scispace - formally typeset
Search or ask a question

Showing papers in "Food Science and Nutrition in 2020"


Journal ArticleDOI
TL;DR: This review is written with appropriate referencing to previously published work and provides updated information regarding the new method of organic farming for sunflower production, nutritional and health benefits, and its by‐products as human diet and livestock feed.
Abstract: The use of biofertilizers in developing environmentally friendly agriculture as an alternative to chemical-based fertilizers in enhancing food production is promising in sustainable agriculture for the improvement in the yield of some commercial crops such as sunflowers and other oilseed crops in terms of quality and quantity. Sunflower is an important oilseed crop native to South America and currently cultivated throughout the world. Generally, the sunflower is considered important based on its nutritional and medicinal value. Due to its beneficial health effects, sunflower has been recognized as functional foods or nutraceutical, although not yet fully harnessed. Sunflower contains mineral elements and phytochemicals such as dietary fiber, manganese, vitamins, tocopherols, phytosterols, triterpene glycosides, α-tocopherol, glutathione reductase, flavonoids, phenolic acids, carotenoids, peptides, chlorogenic acid, caffeic acid, alkaloids, tannins, and saponins; and these compounds contribute to their functional and nutraceutical development. The extract from sunflower is known to be a potential source of antimicrobial, anti-inflammatory, antitumor, and antioxidants agents that protect human cells against harmful reactive oxygen molecules and pathogenic microorganisms. Also, the pharmacological survey on sunflower had revealed its curative power to different kinds of diseases. The health benefits of sunflower include blood pressure and diabetic control, skin protection, and lowering cholesterol and other functions. This review is written with appropriate referencing to previously published work and provides updated information regarding the new method of organic farming for sunflower production, nutritional and health benefits, and its by-products as human diet and livestock feed. Also, the constraints of sunflower production are elucidated.

128 citations


Journal ArticleDOI
TL;DR: There is some evidence for whole cereal intake to be beneficial in amelioration of T2DM through inhibiting α‐glucosidase and α‐amylase activities, according to an updated overview on the effects provided by cereal‐derived ingredients on carbohydrate digestibility.
Abstract: The strategy of reducing carbohydrate digestibility by controlling the activity of two hydrolyzing enzymes (α-amylase and α-glucosidase) to control postprandial hyperglycemia is considered as a viable prophylactic treatment of type 2 diabetes mellitus (T2DM). Thus, the consumption of foods rich in hydrolyzing enzyme inhibitors is recommended for diet therapy of diabetes. Whole cereal products have gained increasing interests for plasma glucose-reducing effects. However, the mechanisms for whole cereal benefits in relation to T2DM are not yet fully understood, but most likely involve bioactive components. Cereal-derived phenolic compounds, peptides, nonstarch polysaccharides, and lipids have been shown to inhibit α-amylase and α-glucosidase activities. These hydrolyzing enzyme inhibitors seem to make whole cereals become nutritional strategies in managing postmeal glucose for T2DM. This review presents an updated overview on the effects provided by cereal-derived ingredients on carbohydrate digestibility. It suggests that there is some evidence for whole cereal intake to be beneficial in amelioration of T2DM through inhibiting α-glucosidase and α-amylase activities.

109 citations


Journal ArticleDOI
TL;DR: The plant‐based foods play a vital role to enhance the immunity of people to control of COVID‐19, a novel coronavirus that has spread rapidly to multiple countries and has been declared a pandemic by the World Health Organization.
Abstract: This review focused on the use of plant based foods for enhancing the immunity of all aged groups against COVID-19. In humans, coronaviruses are included in the spectrum of viruses that cause the common cold and, recently, severe acute respiratory syndrome (SARS). Emerging infectious diseases, such as SARS present a major threat to public health. The novel coronavirus has spread rapidly to multiple countries and has been declared a pandemic by the World Health Organization. COVID-19 is usually caused a virus to which most probably the people with low immunity response are being effected. Plant based foods increased the intestinal beneficial bacteria which are helpful and makes up of 85% of the immune system. By the use of plenty of water, minerals like magnesium and Zinc, micronutrients, herbs, food rich in vitamins C, D & E and better life style one can promote the health and can overcome this infection. Various studies investigated that a powerful antioxidant Glutathione and a bioflavonoid Quercetin may prevent various infections including COVID-19. In conclusion, the plant based foods play a vital role to enhance the immunity of people to control of COVID-19.

107 citations


Journal ArticleDOI
TL;DR: It is concluded that hyperhomocysteinemia (elevated levels of homocysteine) is considered as toxic for cells and is associated with different health problems.
Abstract: Cysteine and homocysteine (Hcy), both sulfur-containing amino acids (AAs), produced from methionine another sulfur-containing amino acid, which is converted to Hcy and further converted to cysteine. This article aims to highlight the link between cysteine and Hcy, and their mechanisms, important functions, play in the body and their role as a biomarker for various types of diseases. So that using cysteine and Hcy as a biomarker, we can prevent and diagnose many diseases. This review concluded that hyperhomocysteinemia (elevated levels of homocysteine) is considered as toxic for cells and is associated with different health problems. Hyperhomocysteinemia and low levels of cysteine associated with various diseases like cardiovascular diseases (CVD), ischemic stroke, neurological disorders, diabetes, cancer like lung and colorectal cancer, renal dysfunction-linked conditions, and vitiligo.

