scispace - formally typeset
Search or ask a question

Showing papers in "Fly in 2018"


Journal ArticleDOI
02 Jan 2018-Fly
TL;DR: It was found that the temperature during development affected thermal tolerance and the microbial composition of male D. melanogaster, and flies that developed at high temperature were the most heat tolerant and had the highest abundance of Acetobacter.
Abstract: Physiological responses to changes in environmental conditions such as temperature may partly arise from the resident microbial community that integrates a wide range of bio-physiological aspects of the host. In the present study, we assessed the effect of developmental temperature on the thermal tolerance and microbial community of Drosophila melanogaster. We also developed a bacterial transplantation protocol in order to examine the possibility of reshaping the host bacterial composition and assessed its influence on the thermotolerance phenotype. We found that the temperature during development affected thermal tolerance and the microbial composition of male D. melanogaster. Flies that developed at low temperature (13°C) were the most cold resistant and showed the highest abundance of Wolbachia, while flies that developed at high temperature (31°C) were the most heat tolerant and had the highest abundance of Acetobacter. In addition, feeding newly eclosed flies with bacterial suspensions from intestines of flies developed at low temperatures changed the heat tolerance of recipient flies. However, we were not able to link this directly to a change in the host bacterial composition.

85 citations


Journal ArticleDOI
02 Jan 2018-Fly
TL;DR: Reducing the number of microsatellites to the minimum necessary to correctly detect the population structure of two Drosophila nigrosparsa populations is presented, demonstrating that more than 95% of the individuals can still be correctly assigned when using eight loci and that the major population structure is still visible when using two highly polymorphic loci.
Abstract: Small, isolated populations are constantly threatened by loss of genetic diversity due to drift. Such situations are found, for instance, in laboratory culturing. In guarding against diversity loss, monitoring of potential changes in population structure is paramount; this monitoring is most often achieved using microsatellite markers, which can be costly in terms of time and money when many loci are scored in large numbers of individuals. Here, we present a case study reducing the number of microsatellites to the minimum necessary to correctly detect the population structure of two Drosophila nigrosparsa populations. The number of loci was gradually reduced from 11 to 1, using the Allelic Richness (AR) and Private Allelic Richness (PAR) as criteria for locus removal. The effect of each reduction step was evaluated by the number of genetic clusters detectable from the data and by the allocation of individuals to the clusters; in the latter, excluding ambiguous individuals was tested to reduce the rate of incorrect assignments. We demonstrate that more than 95% of the individuals can still be correctly assigned when using eight loci and that the major population structure is still visible when using two highly polymorphic loci. The differences between sorting the loci by AR and PAR were negligible. The method presented here will most efficiently reduce genotyping costs when small sets of loci ("core sets") for long-time use in large-scale population screenings are compiled.

23 citations


Journal ArticleDOI
02 Jan 2018-Fly
TL;DR: The severe fitness costs that appear to be associated with the loss of function of this gene in natural populations in the absence of insecticides targeting the Dα1 subunit are highlighted.
Abstract: Nicotinic acetylcholine receptors (nAChRs) have vital functions in processes of neurotransmission that underpin key behaviors. These pentameric ligand-gated ion channels have been used as targets for insecticides that constitutively activate them, causing the death of insect pests. In examining a knockout of the Dα1 nAChR subunit gene, our study linked this one subunit with multiple traits. We were able to confirm previous work that had identified Dα1 as a target of the neonicotinoid class of insecticides. Further, we uncovered roles for the gene in influencing mating behavior and patterns of sleep. The knockout mutant was also observed to have a significant reduction in longevity. This study highlighted the severe fitness costs that appear to be associated with the loss of function of this gene in natural populations in the absence of insecticides targeting the Dα1 subunit. Such a fitness cost could explain why target site resistances to neonicotinoids in pest insect populations have been associated specific amino acid replacement mutations in nAChR subunits, rather than loss of function. That mutant phenotypes were observed for the two behaviors examined indicates that the functions of Dα1, and other nAChR subunits, need to be explored more broadly. It also remains to be established whether these phenotypes were due to loss of the Dα1 receptor and/or to compensatory changes in the expression levels of other nAChR subunits.

