods. Although previous studies have shown discrepancies between TB exclusion and fluorescence-based viability measurements, image-based morphological analysis was not performed in order to examine the viability discrepancies. In this work, we compared TB exclusion and fluorescence-based viability detection methods using image cytometry to observe morphological changes due to the effect of TB on dead cells. Imaging results showed that as the viability of a naturally-dying Jurkat cell sample decreased below 70 %, many TB-stained cells began to exhibit non-uniform morphological characteristics. Dead cells with these characteristics may be difficult to count under light microscopy, thus generating an artificially higher viability measurement compared to fluorescence-based method. These morphological observations can potentially explain the differences in viability measurement between the two methods.

Journal ArticleDOI
TL;DR: A comprehensive study encompassing major components of the protein processing pathway in the endoplasmic reticulum (ER) to elucidate its role in recombinant cells and correlates with the magnitude and timing of stress in the course of the batch culture.
Abstract: Genes in the protein secretion pathway have been targeted to increase productivity of monoclonal antibodies in Chinese hamster ovary cells. The results have been highly variable depending on the cell type and the relative amount of recombinant and target proteins. This paper presents a comprehensive study encompassing major components of the protein processing pathway in the endoplasmic reticulum (ER) to elucidate its role in recombinant cells. mRNA profiles of all major ER chaperones and unfolded protein response (UPR) pathway genes are measured at a series of time points in a high-producing cell line under the dynamic environment of a batch culture. An initial increase in IgG heavy chain mRNA levels correlates with an increase in productivity. We observe a parallel increase in the expression levels of majority of chaperones. The chaperone levels continue to increase until the end of the batch culture. In contrast, calreticulin and ERO1-l alpha, two of the lowest expressed genes exhibit transient time profiles, with peak induction on day 3. In response to increased ER stress, both the GCN2/PKR-like ER kinase and inositol-requiring enzyme-1alpha (Ire1α) signalling branch of the UPR are upregulated. Interestingly, spliced X-Box binding protein 1 (XBP1s) transcription factor from Ire1α pathway is detected from the beginning of the batch culture. Comparison with the expression levels in a low producer, show much lower induction at the end of the exponential growth phase. Thus, the unfolded protein response strongly correlates with the magnitude and timing of stress in the course of the batch culture.

Journal ArticleDOI
TL;DR: The results suggested that the S. hemiphyllum extracts WES, EES, and AES could be used as pharmaceuticals and functional foods to reduce dosages of synthetic diabetes drugs.
Abstract: Diabetes is one of the most prevalent chronic diseases globally. In this study, major polyphenols (17.35 ± 0.93–36.66 ± 2.01 mg/g) and minor fucoxanthin (non detected 15.12 ± 0.09 mg/g) were isolated from water, ethanol, and acetone extracts (WES, EES, and AES, respectively) of Sargassum hemiphyllum. Inhibition of α-amylase, α-glucosidase, sucrose, and maltase activities and stimulation of insulin secretion was greater with AES than with WES or EES and correlated with polyphenol and fucoxanthin concentrations in extracts. Moreover, 250 μg/ml EES and AES significantly increased insulin secretion in the presence of 25 mg/ml glibenclamide to higher levels than those obtained with 50 mg/ml glibenclamide. None of the extracts exhibited cytotoxicity, exacerbated the side effects of glibenclamide, or inhibited glibenclamide-induced insulin secretion. These results suggested that the S. hemiphyllum extracts WES, EES, and AES could be used as pharmaceuticals and functional foods to reduce dosages of synthetic diabetes drugs.

Journal ArticleDOI
TL;DR: A detailed step by step description to optimize the isolation and the expansion methodology of hmADMSCs using a virally inactivated good manufacturing practice (GMP)-grade platelet lysate is reported, highlighting the critical aspects of the procedure and providing useful troubleshooting suggestions.
Abstract: Mesenchymal stem cells (MSCs) are adult multipotent cells currently employed in several clinical trials due to their immunomodulating, angiogenic and repairing features. The adipose tissue is certainly considered an eligible source of MSCs. Recently, putative adipose tissue derived MSCs (ADMSCs) have been isolated from the mediastinal depots. However, very little is known about the properties, the function and the potential of human mediastinal ADMSCs (hmADMSCs). However, the lack of standardized methodologies to culture ADMSCs prevents comparison across. Herein for the first time, we report a detailed step by step description to optimize the isolation and the expansion methodology of hmADMSCs using a virally inactivated good manufacturing practice (GMP)-grade platelet lysate, highlighting the critical aspects of the procedure and providing useful troubleshooting suggestions. Our approach offers a reproducible system which could provide standardization across laboratories. Moreover, our system is time and cost effective, and it can provide a reproducible source of adipose stem cells to enable future studies to unravel new insights regard this promising stem cell population.