97 citations


Journal ArticleDOI
TL;DR: Scientific evidence suggests that curcumin could have a potential role to treat COVID‐19, a disease caused by a new member of beta coronaviruses that spreads worldwide and has several molecular mechanisms including antioxidant, antiapoptotic, and antifibrotic properties.
Abstract: In late December 2019, the outbreak of respiratory illness emerged in Wuhan, China, and spreads worldwide. World Health Organization (WHO) named this disease severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused by a new member of beta coronaviruses. Several medications are prescribed to patients, and some clinical trials are underway. Scientists are trying to find a specific drug against this virus. In this review, we summarize the pathogenesis, clinical features, and current treatments of coronavirus disease 2019 (COVID-19). Then, we describe the possible therapeutic effects of curcumin and its molecular mechanism against coronavirus-19. Curcumin, as an active constituent of Curcuma longa (turmeric), has been studied in several experimental and clinical trial studies. Curcumin has some useful clinical effects such as antiviral, antinociceptive, anti-inflammatory, antipyretic, and antifatigue effects that could be effective to manage the symptoms of the infected patient with COVID-19. It has several molecular mechanisms including antioxidant, antiapoptotic, and antifibrotic properties with inhibitory effects on Toll-like receptors, NF-κB, inflammatory cytokines and chemokines, and bradykinin. Scientific evidence suggests that curcumin could have a potential role to treat COVID-19. Thus, the use of curcumin in the clinical trial, as a new treatment option, should be considered.

83 citations


Journal ArticleDOI
Jyoti Singh1, Alka Mehta1
TL;DR: A review of traditional and highly advance methods and their characteristics for evaluating mycotoxins concludes that Immunoassay, Advanced quantitative techniques are now globally accepted for mycotoxin analysis.
Abstract: Quantification of mycotoxins in foodstuffs is extremely difficult as a limited amount of toxins are known to be presented in the food samples. Mycotoxins are secondary toxic metabolites, made primarily by fungal species, contaminating feeds and foods. Due to the presence in globally used grains, it is an unpreventable problem that causes various acute and chronic impacts on human and animal health. Over the previous few years, however, progress has been made in mycotoxin analysis studies. Easier techniques of sample cleanup and advanced chromatographic approaches have been developed, primarily high-performance liquid chromatography. Few extremely sophisticated and adaptable tools such as high-resolution mass spectrometry and gas chromatography-tandem MS/MS have become more important. In addition, Immunoassay, Advanced quantitative techniques are now globally accepted for mycotoxin analysis. Thus, this review summarizes these traditional and highly advance methods and their characteristics for evaluating mycotoxins.

81 citations


Journal ArticleDOI
TL;DR: Potato, soy, and pea proteins can complement a broad range of plant proteins, leading to higher DIAAS when supplied in the form of protein mixtures and at specific ratios, which highlights the potential to achieve an optimal nutritional efficiency with plant proteins alone.
Abstract: Indispensable amino acid (IAA) composition and standardized ileal digestibility (SID) of five animal- and 12 plant-based proteins were used to calculate their respective Digestible Indispensable Amino Score (DIAAS) according to the three age categories defined by the Food and Agriculture Organization (FAO). Mean IAA content and mean SID obtained from each protein dataset were subsequently used to simulate optimal nutritional quality of protein mixtures. Datasets revealed considerable variation in DIAAS within the same protein source and among different protein sources. Among the selected protein sources, and based on the 0.5- to 3-year-old reference pattern, pork meat, casein, egg, and potato proteins are classified as excellent quality proteins with an average DIAAS above 100. Whey and soy proteins are classified as high-quality protein with an average DIAAS ≥75. Gelatin, rapeseed, lupin, canola, corn, hemp, fava bean, oat, pea, and rice proteins are classified in the no quality claim category (DIAAS <75). Potato, soy, and pea proteins can complement a broad range of plant proteins, leading to higher DIAAS when supplied in the form of protein mixtures and at specific ratios. Such complementarity highlights the potential to achieve an optimal nutritional efficiency with plant proteins alone.

79 citations


Journal ArticleDOI
TL;DR: The ANFIS model, in comparison with the artificial neural networks model, was better able to predict Eu, EUR, exergy efficiency, and exergy loss, with R 2 of .9989, .9988, .986, and .9978, respectively.
Abstract: This study aimed to predict the drying kinetics, energy utilization (Eu ), energy utilization ratio (EUR), exergy loss, and exergy efficiency of quince slice in a hot air (HA) dryer using artificial neural networks and ANFIS. The experiments were performed at air temperatures of 50, 60, and 70°C and air velocities of 0.6, 1.2, and 1.8 m/s. The thermal parameters were determined using thermodynamic relations. Increasing air temperature and air velocity increased the effective moisture diffusivity (Deff ), Eu , EUR, exergy efficiency, and exergy loss. The value of the Deff was varied from 4.19 × 10-10 to 1.18 × 10-9 m2/s. The highest value Eu , EUR, and exergy loss and exergy efficiency were calculated 0.0694 kJ/s, 0.882, 0.044 kJ/s, and 0.879, respectively. Midilli et al. model, ANNs, and ANFIS model, with a determination coefficient (R 2) of .9992, .9993, and .9997, provided the best performance for predicting the moisture ratio of quince fruit. Also, the ANFIS model, in comparison with the artificial neural networks model, was better able to predict Eu , EUR, exergy efficiency, and exergy loss, with R 2 of .9989, .9988, .9986, and .9978, respectively.