18 citations


Journal ArticleDOI
06 Mar 2018-Fly
TL;DR: The uncoupling of changes in bacteria from alterations in ISC behaviour and loss of barrier integrity has allowed us to explore the interrelationship of these intestinal aging phenotypes in more detail and has shed light on the importance of the proteins that contribute to maintenance of the intestinal barrier.
Abstract: Maladaptive changes in the intestinal flora, typically referred to as bacterial dysbiosis, have been linked to intestinal aging phenotypes, including an increase in intestinal stem cell (ISC) proliferation, activation of inflammatory pathways, and increased intestinal permeability1,2. However, the causal relationships between these phenotypes are only beginning to be unravelled. We recently characterized the age-related changes that occur to septate junctions (SJ) between adjacent, absorptive enterocytes (EC) in the fly intestine. Changes could be observed in the overall level of SJ proteins, as well as the localization of a subset of SJ proteins. Such age-related changes were particularly noticeable at tricellular junctions (TCJ)3. Acute loss of the Drosophila TCJ protein Gliotactin (Gli) in ECs led to rapid activation of stress signalling in stem cells and an increase in ISC proliferation, even under axenic conditions; a gradual disruption of the intestinal barrier was also observed. The uncoupling of changes in bacteria from alterations in ISC behaviour and loss of barrier integrity has allowed us to begin to explore the interrelationship of these intestinal aging phenotypes in more detail and has shed light on the importance of the proteins that contribute to maintenance of the intestinal barrier.

11 citations


Journal ArticleDOI
01 Aug 2018-Fly
TL;DR: Results suggest that dietary management along with physical activty has potential to improve mitochondrial biogenesis and delay the progression of PD in Drosophila parkin mutants.
Abstract: Physical exercise can improve gait, balance, tremor, flexibility, grip strength and motor coordination in Parkinson's disease (PD) patients. Several lines of evidence have also shown the therapeutic potential of dietary management and supplementation in halting the progression of PD. However, there is a lack of research on the combined effects of physical activity and nutrition in the progression of PD. We test the effects exercise and dietary modification in a Drosophila model of PD. In this study, we fed Drosophila parkin mutants high protein and high carbohydrate diets without and with stearic acid (4 treatments in total). In parallel, we subjected mutants to a regimen of exercise using a purpose-built 'Power tower' exercise machine. We then measured climbing ability, aconitase activity, and basal mitochondrial ROS levels. We observed that exercising parkin mutants fed the high protein diet improved their climbing ability and increased aconitase activity. There was an additional improvement in climbing and aconitase activity in exercised parkin mutants fed the high protein diet supplemented with stearic acid. No benefits of exercise were seen in parkin mutants fed the high carbohydrate diet. Combined, these results suggest that dietary management along with physical activty has potential to improve mitochondrial biogenesis and delay the progression of PD in Drosophila parkin mutants.