Journal ArticleDOI
TL;DR: The research shows the effect of tannic acid in lowering blood pressure in hypertensive rats, and there was no statistical difference according to hypertension group.
Abstract: Hypertension is a major health problem with increasing prevalence around the world. Tannic acid is water-soluble polyphenol that is present in tea, green tea, coffee, red wine, nuts, fruits and many plant foods. It has been reported to serve as an antioxidant or a pro-oxidant depending on the type of cells and its concentration. The purpose of our study was to evaluate the effect of tannic acid on systolic blood pressure, oxidative stress and some urinary parameters in the rat model of essential hypertension. Blood pressures of all rats were measured using the tail-cuff method. The nitric oxide synthase inhibitor N (omega)-nitro-L-arginine was administered orally at a dose of 0.5 g/l/day for 15 days to rats in order to create an animal model of hypertension. Tannic acid was intraperitoneally injected at a dose of 50 mg/kg for 15 days. Superoxide dismutase, catalase activity and the concentration of malondialdehyde (MDA) were determined in blood plasma and homogenates of heart, liver and kidney. In order to evaluate renal functions, urine pH, urine volume, urine creatine, uric acid, and urea nitrogen values were measured. Compared with the hypertension group, a decrease in MDA concentrations of heart tissue (p < 0.01), urea nitrogen values (p < 0.01) and urine volumes (p < 0.001) were established in hypertension + tannic acid group. There was also a decrease in blood pressure values (20th and 30th days) of this group, but there was no a statistical difference according to hypertension group. The findings of our research show the effect of tannic acid in lowering blood pressure in hypertensive rats.

Journal ArticleDOI
TL;DR: Levels of metabolic activity, deoxyribonucleic acid (DNA) concentration, and glucose consumption of the cell lines cultured for 8 days in medium with 20 % alamarBlue® were significantly lower than those of MCF7 cells cultured for 4- and 8-day periods with no alamar blue®.
Abstract: Resazurin, introduced as a cell viability indicator under the trade name alamarBlue®, is generally regarded as nontoxic when used according to manufacturer’s suggested shorter-term incubation time specifications. However, problems arise when exposure times are extended to longer-term cultures on the order of days. To assess the effect of resazurin over longer incubation times, MCF7 (HTB-22), MCF10A (CRL-10317), 3T3-L1 (CL-173), and D1 (CRL-12424) cultures were tested with varying amounts of resazurin over 4- and 8-day periods. MCF7, 3T3-L1, and D1 cells cultured for 8 days with 20 % alamarBlue® had significantly less cell survivability. Specifically, levels of metabolic activity, deoxyribonucleic acid (DNA) concentration, and glucose consumption of the cell lines cultured for 8 days in medium with 20 % alamarBlue® were significantly lower (p < 0.05) than metabolic activity, DNA concentration, and glucose consumption of MCF7 cells cultured for 8 days in medium with no alamarBlue®. MCF7, 3T3-L1, and D1 cells used less glucose at concentrations as low as 5 %. Data also suggests the toxic effects are more pronounced in the cancerous cell line as compared to the noncancerous cells.

Journal ArticleDOI
TL;DR: The serum-free medium designed on the basis of general commercial media could support the growth of CHO cells and antibody production comparable to serum-containing medium in suspension culture.
Abstract: The design of serum-free media for suspension culture of genetically engineered Chinese hamster ovary (CHO) cells using general commercial media as a basis was investigated. Subcultivation using a commercial serum-free medium containing insulin-like growth factor (IGF)-1 with or without FCS necessitated additives other than IGF-1 to compensate for the lack of FCS and improve cell growth. Suspension culture with media containing several combinations of growth factors suggested the effectiveness of addition of both IGF-1 and the lipid signaling molecule lysophosphatidic acid (LPA) for promoting cell growth. Subcultivation of CHO cells in suspension culture using the commercial serum-free medium EX-CELL™302, which contained an IGF-1 analog, supplemented with LPA resulted in gradually increasing specific growth rate comparable to the serum-containing medium and in almost the same high antibody production regardless of the number of generations. The culture with EX-CELL™302 supplemented with LPA in a jar fermentor with pH control at 6.9 showed an apparently higher cell growth rate than the cultures without pH control and with pH control at 6.8. The cell growth in the medium supplemented with aurintricarboxylic acid (ATA), which was much cheaper than IGF-1, in combination with LPA was synergistically promoted similarly to that in the medium supplemented with IGF-1 and LPA. In conclusion, the serum-free medium designed on the basis of general commercial media could support the growth of CHO cells and antibody production comparable to serum-containing medium in suspension culture. Moreover, the possibility of cost reduction by the substitution of IGF-1 with ATA was also shown.