73 citations


Journal ArticleDOI
TL;DR: Overall, root and sprout had a higher antioxidant capacity compared to other parts of the quinoa plant, suggesting the potential use of quinoa root and Sprout as a nutraceutical ingredient in the health food industry.
Abstract: Quinoa plant is a valuable food crop because of its high nutritional and functional values. Total saponin content, sapogenins, polyphenol, and flavonoid contents and antioxidant activities were analyzed in various parts of quinoa plants, including sprout, seeds, bran, pericarp, leave, stem, and root. Quinoa seeds (QS) had significantly higher sapogenin content than quinoa stem (QT), quinoa leaves (QL), and quinoa roots (QR). Quinoa saponin was mainly composed of phytolaccagenic acid. Quinoa root (QR) had the highest amount of total saponin (13.39 g 100 g-1), followed by quinoa bran. The highest total phenolic content (30.96 mg GAE 100 g-1) and total flavonoid content (61.68 mg RE 100 g-1) were observed in quinoa root extract and 1-month-old sprout extract, respectively. Quinoa sprouts showed better antioxidant activity than fully grown parts of the quinoa plant. Overall, root and sprout had a higher antioxidant capacity compared to other parts of the quinoa plant, suggesting the potential use of quinoa root and sprout as a nutraceutical ingredient in the health food industry.

56 citations


Journal ArticleDOI
TL;DR: Cocos nucifera sap possesses high DPPH, FRAP, and ABTS properties, which showed that coconut sap could be served as a potential healthier sugar source compared with sugar palm and sugarcane juices.
Abstract: This study was carried out to compare the antioxidant and nutritional properties of coconut (Cocos nucifera L.) sap with other natural sources of sugar such as sugar palm (Borassus flabellifer) and sugarcane (Saccharum officinarum L.). Coconut sap and juice from sugar palm and sugarcane were analyzed for proximate composition, pH and total soluble solid (TSS), color, sugar profile, vitamin profile, antioxidant properties (total phenolic contents, DPPH, FRAP, and ABTS), and mineral content. The results indicated that coconut sap possesses high DPPH (23.42%), FRAP (2.09 mM/ml), and ABTS (21.85%) compared with the juices. Coconut sap also had high vitamin C (116.19 µg/ml) and ash (0.27%) contents, especially in potassium (960.87 mg/L) and sodium (183.21 mg/L) which also indicating high content of minerals. These properties showed that coconut sap could be served as a potential healthier sugar source compared with sugar palm and sugarcane juices.

53 citations


Journal ArticleDOI
TL;DR: Preservation of cowpea leaves should seek not only to enhance the shelf‐life, but also to enhance acceptability of the products with a view of increased utilization.
Abstract: Cowpea leaf is among the African indigenous vegetables that have been recommended for possible alleviation of food and nutrition insecurity in sub-Saharan Africa (SSA). The vegetable is rich in micronutrients including iron and vitamin A whose deficiencies are prevalent in SSA. Considering the limitation of seasonal availability, preservation techniques have been adopted to enhance availability with little success. This review aims at highlighting the contribution of cowpeas leaves to food and nutrition security as well as research gaps that must be addressed to promote the utilization of value-added forms that would have extended effect of improving its production and consumption. It was found that preserved and fresh cowpea leaves were rich in beta-carotene and iron in the ranges of 0.25-36.55 and 0.17-75.00 mg/100 g dry weight, respectively. The proportion of rural households incorporating the vegetable in its various forms in the region can be as high as 30%. With adequate utilization, the vegetable provided up to ≥ 75% and 25% of RDAs for vitamin A and iron, respectively, of children aged 4-8. However, the utilization of preserved forms faced a limitation for a deviation of up to 30% in their sensory scores and decreased nutrient content as compared to the fresh ones hugely hindered their market penetration. Utilization of novel processing techniques incorporating concept of hurdle technology can help address these quality losses. In conclusion, preservation of cowpea leaves should seek not only to enhance the shelf-life, but also to enhance acceptability of the products with a view of increased utilization.