11 citations


Journal ArticleDOI
29 Nov 2018-Fly
TL;DR: It is concluded that eRpL22 paralogue roles are not completely interchangeable and include functionally-diverse roles in development and spermatogenesis and Emergence of adults demonstrated that ubiquitous eRPL22-like-FLAG or FLAG-eRp L22 expression eliminates embryonic lethality resulting from eR pL22 depletion.
Abstract: Duplicated ribosomal protein (RP) genes in the Drosophila melanogaster eRpL22 family encode structurally-divergent and differentially-expressed rRNA-binding RPs. eRpL22 is expressed ubiquitously and eRpL22-like expression is tissue-restricted with highest levels in the adult male germline. We explored paralogue functional equivalence using the GAL4-UAS system for paralogue knockdown or overexpression and a conditional eRpL22-like knockout in a heat- shock flippase/FRT line. Ubiquitous eRpL22 knockdown with Actin-GAL4 resulted in embryonic lethality, confirming eRpL22 essentiality. eRpL22-like knockdown (60%) was insufficient to cause lethality; yet, conditional eRpL22-like knockout at one hour following egg deposition caused lethality within each developmental stage. Therefore, each paralogue is essential. Variation in timing of heat-shock-induced eRpL22-like knockout highlighted early embryogenesis as the critical period where eRpL22-like expression (not compensated for by eRpL22) is required for normal development of several organ systems, including testis development and subsequent sperm production. To determine if eRpL22-like can substitute for eRpL22, we used Actin-GAL4 for ubiquitous eRpL22 knockdown and eRpL22-like-FLAG (or FLAG-eRpL22: control) overexpression. Emergence of adults demonstrated that ubiquitous eRpL22-like-FLAG or FLAG-eRpL22 expression eliminates embryonic lethality resulting from eRpL22 depletion. Adults rescued by eRpL22-like-FLAG (but not by FLAG-eRpL22) overexpression had reduced fertility and longevity. We conclude that eRpL22 paralogue roles are not completely interchangeable and include functionally-diverse roles in development and spermatogenesis. Testis-specific paralogue knockdown revealed molecular phenotypes, including increases in eRpL22 protein and mRNA levels following eRpL22-like depletion, implicating a negative crosstalk mechanism regulating eRpL22 expression. Paralogue depletion unmasked mechanisms, yet to be defined that impact paralogue co-expression within germ cells.

11 citations


Journal ArticleDOI
07 Feb 2018-Fly
TL;DR: A phylogenetic reconstruction combining morphological characters and molecular data obtained from 8 gene fragments is presented for the first time, and the categorization of the former “semispecies” of D. paulistorum as a subspecies is proposed.
Abstract: The willistoni species subgroup has been the subject of several studies since the latter half of the past century and is considered a Neotropical model for evolutionary studies, given the many levels of reproductive isolation and different evolutionary stages occurring within them. Here we present for the first time a phylogenetic reconstruction combining morphological characters and molecular data obtained from 8 gene fragments (COI, COII, Cytb, Adh, Ddc, Hb, kl-3 and per). Some relationships were incongruent when comparing morphological and molecular data. Also, morphological data presented some unresolved polytomies, which could reflect the very recent divergence of the subgroup. The total evidence phylogenetic reconstruction presented well-supported relationships and summarized the results of all analyses. The diversification of the willistoni subgroup began about 7.3 Ma with the split of D. insularis while D.paulistorum complex has a much more recent diversification history, which began about 2.1 Ma and apparently has not completed the speciation process, since the average time to sister species separation is one million years, and some entities of the D. paulistorum complex diverge between 0.3 and 1 Ma. Based on the obtained data, we propose the categorization of the former "semispecies" of D. paulistorum as a subspecies and describe the subspecies D. paulistorum amazonian, D. paulistorum andeanbrazilian, D. paulistorum centroamerican, D. paulistorum interior, D. paulistorum orinocan and D. paulistorum transitional.

8 citations


Journal ArticleDOI
01 Jan 2018-Fly
TL;DR: A predictive model to automate the counting of eggs from images of eggs removed from the media surface and washed onto dark filter paper is developed, using the simple relationship between the white area in an image and the number of eggs present to create a predictive model that performs well even at high egg densities.
Abstract: The ability to quantify fecundity is critically important to a wide range of experimental applications, particularly in widely-used model organisms such as Drosophila melanogaster. However, the standard method of manually counting eggs is time consuming and limits the feasibility of large-scale experiments. We develop a predictive model to automate the counting of eggs from images of eggs removed from the media surface and washed onto dark filter paper. Our method uses the simple relationship between the white area in an image and the number of eggs present to create a predictive model that performs well even at high egg densities where clumping can complicate the individual identification of eggs. A cross-validation approach demonstrates our method performs well, with a correlation between predicted and manually counted values of 0.88. We show how this method can be applied to a large data set where egg densities vary widely.