Journal ArticleDOI
TL;DR: Results indicate that ITO exhibits genotoxic activity in A. cepa root meristematic cells.
Abstract: Genotoxic effects of indium tin oxide (ITO) were investigated on root cells of Allium cepa by employing both Allium and Comet assays. A. cepa roots were treated with the aqueous dispersions of ITO at 5 different concentrations (12.5, 25, 50, 75, and 100 ppm) for 4 h. Exposure of ITO significantly increased mitotic index, and total chromosomal aberrations by the Allium test. While chromosome laggards, stickiness, disturbed anaphase–telophase and anaphase bridges were observed in anaphase–telophase cells, c-metaphase and binuclear cells were observed in other cells. A significant increase in DNA damage was also observed at all concentrations of ITO by the Comet assay. These results indicate that ITO exhibits genotoxic activity in A. cepa root meristematic cells.

Journal ArticleDOI
TL;DR: It is suggested that cyclosativene (CSV), a tetracyclic sesquiterpene, as a natural product with an antioxidant capacity in mitigating oxidative injuries in the field of neurodegenerative disorders.
Abstract: Sesquiterpenes have attracted much interest with respect to their protective effect against oxidative damage that may be the cause of many diseases including several neurodegenerative disorders and cancer. Our previous unpublished work suggested that cyclosativene (CSV), a tetracyclic sesquiterpene, has antioxidant and anticarcinogenic features. However, little is known about the effects of CSV on oxidative stress induced neurotoxicity. We used hydrogen peroxide (H2O2) exposure for 6 h to model oxidative stress. Therefore, this experimental design allowed us to explore the neuroprotective potential of CSV in H2O2-induced toxicity in new-born rat cerebral cortex cell cultures for the first time. For this aim, MTT and lactate dehydrogenase release assays were carried out to evaluate cytotoxicity. Total antioxidant capacity (TAC) and total oxidative stress (TOS) parameters were used to evaluate oxidative changes. In addition to determining of 8-hydroxy-2-deoxyguanosine (8-OH-dG) levels, the single cell gel electrophoresis (or Comet assay) was also performed for measuring the resistance of neuronal DNA to H2O2-induced challenge. Our results showed that survival and TAC levels of the cells decreased, while TOS, 8-OH-dG levels and the mean values of the total scores of cells showing DNA damage (Comet assay) increased in the H2O2 alone treated cultures. But pre-treatment of CSV suppressed the cytotoxicity, genotoxicity and oxidative stress which were increased by H2O2. On the basis of these observations, it is suggested that CSV as a natural product with an antioxidant capacity in mitigating oxidative injuries in the field of neurodegenerative disorders.

Journal ArticleDOI
TL;DR: The results indicated that the zebrafish/tumor xenograft assay was adequate to identify microRNAs able to suppress the release of angiogenic growth factors byAngiogenic tumor cells.
Abstract: The zebrafish/tumor xenograft angiogenesis assay is used to approach tumor angiogenesis, a pivotal step in cancer progression and target for anti-tumor therapies. Here, we evaluated whether the assay could allow the identification of microRNAs having an anti-angiogenic potential. For that, we transfected DU-145 prostate cancer cells with four microRNAs (miR-125a, miR-320, miR-487b, miR-492) responsive to both anti- and pro-angiogenic stimuli applied to human umbilical vein endothelial cells. After transfection, DU-145 cells were injected close to the developing subintestinal vessels of transgenic Tg(Kdrl:eGFP)s843 zebrafish embryos that express green fluorescent protein under the control of Kdrl promoter. At 72 h post-fertilization, we observed that green fluorescent protein–positive neo-vessels infiltrated the graft of DU-145 transfected with miR-125a, miR-320, and miR-487b. Vice versa, neo-vessel formation and tumor cell infiltration were inhibited when DU-145 cells transfected with miR-492 were used. These results indicated that the zebrafish/tumor xenograft assay was adequate to identify microRNAs able to suppress the release of angiogenic growth factors by angiogenic tumor cells.