Journal ArticleDOI
TL;DR: All the protective effects of vitexin as an antioxidant against reactive oxygen species, lipid peroxidation, and other oxidative damages in a variety of oxidative stress‐related diseases are summarized.
Abstract: Vitexin is an apigenin flavone glycoside found in food and medicinal plants. It has a variety of pharmacological effects, including antioxidant, anti-inflammatory, anticancer, antinociceptive, and neuroprotective effects. This review study summarizes all the protective effects of vitexin as an antioxidant against reactive oxygen species, lipid peroxidation, and other oxidative damages in a variety of oxidative stress-related diseases, including seizure, memory impairment, cerebral ischemia, neurotoxicity, myocardial and respiratory injury, and metabolic dysfunction, with possible molecular and cellular mechanisms. This review describes any activation or inhibition of the signaling pathways that depend on the antioxidant activity of vitexin. More basic research is needed on the antioxidative effects of vitexin in vivo, and carrying out clinical trials for the treatment of oxidative stress-related diseases is also recommended.

Journal ArticleDOI
TL;DR: Results clarify the mechanism of starch changes caused by thermal treatment and significantly changed the pasting profiles of the native proso millet starch, and the peak viscosity, setback, and breakdown values decreased.
Abstract: Proso millet starch was modified by heat-moisture treatment (HMT), autoclaving treatment (AT), and microwave treatment (MT). The effects of these treatments on the starch physicochemical, structural, and molecular properties were investigated. The amylose and resistant starch contents were increased by AT and MT, but only slightly by HMT. HMT and AT significantly increased the water-holding capacity, to 172.66% and 191.63%, respectively. X-ray diffractometry showed that the relative crystallinity of the HMT sample decreased by 20.88%, and the crystalline peaks disappeared from the AT and MT sample patterns. The thermal treatments decreased the proso millet starch molecular weight to 1.769 × 106, 7.886 × 105, and 3.411 × 104 g/mol, respectively. The thermal enthalpy decreased significantly in HMT. Modification significantly changed the pasting profiles of the native proso millet starch, and the peak viscosity, setback, and breakdown values decreased. These results clarify the mechanism of starch changes caused by thermal treatment.

Journal ArticleDOI
TL;DR: Results demonstrate that both the methanolic extract of T. crispa and those fractions containing genkwanin may offer promise in reducing pyrexia and as a source of potential hepatoprotective agents.
Abstract: This research describes an investigation of the antipyretic and hepatoprotective properties of both a crude organic extract and various subfractions of the ethnomedicinal plant Tinospora crispa, using appropriate animal models. In an attempt to identify potential lead hepatoprotective compounds, in silico experiments were utilized. Antipyretic activity was assessed via the Brewer's yeast-induced pyrexia method, while hepatoprotective effects were evaluated in a carbon tetrachloride (CCl4)-induced animal model. A computer-aided prediction of activity spectra for substances (PASS) model was applied to a selection of documented phytoconstituents, with the aim of identifying those compounds with most promising hepatoprotective effects. Results were analyzed using Molinspiration software. Our results showed that both the methanol extract (METC) and various subfractions (pet ether, PEFTC; n-hexane, NHFTC; and chloroform, CFTC) significantly (p < .05) reduced pyrexia in a dose-dependent manner. In CCl4-induced hepatotoxicity studies, METC ameliorated elevated hepatic markers including serum alanine amino transferase (ALT), aspartate amino transferase (AST), alkaline phosphatase (ALP), and total bilirubin. Malondialdehyde (MDA) levels were significantly reduced, while superoxide dismutase (SOD) levels were significantly increased. Among a selection of metabolites of T. crispa, genkwanin was found to be the most potent hepatoprotective constituent using PASS predictive models. These results demonstrate that both the methanolic extract of T. crispa and those fractions containing genkwanin may offer promise in reducing pyrexia and as a source of potential hepatoprotective agents.

Journal ArticleDOI
TL;DR: It could be inferred that freeze‐drying is the most efficient drying approach in respect of preserving both physical and EO attributes of Thomson peel.
Abstract: Thomson navel orange peel is a by-product of citrus processing, which contains high levels of bioactive compounds advantageous to human health, nevertheless due to its high moisture content it is exceedingly perishable. Drying is among the most common preservation methods, which could prolong the plants shelf-life via reducing their moisture value. Taking this into account, depending on their type and conditions, drying techniques could degrade plant heat-sensitive metabolites and lead to quality decline. Therefore, the goal of this paper was to investigate the influence of seven drying methods named sun, shade, oven, vacuum oven, microwave, and freeze-drying with different drying conditions on the physical properties, for example, bulk density and color (L*, a*, b*, ΔE, and browning index (BI)) and essential oil characteristics such as extraction yield, chemical composition, antioxidant (total phenolic content (TPC), DPPH, and FRAP essays), and antimicrobial (MIC and MBC) activities of Thomson peel and determine the superior drying procedure. Results showed that freeze-dried sample had the highest retention of L* (48.54) and b* (49.00) values, lowest BI (216.11) as well as highest EO extraction yield (6.90%), TPC (60.10 GAE/100 g), FRAP (0.52% at 80 mg/ml), and lowest IC50 (5.00 mg/ml), MIC and MBC compared with other drying treatments. Therefore, it could be inferred that freeze-drying is the most efficient drying approach in respect of preserving both physical and EO attributes of Thomson peel.