7 citations


Journal ArticleDOI
02 Oct 2018-Fly
TL;DR: Drosophila sensitivity to cisplatin in both cell types is affected by genetic background, and it is shown that mutation or RNAi-based knockdown of genes known to be associated with CIPN incidence in humans affect sensitivity of flies toCIPN.
Abstract: Drosophila melanogaster has recently been developed as a simple, in vivo, genetic model of chemotherapy-induced peripheral neuropathy. Flies treated with the chemotherapy agent cisplatin display both a neurodegenerative phenotype and cell death in rapidly dividing follicles, mimicking the cell specific responses seen in humans. Cisplatin induces climbing deficiencies and loss of fertility in a dose dependent manner. Drosophila sensitivity to cisplatin in both cell types is affected by genetic background. We show that mutation or RNAi-based knockdown of genes known to be associated with CIPN incidence in humans affect sensitivity of flies to CIPN. Drosophila is a promising model with which to study the effect of genetics on sensitivity to CIPN.

6 citations


Journal ArticleDOI
19 Aug 2018-Fly
TL;DR: It is shown that bantam (ban), a microRNA, modulates Dpp signaling activity and this feedback loop is important for maintaining anterior-posterior compartment boundary stability in the wing disc through regulation of optomotor blind (omb), a known target of the pathway.
Abstract: Decapentaplegic (Dpp), the Drosophila homolog of the vertebrate bone morphogenetic protein (BMP2/4), is crucial for patterning and growth in many developmental contexts. The Dpp pathway is regulated at many different levels to exquisitely control its activity. We show that bantam (ban), a microRNA, modulates Dpp signaling activity. Over expression of ban decreases phosphorylated Mothers against decapentaplegic (Mad) levels and negatively affects Dpp pathway transcriptional target genes, while null mutant clones of ban upregulate the pathway. We provide evidence that dpp upregulates ban in the wing imaginal disc, and attenuation of Dpp signaling results in a reduction of ban expression, showing that they function in a feedback loop. Furthermore, we show that this feedback loop is important for maintaining anterior-posterior compartment boundary stability in the wing disc through regulation of optomotor blind (omb), a known target of the pathway. Our results support a model that ban functions with dpp in a negative feedback loop.

6 citations


Journal ArticleDOI
02 Jan 2018-Fly
TL;DR: With the identification of the MTV complex as an ssDNA binding complex essential for telomere integrity in Drosophila, several universal principles that are intrinsic to chromosome extremities but independent of the underlying DNA sequences or the telomerase enzyme are established.
Abstract: Telomere protects the ends of linear chromosomes. Telomere dysfunction fuels genome instability that can lead to diseases such as cancer. For over 30 years, Drosophila has fascinated the field as the only major model organism that does not rely on the conserved telomerase enzyme for end protection. Instead of short DNA repeats at chromosome ends, Drosophila has domesticated retrotransposons. In addition, telomere protection can be entirely sequence-independent under normal laboratory conditions, again dissimilar to what has been established for telomerase-maintained systems. Despite these major differences, recent studies from us and others have revealed remarkable similarities between the 2 systems. In particular, with the identification of the MTV complex as an ssDNA binding complex essential for telomere integrity in Drosophila (Zhang et al. 2016 Plos Genetics), we have now established several universal principles that are intrinsic to chromosome extremities but independent of the underlying DN...

