scispace - formally typeset
Search or ask a question

Showing papers in "Frontiers in Materials in 2018"


Journal ArticleDOI
TL;DR: In this paper, the lattice distortion in high entropy alloys (HEAs) is studied and its implications on phase transformation, dislocation dynamics and yielding in HEAs are discussed.
Abstract: Lattice distortion in high entropy alloys (HEAs) is an issue of fundamental importance but yet to be fully understood. In this article, we first focus on the recent research dedicated to lattice distortion in HEAs with an emphasis on the basic understanding derived from theoretical modeling and atomistic simulations. After that, we discuss the implications of the recent research findings on lattice distortion, which can be related to the phase transformation, dislocation dynamics and yielding in HEAs.

93 citations


Journal ArticleDOI
TL;DR: The work reported in this paper was carried out as part of the EPSRC funded project Materials for Life (M4L), reference EP/K026631/1 and supported with PhD studentship funding from Costain Group PLC.
Abstract: The work reported in this paper was carried out as part of the EPSRC funded project Materials for Life (M4L), reference EP/K026631/1 and supported with PhD studentship funding from Costain Group PLC

71 citations


Journal ArticleDOI
TL;DR: The relationship between the molecular weight of matrix-bound HA within a methacrylamidefunctionalized gelatin (GelMA) hydrogel, the invasive phenotype of a patient-derived xenograft GBM population that exhibits significant in vivo invasivity, and the local production of soluble HA during GBM cell invasion are reported.
Abstract: The extracellular matrix (ECM) is critical in tumor growth and invasive potential of cancer cells. In glioblastoma tumors, some components of the native brain ECM such as hyaluronic acid (HA) have been suggested as key regulators of processes associated with poor patient outlook such as invasion and therapeutic resistance. Given the importance of cell-mediated remodeling during invasion, it is likely that the molecular weight of available HA polymer may strongly influence GBM progression. Biomaterial platforms therefore provide a unique opportunity to systematically examine the influence of the molecular weight distribution of HA on GBM cell activity. Here we report the relationship between the molecular weight of matrix-bound HA within a methacrylamidefunctionalized gelatin (GelMA) hydrogel, the invasive phenotype of a patient-derived xenograft GBM population that exhibits significant in vivo invasivity, and the local production of soluble HA during GBM cell invasion. Hyaluronic acid of different molecular weights spanning a range associated with cell-mediated remodeling (10, 60, and 500 kDa) was photopolymerized into GelMA hydrogels, with cell activity compared to GelMA only conditions (-HA). Polymerization conditions were tuned to create a homologous series of GelMA hydrogels with conserved poroelastic properties (i.e., shear modulus, Poisson's ratio, and diffusivity). GBM migration was strongly influenced by HA molecular weight; while markers associated with active remodeling of HA (hyaluronan synthase and hyaluronidase) were found to be uninfluenced. These results provide new information regarding the importance of local hyaluronic acid content on the invasive phenotype of GBM.

64 citations


Journal ArticleDOI
TL;DR: In this article, the authors investigated the tensile behavior and microstructural evolution of a typical dual-phase high-entropy alloys (DP-HEAs) with transformation induced plasticity (TRIP) under different strain rates.
Abstract: Dual-phase high-entropy alloys (DP-HEAs) with transformation induced plasticity (TRIP) have an excellent strength-ductility combination. To reveal their strain-rate sensitivity and hence further understand the corresponding deformation mechanisms, we investigated the tensile behavior and microstructural evolution of a typical TRIP-DP-HEA (Fe50Mn30Co10Cr10, at. %) under different strain rates (i.e., 5 × 10-3 s-1, 1 × 10-3 s-1, 5 × 10-4 s-1 and 1 × 10-4 s-1) at room temperature. The strain rate range was confined to this regime in order to apply the digital image correlation technique for probing the local strain evolution during tensile deformation at high resolution and to correlate it to the microstructure evolution. Grain size effects of the face-centered cubic (FCC) matrix and the volume fractions of the hexagonal-close packed (HCP) phase prior to deformation were also considered. The results show that within the explored strain rate regime the TRIP-DP-HEA has a fairly low strain rate sensitivity parameter within the range from 0.004 to 0.04, which is significantly lower than that of DP and TRIP steels. Samples with varying grain sizes (e.g., ~2.8 μm and ~38 μm) and starting HCP phase fractions (e.g., ~25% and ~72%) at different strain rates show similar deformation mechanisms, i.e., dislocation plasticity and strain-induced transformation from the FCC matrix to the HCP phase. The low strain rate sensitivity is attributed to the observed dominant displacive transformation mechanism. Also, the coarse-grained alloy samples with a very high starting HCP phase fraction (~72%) prior to deformation show very good ductility with a total elongation of ~60%, suggesting that both, the initial and the transformed HCP phase in the TRIP-DP-HEA are ductile and deform further via dislocation slip at the different strain rates which were probed.