Journal ArticleDOI
TL;DR: It was concluded that quercetin could attenuate high‐fat diet‐induced obesity, rutin, quercETin, and Tartary buckwheat can shape the specific structure of gut microbiota.
Abstract: Tartary buckwheat is rich in flavonoids. However, the health-promoting effect of these flavonoids has not been adequately studied. In the present study, we investigated the impact of rutin, quercetin, and Tartary buckwheat on the lipid metabolism of rats on a high-fat diet. Quercetin could significantly reduce body weight, serum triacylglycerol, low-density lipoprotein cholesterol, TNF-α, insulin, and ameliorate glucose tolerance. It was surprising that Tartary buckwheat significantly increased the weight of the rats. Rutin, quercetin, and Tartary buckwheat tended to decreased fat deposition in the liver of rats but have little effect on short-chain fatty acid production. The changes in the structure and diversity of the microbiota were found to be modulated by these diets. It was concluded that quercetin could attenuate high-fat diet-induced obesity, rutin, quercetin, and Tartary buckwheat can shape the specific structure of gut microbiota. Mechanism of Tartary buckwheat on lipid metabolism needs further systematic research.

Journal ArticleDOI
TL;DR: The main aim of this study is to investigate recent trends in producing intelligent food packaging using electrospinning technique and the role of nanofibers as a platform to cover pH indicators inelligent food packaging.
Abstract: Intelligent food packaging refers to packages with the ability to sense foodstuff changes and to inform customers of the packaging content variations. They are often accompanied by smart detecting devices. Providing a suitable platform to include these devices into packaging polymers has always been discussing. Electrospun nanofibers produced through the electrospinning have been recently utilized as an outstanding and novel platforms for this purpose. Thus, the main aim of this study is to investigate recent trends in producing intelligent food packaging using electrospinning technique. In this regard, this paper was categorized into two chief sections, including (a) the principal of electrospinning technique to fabricate fine nanofibers and the parameters affecting the quality of electrospun fibers, and (b) the role of nanofibers as a platform to cover pH indicators in intelligent food packaging.

Journal ArticleDOI
TL;DR: RP‐HPLC results showed that trypsin hydrolysate had higher levels of high‐hydrophobic peptides, and may be used as a potential source of antioxidant and antidiabetic peptides in food industry and pharmaceutical application.
Abstract: In the present work, defatted corn germ was hydrolyzed by three proteases and further separated by sequential ultrafiltration with different molecular weight cutoff (100, 10, 2 kDa). Corn germ protein hydrolysate (CGPH) and their fractions were investigated for antioxidant activity, α-glucosidase, α-amylase, and DPP-IV inhibitory activity. The degree of hydrolysis (DH) after 2 hr was 17.5%, 11.14%, and 2.05% for alcalase, trypsin, and flavourzyme, respectively. Trypsin hydrolysate showed the highest DPPH and ABTS+ radical scavenging and Fe2+ chelating activity, but a lower α-glucosidase inhibitory activity. F1 fraction (<2 kDa) exhibited highest radical scavenging and α-glucosidase inhibitory activity. While F2 fraction (2-10 kDa) showed the higher Fe2+ chelating and α-amylase inhibitory activity, F1 fraction of flavourzyme showed the highest α-glucosidase inhibitory and F2 fraction of alcalase and flavourzyme exhibited highest α-amylase inhibitory activity. Hydrolysate and F1 fraction of alcalase and F2 fraction of trypsin showed the highest DPP-IV inhibitory activity. RP-HPLC results showed that trypsin hydrolysate had higher levels of high-hydrophobic peptides. The amino acid composition of the F1 fractions showed high levels of hydrophobic amino acids. Thus, CGPHs may be used as a potential source of antioxidant and antidiabetic peptides in food industry and pharmaceutical application.

Journal ArticleDOI
TL;DR: It is demonstrated that honeys could produce AgNPs (spherical shape), modulated the growth of normal splenic cells, and have antimicrobial activities, and Sidr honey has anticancer activity against HepG2 but not Hela cells.
Abstract: Sidr honey is used as food and medicine in many countries. Study of immunomodulatory and anticancer activity of Sidr honey did not tested before. The aim of this work was to study the anticancer activity and immunomodulatory as well as antimicrobial potential of Sidr honey and its synthesized silver nanoparticles (AgNPs). Sidr honey from three sources (two from Kingdom of Saudi Arabia (KSA) and one from Pakistan) was diluted to 20% and tested for its biological activities and to synthesize AgNPs. The results demonstrated that honeys could produce AgNPs (spherical shape), modulated the growth of normal splenic cells, and have antimicrobial activities. Sidr honey has anticancer activity against HepG2 but not Hela cells. Sidr honey can be used as antimicrobial agent, but can be used as anticancer agent with care as it stimulated cell growth of some lines (e.g., Hala) and inhibited another (e.g., HepG2).