Journal ArticleDOI
08 Jan 2018-Fly
TL;DR: This connection between compromised ACD and tumorigenesis was first demonstrated using Drosophila neural stem cells (neuroblasts, NBs) more than a decade ago and, over the past years, it has also been established in vertebrate stem cells.
Abstract: Asymmetric cell division (ACD) is an essential process during development for generating cell diversity. In addition, a more recent connection between ACD, cancer and stem cell biology has opened novel and highly intriguing venues in the field. This connection between compromised ACD and tumorigenesis was first demonstrated using Drosophila neural stem cells (neuroblasts, NBs) more than a decade ago and, over the past years, it has also been established in vertebrate stem cells. Here, focusing on Drosophila larval brain NBs, and in light of results recently obtained in our lab, we revisit this connection emphasizing two main aspects: 1) the differences in tumor suppressor activity of different ACD regulators and 2) the potential relevance of environment and temporal window frame for compromised ACD-dependent induction of tumor-like overgrowth.

Journal ArticleDOI
02 Jan 2018-Fly
TL;DR: It is argued that Cg acts as a flexible transcriptional platform that contributes to numerous gene expression outcomes by a variety of mechanisms and provides repressive activities that dampen Eya-So output, but not by recruiting Polycomb chromatin-remodeling complexes as it does in other contexts.
Abstract: Master regulatory transcription factors cooperate in networks to shepherd cells through organogenesis. In the Drosophila eye, a collection of master control proteins known as the retinal determination gene network (RDGN) switches the direction and targets of its output to choreograph developmental transitions, but the molecular partners that enable such regulatory flexibility are not known. We recently showed that two RDGN members, Eyes absent (Eya) and Sine oculis (So), promote exit from the terminal cell cycle known as the second mitotic wave (SMW) to permit differentiation. A search for co-factors identified the ubiquitously expressed Combgap (Cg) as a novel transcriptional partner that impedes cell cycle exit and interferes with Eya-So activity specifically in this context. Here, we argue that Cg acts as a flexible transcriptional platform that contributes to numerous gene expression outcomes by a variety of mechanisms. For example, Cg provides repressive activities that dampen Eya-So output, ...

Journal ArticleDOI
09 Feb 2018-Fly
TL;DR: The results suggest that irreversible neddylation prolongs COP9 binding to and inhibition of Cullin-based ubiquitin ligases.
Abstract: The COP9 signalosome inhibits the activity of Cullin-RING E3 ubiquitin ligases by removing Nedd8 modifications from their Cullin subunits. Neddylation renders these complexes catalytically active, but deneddylation is also necessary for them to exchange adaptor subunits and avoid auto-ubiquitination. Although deneddylation is thought to be the primary function of the COP9 signalosome, additional activities have been ascribed to some of its subunits. We recently showed that COP9 subunits protect the transcriptional repressor and tumor suppressor Capicua from two distinct modes of degradation. Deneddylation by the COP9 signalosome inactivates a Cullin 1 complex that ubiquitinates Capicua following its phosphorylation by MAP kinase in response to Epidermal Growth Factor Receptor signaling. The CSN1b subunit also stabilizes unphosphorylated Capicua to control its basal level, independently of the deneddylase function of the complex. Here we further examine the importance of deneddylation for COP9 functions in vivo. We use an uncleavable form of Nedd8 to show that preventing deneddylation does not reproduce the effects of loss of COP9. In contrast, in the presence of COP9, conjugation to uncleavable Nedd8 renders Cullins unable to promote the degradation of their substrates. Our results suggest that irreversible neddylation prolongs COP9 binding to and inhibition of Cullin-based ubiquitin ligases.