Journal ArticleDOI
TL;DR: Results suggest that P. sulcata may induce caspase-independent apoptotic cell death at lower doses, while it may be genotoxic at relatively higher doses.
Abstract: Plants are still to be explored for new anti-cancer compounds because overall success in cancer treatment is still not satisfactory. As a new possible source for such compounds, the lichens are recently taking a great attention. We, therefore, explored both the genotoxic and anti-growth properties of lichen species Parmelia sulcata Taylor. The chemical composition of P. sulcata was analyzed with comprehensive gas chromatography–time of flight mass spectrometry. Anti-growth effect was tested in human breast cancer cell lines (MCF-7 and MDA-MB-231) by the MTT and ATP viability assays, while the genotoxic activity was studied by assays for micronucleus, chromosomal aberration and DNA fragmentation in human lymphocytes culture. Cell death modes (apoptosis/necrosis) were morphologically assessed. P. sulcata inhibited the growth in a dose-dependent manner up to a dose of 100 μg/ml and induced caspase-independent apoptosis. It also showed genotoxic activity at doses (>125 μg/ml) higher than that required for apoptosis. These results suggest that P. sulcata may induce caspase-independent apoptotic cell death at lower doses, while it may be genotoxic at relatively higher doses.

Journal ArticleDOI
TL;DR: In this article, stable monoclonal IgM producing CHO DG44 and HEK 293 cell lines, expressing two model IgM molecules (IgM-617 and IgM-012) were established.
Abstract: Despite the fact, that monoclonal antibodies are the fastest growing group of biopharmaceuticals in development, this is not true for the IgM class, which remains as enigmatic as ever. While more examples of usefulness of IgMs for medical applications are emerging, their recombinant production is still not common. In our study, stable monoclonal IgM producing CHO DG44 and HEK 293 cell lines, expressing two model IgM molecules (IgM-617 and IgM-012) were established. Recombinant cell lines were compared in regard of specific productivity, specific growth rate, maximal achieved antibody titer, gene copy numbers and transcription levels of transgene. IgM-617 cell lines were identified as high while IgM-012 clones were low producers. Although differences in gene copy numbers as well as in transcription levels were observed, they did not seem to be a limitation. Levels of relevant endoplasmic reticulum-stress related proteins were analyzed and no indications of unfolded protein response were detected. This could indicate that the difference in the intrinsic protein stability of our model proteins (as was previously observed on purified samples) might cause lower yields of IgM-012. Transcriptomics and/or proteomics follow up studies might be necessary for identification of potential bottlenecks in IgM producing cell lines.

Journal ArticleDOI
TL;DR: According to results mitotic index decreased with increasing the Anilofos concentrations in all application groups and each exposure time, while disturbed anaphase–telophase, choromosome laggard, stickiness and anphase bridge(s) were observed.
Abstract: Cytogenetic effects of Anilofos which was widely used in agriculture, was evaluated in Allium cepa root meristematic cells. In the Allium root growth inhibition test EC50 value was determined 50 ppm and 1/2× EC50 (25 ppm), EC50 (50 ppm) and 2 × EC50 (100 ppm) concentrations of Anilofos were applied to onion roots. A negative and positive control were used in the experiment in parallel. According to results mitotic index decreased with increasing the Anilofos concentrations in all application groups and each exposure time, while disturbed anaphase–telophase, choromosome laggard(s), stickiness and anaphase bridge(s) were observed. In anaphase–telophase cells, c-metaphase, disturbed nucleus and binuclear cells were observed in other anomalies. The results were also analyzed statistically by using Dunnett t test (2-tailed) and all concentrations of Anilofos were found significant.

Journal ArticleDOI
TL;DR: Analysis of optimal conditions for transfection efficiency by setting different parameters, including salt ion concentration, DNA/PEI ratio, and incubation time suggest DNA and PEI incubated in 300 mM NaCl at a ratio of 1:4 for 10 min could achieve the optimal transfections efficiency.
Abstract: Transfection efficiency is directly associated with the expression level and quantity of recombinant protein after the transient transfection of animal cells. The transfection process can be influenced by many still-unknown factors, so it is valuable to study the precise mechanism and explore these factors in gene delivery. Polyethylenimine (PEI) is considered to have high transfection efficiency and endosome-disrupting capacity. Here we aimed to investigate optimal conditions for transfection efficiency by setting different parameters, including salt ion concentration, DNA/PEI ratio, and incubation time. We examined the PEI–DNA particle size using a Malvern particle size analyzer and assessed the transfection efficiency using flow cytometry in Chinese hamster ovary-S cells. Salt ions, higher amounts of PEI tended to improve the aggregation of PEI–DNA particles and the particle size of PEI–DNA complexes and the transfection efficiency were increased. Besides, the particle size was also found to benefit from longer incubation time. However, the transfection efficiency increased to maximum of 68.92 % at an incubation time of 10 min, but decreased significantly thereafter to 23.71 %, when incubating for 120 min (P < 0.05). Besides, PEI–DNA complexes formed in salt-free condition were unstable. Our results suggest DNA and PEI incubated in 300 mM NaCl at a ratio of 1:4 for 10 min could achieve the optimal transfection efficiency. Our results might provide guidance for the optimization of transfection efficiency and the industrial production of recombinant proteins.