Journal ArticleDOI
TL;DR: Under accelerated oxidation conditions, pomegranate peel methanolic extract have the potential capability to improve the shelf life of edible oils in comparison with the most powerful synthetic antioxidant (TBHQ‐200 ppm).
Abstract: Natural antioxidants extracted from agri-waste resources have gained increased economic, sustainable, and health attention due to their sustainability, safer food-applications, and beneficial components. Pomegranate peel extracts (Punica Granatum L.) have natural phytochemicals with superior protective effects stabilizing a variety of the most common vegetable oils consumed globally. Among five different pomegranate peel extracts, methanolic extract has maximum total phenolic content of 18.89%, a total flavonoid content of 13.95 mg QE kg-1, and a relative antioxidant activity of 93% when compared to other pomegranate peel extracts. Additionally, the HPLC analysis of pomegranate peel methanolic extract exhibited the maximum number of phenolic and flavonoid fractions. HPLC fractions showed that pyrogallol and ellagic acids were the most abundant phenolic compounds with 453 and 126 mg kg-1, respectively. In terms of flavonoid fractions, hesperidine and quercetrin were the highest detected-flavonoids with about 50 and 35 mg kg-1, respectively, from HPLC flavonoids fractions. Therefore, pomegranate peel methanolic extract was selected at different concentrations (100, 200, 400, and 600 ppm) for the stabilizing experiment of Egyptian freshly refined edible oils (sunflower, soybean, and corn oils) in comparison with synthetic antioxidant (tert-butyl hydroquinone TBHQ-200 ppm) during accelerated storage at 70°C for 10 days. The results from the accelerated storage experiment indicated that pomegranate peel methanolic extract (at different concentrations: 200, 400, and 600 ppm) exhibited stronger antioxidant capability in all tested oils rather than negative controls (without antioxidant) and synthetic antioxidant TBHQ-200. Under accelerated oxidation conditions, pomegranate peel methanolic extract have the potential capability to improve the shelf life of edible oils in comparison with the most powerful synthetic antioxidant (TBHQ-200 ppm).

Journal ArticleDOI
TL;DR: A need for mandatory basic and advanced training to improve the food safety knowledge, attitudes, and practices of food handlers in 22 urban restaurants in Zimbabwe is suggested.
Abstract: Global research attention appears to be focused predominantly on self-reported than observed food safety practices. The purpose of this study was to determine the food safety knowledge, attitudes, and self-reported and observed practices of food handlers in 22 urban restaurants in Zimbabwe. A piloted questionnaire was used to gather qualitative data regarding socio-demographic variables, food safety knowledge (FSK), attitudes, and self-reported food handling practices (SRFHPs). A predesigned checklist was used to observe the food handling practices. FSK scores were significantly higher in food handlers who received basic food safety training compared to those who did not (p .05). A significant positive correlation was observed between FSK and attitudes (r s = 0.371, p 45°C). Results suggest a need for mandatory basic and advanced training to improve the food safety knowledge, attitudes, and practices.

Journal ArticleDOI
TL;DR: The present work suggests that quinoa protein can serve as a good source of bioactive peptides, and in silico approach can provide theoretical assistance for investigation and production of functional peptides.
Abstract: Quinoa protein has been paid more and more attention because of its nutritional properties and beneficial effects. With the development of bioinformatics, bioactive peptide database and computer-assisted simulation provide an efficient and time-saving method for the theoretical estimation of potential bioactivities of protein. Therefore, the potential of quinoa protein sequences for releasing bioactive peptides was evaluated using the BIOPEP database, which revealed that quinoa protein, especially globulin, is a potential source of peptides with dipeptidyl peptidase-IV (DPP-IV) and angiotensin-I-converting enzyme (ACE) inhibitory activities. Three plant proteases, namely papain, ficin, and stem bromelain, were employed for the in silico proteolysis of quinoa protein. Furthermore, four tripeptides (MAF, NMF, HPF, and MCG) were screened as novel promising bioactive peptides by PeptideRanker. The bioactivities of selected peptides were confirmed using chemical synthesis and in vitro assay. The present work suggests that quinoa protein can serve as a good source of bioactive peptides, and in silico approach can provide theoretical assistance for investigation and production of functional peptides.

Journal ArticleDOI
TL;DR: The introduced film with KGM and SPE could be considered as an edible film and be applied to preserve the fruit and vegetables quality and extend the shelf life of sliced cucumbers.
Abstract: The efficacy of saffron petal extract (SPE; 1%-4%) incorporated into Konjac glucomannan (KGM) edible films on the quality and shelf life of fresh-cut cucumbers was evaluated. Changes in chemical, physical, and microbial properties, antioxidant activity, and total soluble phenolic contents of sliced cucumbers during storage at 4°C for 5 days were investigated. Results showed that the addition of SPE markedly reduced the water vapor permeability features of produced films, whereas the moisture content and transparency of them increased (p < .05). All the formulated films containing 1%-4% of SPE exhibited significant antimicrobial properties against the examined pathogens (Escherichia coli, Shigella sonnei, Salmonella Typhi, Staphylococcus aureus, and Bacillus cereus) both in vitro and in vivo conditions. KGM films incorporated SPE were successful in reducing mesophilic bacteria and fungi populations so that the microbial load significantly decreased as the concentrations of SPE increased and KGM + 4% of SPE was considered as the most effective treatment in decreasing the microbial content of sliced cucumbers. Total soluble solids of the treated cucumbers were significantly increased at the end of the storage in refrigerator, compared to the control sample. Moreover, antioxidant activity (DPPH assay) and total soluble phenols in treated fruit increased with storage time, while these parameters decreased with increasing concentrations of SPE incorporated into KGM film. So according to the findings, the introduced film with KGM and SPE could be considered as an edible film and be applied to preserve the fruit and vegetables quality and extend the shelf life of sliced cucumbers.