Journal ArticleDOI
21 Aug 2018-Fly
TL;DR: It is found that Sxl is required in specific neuronal subsets to upregulate female body growth, including in the neurosecretory insulin producing cells, even though insulin-like peptides themselves appear not to be involved.
Abstract: Sexual size dimorphism (SSD), a sex difference in body size, is widespread throughout the animal kingdom, raising the question of how sex influences existing growth regulatory pathways to bring about SSD. In insects, somatic sexual differentiation has long been considered to be controlled strictly cell-autonomously. Here, we discuss our surprising finding that in Drosophila larvae, the sex determination gene Sex-lethal (Sxl) functions in neurons to non-autonomously specify SSD. We found that Sxl is required in specific neuronal subsets to upregulate female body growth, including in the neurosecretory insulin producing cells, even though insulin-like peptides themselves appear not to be involved. SSD regulation by neuronal Sxl is also independent of its known splicing targets, transformer and msl-2, suggesting that it involves a new molecular mechanism. Interestingly, SSD control by neuronal Sxl is selective for larval, not imaginal tissue types, and operates in addition to cell-autonomous effects of Sxl and Tra, which are present in both larval and imaginal tissues. Overall, our findings add to a small but growing number of studies reporting non-autonomous, likely hormonal, control of sex differences in Drosophila, and suggest that the principles of sexual differentiation in insects and mammals may be more similar than previously thought.

Journal ArticleDOI
18 Sep 2018-Fly
TL;DR: This work document in detail the maternal and zygotic expression of slam RNA and protein and provide data for a function in membrane stabilization and mapped the region of Slam protein mediating cortical localization in cultured cells.
Abstract: In this extra view, we comment on our recent work concerning the mRNA localization of the gene slow as molasses (slam). slam is a gene essential for the polarized invagination of the plasma membrane and separation of basal and lateral cortical domains during cellularization as well as for germ cell migration in later embryogenesis. We have demonstrated an intimate relationship between slam RNA and its encoded protein. Slam RNA co-localizes and forms a complex with its encoded protein. Slam mRNA localization not only is required for reaching full levels of functional Slam protein but also depends on Slam protein. The translation of slam mRNA is subject to tight spatio-temporal regulation leading to a rapid accumulation of Slam protein and zygotic slam RNA at the furrow canal. In this extra view, we first discuss the mechanism controlling localization and translation of slam RNA. In addition, we document in detail the maternal and zygotic expression of slam RNA and protein and provide data for a function in membrane stabilization. Furthermore, we mapped the region of Slam protein mediating cortical localization in cultured cells.

Journal ArticleDOI
02 Jan 2018-Fly
TL;DR: A set of image processing and pattern-recognition macros that can quantify trichomes arrangements in micrographs and mark these directly by color, arrow or colored arrow to indicate trichome location, length and orientation are described.
Abstract: Epithelial cells are defined by apical-basal and planar cell polarity (PCP) signaling, the latter of which establishes an orthogonal plane of polarity in the epithelial sheet. PCP signaling is required for normal cell migration, differentiation, stem cell generation and tissue repair, and defects in PCP have been associated with developmental abnormalities, neuropathologies and cancers. While the molecular mechanism of PCP is incompletely understood, the deepest insights have come from Drosophila, where PCP is manifest in hairs and bristles across the adult cuticle and organization of the ommatidia in the eye. Fly wing cells are marked by actin-rich trichome structures produced at the distal edge of each cell in the developing wing epithelium and in a mature wing the trichomes orient collectively in the distal direction. Genetic screens have identified key PCP signaling pathway components that disrupt trichome orientation, which has been measured manually in a tedious and error prone process. Here we describe a set of image processing and pattern-recognition macros that can quantify trichome arrangements in micrographs and mark these directly by color, arrow or colored arrow to indicate trichome location, length and orientation. Nearest neighbor calculations are made to exploit local differences in orientation to better and more reliably detect and highlight local defects in trichome polarity. We demonstrate the use of these tools on trichomes in adult wing preps and on actin-rich developing trichomes in pupal wing epithelia stained with phalloidin. FijiWingsPolarity is freely available and will be of interest to a broad community of fly geneticists studying the effect of gene function on PCP.

Journal ArticleDOI
02 Jan 2018-Fly
TL;DR: It is found that a functional, GFP-tagged genomic construct of jus is expressed mostly in axons of the neck connectives and of the thoracic abdominal ganglia, which suggests that the alternate position of the GFP tag may disrupt Jus protein function by altering its subcellular localization and/or stability.
Abstract: The bang-sensitive (BS) mutants of Drosophila are an important model for studying epilepsy. We recently identified a novel BS locus, julius seizure (jus), encoding a protein containing two transmembrane domains and an extracellular cysteine-rich loop. We also determined that jussda iso7.8, a previously identified BS mutation, is an allele of jus by recombination, deficiency mapping, complementation testing, and genetic rescue. RNAi knockdown revealed that jus expression is important in cholinergic neurons and that the critical stage of jus expression is the mid-pupa. Finally, we found that a functional, GFP-tagged genomic construct of jus is expressed mostly in axons of the neck connectives and of the thoracic abdominal ganglia. In this Extra View article, we show that a MiMiC GFP-tagged Jus is localized to the same nervous system regions as the GFP-tagged genomic construct, but its expression is mostly confined to cell bodies and it causes bang-sensitivity. The MiMiC GFP-tag lies in the extracellular loop while the genomic construct is tagged at the C-terminus. This suggests that the alternate position of the GFP tag may disrupt Jus protein function by altering its subcellular localization and/or stability. We also show that a small subset of jus-expressing neurons are responsible for the BS phenotype. Finally, extending the utility of the BS seizure model, we show that jus mutants exhibit cold-sensitive paralysis and are partially sensitive to strobe-induced seizures.

Journal ArticleDOI
01 Jan 2018-Fly
TL;DR: It is reported that Protein Kinase D (dPKD) regulates Rh1 homeostasis in adult photoreceptors, and that dPKD is dispensable for eye development but is required for maintaining Rh1 levels in adult Photoreceptor plasma membrane.
Abstract: During Drosophila phototransduction, the G protein coupled receptor (GPCR) Rhodopsin (Rh1) transduces photon absorption into electrical signal via G-protein coupled activation of phospholipase C (PLC). Rh1 levels in the plasma membrane are critical for normal sensitivity to light. In this study, we report that Protein Kinase D (dPKD) regulates Rh1 homeostasis in adult photoreceptors. Although eye development and retinal structure are unaffected in the dPKD hypomorph (dPKDH), it exhibited elevated levels of Rh1. Surprisingly, despite having elevated levels of Rh1, no defect was observed in the electrical response to light in these flies. By contrast the levels of another transmembrane protein of the photoreceptor plasma membrane, Transient receptor potential (TRP) was not altered in dPKDH. Our results indicate that dPKD is dispensable for eye development but is required for maintaining Rh1 levels in adult photoreceptors.

Journal ArticleDOI
01 Mar 2018-Fly
TL;DR: Findings on a tumor-intrinsic, Eiger- and stroma-independent mechanism that contributes to the unlimited growth potential of tumors caused either by chromosomal instability or impaired cell polarity are reviewed.
Abstract: The growth of epithelial tumors is often governed by cell interactions with the surrounding stroma. Drosophila has been instrumental in identifying the relevant molecular elements mediating these interactions. Of note is the role of the TNF ligand Eiger, released from recruited blood cells, in activating the JNK tumor-promoting pathway in epithelial tumors. JNK drives the transcriptional induction of mitogenic molecules, matrix metalloproteases and systemic signals that lead to tumor growth, tissue invasiveness and malignancy. Here we review our findings on a tumor-intrinsic, Eiger- and stroma-independent mechanism that contributes to the unlimited growth potential of tumors caused either by chromosomal instability or impaired cell polarity. This newly identified mechanism, which was revealed in an experimental condition in which contacts between tumor cells and wild-type epithelial cells were minimized, relies on interactions between functionally distinct tumor cell populations that activate JNK in a cell-autonomous manner. We discuss the impact of cell interaction-based feedback amplification loops on the unlimited growth potential of epithelial tumors. These findings are expected to contribute to the identification of the relevant cell populations and molecular mechanisms to be targeted in drug therapy.