Journal ArticleDOI
TL;DR: It can be stated that image processing is an effective way in improving the traditional carrot sorting techniques.
Abstract: The most important process before packaging and preserving agricultural products is sorting operation. Sort of carrot by human labor is involved in many problems such as high cost and product waste. Image processing is a modern method, which has different applications in agriculture including classification and sorting. The aim of this study was to classify carrot based on shape using image processing technique. For this, 135 samples with different regular and irregular shapes were selected. After image acquisition and preprocessing, some features such as length, width, breadth, perimeter, elongation, compactness, roundness, area, eccentricity, centroid, centroid nonhomogeneity, and width nonhomogeneity were extracted. After feature selection, linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA) methods were used to classify the features. The classification accuracies of the methods were 92.59 and 96.30, respectively. It can be stated that image processing is an effective way in improving the traditional carrot sorting techniques.

Journal ArticleDOI
TL;DR: Overall, microencapsulated probiotic exhibited better survival as compared to free cells, and the amalgamation of encapsulated and free probiotics affected the physicochemical and sensory parameters of ice cream during storage.
Abstract: The aim of the present study was to evaluate the upshot of microencapsulation on the stability and viability of probiotics in carrier food (ice cream) and simulated gastrointestinal (GIT) conditions. Purposely, Lactobacillus casei was encapsulated with two different hydrocolloids, that is, calcium alginate (Ca-ALG) and whey protein concentrate (WPC) by using encapsulator. The obtained microbeads were characterized in terms of encapsulation efficiency and morphological features. Afterward, the probiotics in free and encapsulated form were incorporated into ice cream. The product was subjected for physicochemical, microbiological, and sensory attributes over a storage period of 80 days. Microencapsulation with both hydrogels significantly (p < .05) improved the viability of probiotics in both carrier food and simulated GIT conditions.The initial viable count of probiotics encapsulated with Ca-ALG and WPC was 9.54 and 9.52 log CFU/ml, respectively, that declined to 8.59 and 8.39 log CFU/ml, respectively, over period of 80 days of storage. While nonencapsulated/free cells declined from 9.44 to 6.41 log CFU/ml during same storage period. Likewise, during in vitro GIT assay, encapsulated probiotic with Ca-ALG and WPC showed 0.95 and 1.13 log reduction, respectively. On other hand, free probiotics showed significant 3.03 log reduction. Overall, microencapsulated probiotic exhibited better survival as compared to free cells. Moreover, the amalgamation of encapsulated and free probiotics affected the physicochemical (decrease in pH and increase in viscosity) was and sensory parameters of ice cream during storage.

Journal ArticleDOI
TL;DR: The present review aims to draw attention to the achieved advances and challenges must be overcome, to promote application of essential oils and polyphenols as antimicrobial agents, against phytopathogens and foodborne microorganisms during postharvest.
Abstract: The use of natural antimicrobial agents is an attractive ecological alternative to the synthetic fungicides applied to control pathogens during postharvest. In order to improve industrial production systems, postharvest research has evolved toward integration with science and technology aspects. Thus, the present review aims to draw attention to the achieved advances and challenges must be overcome, to promote application of essential oils and polyphenols as antimicrobial agents, against phytopathogens and foodborne microorganisms during postharvest. Besides that, it attempts to highlight the use of coating and encapsulation techniques as emerging methods that improve their effectiveness. The integral knowledge about the vegetable systems, molecular mechanisms of pathogens and mechanisms of these substances would ensure more efficient in vitro and in vivo experiences. Finally, the cost-benefit, toxicity, and ecotoxicity evaluation will be guaranteed the successful implementation and commercialization of these technologies, as a sustainable alternative to minimize production losses of vegetable commodities.

Journal ArticleDOI
TL;DR: This paper summarizes how food processing methods such as extrusion and nixtamalization are employed to break the food matrix and release nutrients and phytochemicals embedded as one matrix in cereal and legume diets.
Abstract: Cereal and legume diets make up the bulk of caloric sources for a majority of households in the developing world. They contain macro- and micronutrients as well as phytochemicals embedded as one matrix. Some phytochemicals are antinutritional factors which can bind nutrients thereby hindering their bioavailability. While there are other methods that can be used to enhance nutrient utilization from such foods, we summarize how food processing methods such as extrusion and nixtamalization are employed to break the food matrix and release these nutrients. Both extrusion and nixtamalization can break down complex carbohydrates into simpler, more soluble forms while at the same time inactivating or denaturing protein inhibitors and other antinutritional factors. Such disruptions of complexes within the food matrix are essential for harnessing optimum nutritional and health benefit from these foods. We present mechanistic approaches explaining how these processes enhance nutrient and mineral bioavailability and phytochemical bioactivity while minimizing the undesirable effects of antinutritional factors that coexist in the complex food matrix.

Journal ArticleDOI
TL;DR: Interestingly, the findings exhibit the compromise in microstructural of chicken sausage with high percentage of BPP manifested by the high storage modulus and hardness but with low resistance toward stress, short linear viscoelastic region.
Abstract: Chicken sausages included with three different quantities of banana (Musa balbisiana) peel powder. The technological properties (cooking yield, texture, water-holding capacity, color, rheology, and texture), composition, and sensory acceptability were assessed. In storage study, lipid oxidation of the best formulation from the sensory score was evaluated. The inclusion of banana peel powder (BPP) raises the nutritional value with regard to an increase in dietary fiber and a reduction in the sausage fat content. The addition of BPP also causes a significant increase in the cooking yield and water-holding capacity. Additionally, storage modulus values increase with the increase in the BPP's concentration. However, with BPP incorporation, a hard texture and darkening of the sausage were observed. Interestingly, our findings exhibit the compromise in microstructural of chicken sausage with high percentage of BPP manifested by the high storage modulus and hardness but with low resistance toward stress, short linear viscoelastic region. This aspect also caused a significant change in the sensory score. The TBA value in the sausage containing 2% BPP exhibited a delay in lipid oxidation up to 55%, prompting its antioxidant potential. Generally, the incorporation of BPP to chicken sausage changes its properties. BPP has been a potential candidate as a value-adding ingredient that may be used during meat preparation since it positively influences the nutritional value and specific technological properties of the food.

Journal ArticleDOI
TL;DR: The findings indicate the antimicrobial potential of Saudi honeys to be considered in honey standards, and their therapeutic use as medical‐grade honeys needs further investigations.
Abstract: Honeys originating from Sidr (Ziziphus spina-christi L.) and Talh (Acacia gerrardii Benth.) trees in Saudi Arabia exhibited substantial antimicrobial activity against pathogenic gram-positive bacteria (Bacillus cereus, Staphylococcus aureus), gram-negative bacteria (Escherichia coli, Salmonella enteritidis), and a dermatophytic fungus (Trichophyton mentagrophytes). The diameter of zones of inhibition represents the level of antimicrobial potency of the honey samples. Precisely, Talh honey showed significantly higher antibacterial activity against all tested bacteria than Sidr honey. The antifungal activity of Talh and Sidr honey types was significantly at par against a dermatophytic fungus. The water-diluted honey types (33% w/v) significantly induced a rise in the antimicrobial activity from that of the natural nondiluted honeys. Microbial strains displayed differential sensitivity; gram-positive bacteria were more sensitive and presented larger inhibition zones than gram-negative bacteria and the fungus. The sensitivity was highest in B. cereus and S. aureus, followed by T. mentagrophytes, E. coli, and S. enteritidis. The antimicrobial activity of water-diluted honeys (Sidr and Talh) was high than that of broad-spectrum antibacterial antibiotics (tetracycline and chloramphenicol) against bacterial strains, but these honeys were relativity less potent than antifungal antibiotics (flucoral and mycosat) against a fungal strain. Our findings indicate the antimicrobial potential of Saudi honeys to be considered in honey standards, and their therapeutic use as medical-grade honeys needs further investigations.

Journal ArticleDOI
TL;DR: Algal extract‐loaded nanoliposomes can be used as a natural antioxidant in lipid‐based foods and have a good stability during storage conditions, and they are able to control the release of phenolic compounds at different pH values.
Abstract: In this paper, the fabrication of algal extract-loaded nanoliposomes was optimized based on the central composite response surface design. Different concentrations of phenolic compounds (500, 1,000, and 1,500 ppm) of algal extract and lecithin (0.5, 1.25, and 2% w/w) were applied for preparation of nanoliposomes at process temperatures of 30, 50, and 70°C. Dependent variables were zeta potential, entrapment efficiency, size, and particle size distribution. The particle size of the loaded nanoliposomes ranged from 86.6 to 118.7 nm and zeta potential from -37.3 to -50.7 mV. The optimal conditions were as follows: 0.5% lecithin, 30°C process temperature, and 1,313 ppm of the phenolic compounds extracted from algae. Under these conditions, the experimental entrapment efficiency of the phenolic compounds was 45.5 ± 1.2%. FTIR analysis has verified the encapsulation of algal extract in nanoliposomes. Algal extract phenolic compounds also increased phase transition temperature (Tc) of nanoliposomes (1.6°C to 6.3°C). Moreover, the thermo-oxidative protection of nanoliposomes for the algal extract has been proved by examining the DSC thermograms. It has been demonstrated that the formulated nanoliposomes have a good stability during storage conditions, and they are able to control the release of phenolic compounds at different pH values. During the encapsulation process, the antioxidant activity of the algal extract has been maintained to an acceptable level. Consequently, algal extract-loaded nanoliposomes can be used as a natural antioxidant in lipid-based foods.