54 citations


Journal ArticleDOI
TL;DR: In this article, an easy-to-manufacture design able to open large, low frequency complete Lamb band gaps exploiting a suitable arrangement of masses and stiffnesses produced by cavities in a monolithic material is proposed.
Abstract: The quest for large and low frequency band gaps is one of the principal objectives pursued in a number of engineering applications, ranging from noise absorption to vibration control, to seismic wave abatement. For this purpose, a plethora of complex architectures (including multi-phase materials) and multi-physics approaches have been proposed in the past, often involving difficulties in their practical realization. To address this issue, in this work we propose an easy-to-manufacture design able to open large, low frequency complete Lamb band gaps exploiting a suitable arrangement of masses and stiffnesses produced by cavities in a monolithic material. The performance of the designed structure is evaluated by numerical simulations and confirmed by Scanning Laser Doppler Vibrometer (SLDV) measurements on an isotropic polyvinyl chloride plate in which a square ring region of cross-like cavities is fabricated. The full wave field reconstruction clearly confirms the ability of even a limited number of unit cell rows of the proposed design to efficiently attenuate Lamb waves. In addition, numerical simulations show that the structure allows to shift of the central frequency of the BG through geometrical modifications. The design may be of interest for applications in which large BGs at low frequencies are required.

51 citations


Journal ArticleDOI
TL;DR: In this paper, a review of the impact properties of NFTCs is presented, analysing the effects of fundamental composite parameters and potential routes to improve the performance of these composites.
Abstract: Many academic studies continue to conclude that natural fibre reinforced thermoplastic composites (NFTCs) have some potential to compete with mineral/inorganic fibre and filler reinforced composites in certain applications due to their distinctive characteristics. NFTCs are often presented as a more environmentally friendly product which may, in some cases, offer useful levels of specific strength and stiffness with an overall reduced carbon footprint. However, from an end-use composite performance viewpoint, issues with impact resistance (notched and un-notched) continue to hold back the large-scale implementation of these composites. This paper presents a review of the recent work on impact properties of NFTCs, analysing the effects of fundamental composite parameters and potential routes to improvement.

50 citations


Journal ArticleDOI
TL;DR: In this article, the compositional effects on the energy and mass transport properties in a series of face-centered-cubic single-phase concentrated solid-solution alloys (SP-CSAs), including high entropy alloys, are discussed.
Abstract: Single-phase concentrated solid-solution alloys (SP-CSAs), including high entropy alloys, are compositionally complex but structurally simple, and provide a playground of tailoring material properties through modifying their compositional complexity. The recent progress in understanding the compositional effects on the energy and mass transport properties in a series of face-centered-cubic SP-CSAs is the focus of this review. Relatively low electronic and thermal conductivities, as well as small separations between the interstitial and vacancy migration barriers have been generally observed, but largely depend on the alloying constituents. We further discuss the impact of such intrinsic transport properties on their irradiation response; the linkage to the delayed damage accumulation, slow defect aggregation, and suppressed radiation induced swelling and segregation has been presented. We emphasize that the number of alloying elements may not be a critical factor on both transport properties and the defect behaviors under ion irradiations. The recent findings have stimulated novel concepts in the design of new radiation-tolerant materials, but further studies are demanded to enable predictive models that can quantitatively bridge the transport properties to the radiation damage.

46 citations


Journal ArticleDOI
TL;DR: In this article, the corrosion behaviour of steel elements embedded in alkali-activated blast furnace slag (BFS) mortars exposed to alkaline solution, alkaline chloride-rich solution, water, and standard laboratory conditions, using electrochemical techniques, was assessed.
Abstract: The pore solutions of alkali-activated slag cements and Portland-based cements are very different in terms of their chemical and redox characteristics, particularly due to the high alkalinity and high sulfide content of alkali-activated slag cement. Therefore, differences in corrosion mechanisms of steel elements embedded in these cements could be expected, with important implications for the durability of reinforced concrete elements. This study assesses the corrosion behaviour of steel embedded in alkali-activated blast furnace slag (BFS) mortars exposed to alkaline solution, alkaline chloride-rich solution, water, and standard laboratory conditions, using electrochemical techniques. White Portland cement (WPC) mortars and blended cement mortars (white Portland cement and blast furnace slag) were also tested for comparative purposes. The steel elements embedded in immersed alkali-activated slag mortars presented very negative redox potentials and high apparent corrosion current values; the presence of sulfide reduced the redox potential, and the oxidation of the reduced sulfur-containing species within the cement itself gave an electrochemical signal that classical electrochemical tests for reinforced concrete durability would interpret as being due to steel corrosion processes. However, the actual observed resistance to chloride-induced corrosion was very high, as measured by extraction and characterisation of the steel at the end of a 9-month exposure period, whereas the steel embedded in white Portland cement mortars was significantly damaged under the same conditions.

46 citations


Journal ArticleDOI
TL;DR: An equiatomic CoCrFeMnNi high-entropy alloy (HEA) was successfully developed by high-vacuum Radio Frequency (RF) magnetron sputtering.
Abstract: An equiatomic CoCrFeMnNi high-entropy alloy (HEA) thin film coating has been successfully developed by high-vacuum Radio Frequency (RF) magnetron sputtering. The deposition of a smooth and homogenous thin film with uniformly distributed equiaxed nanograins (grain size ~ 10 nm) was achieved through this technique. The thin film coating exhibits a high hardness of 6.8 ± 0.6 GPa, which is superior compared to its bulk counterpart owing to its nanocrystalline structure. Furthermore, it also shows good ductility through nanoindentation, which demonstrates its potential to serve as an alternative to traditional transition metal nitride or carbide coatings for applications in micro-fabrication and advanced coating technologies.

45 citations


Journal ArticleDOI
TL;DR: This review describes how different cellular processes (attachment, proliferation, and (directional) migration and differentiation) have been supported by different material parameters, in vitro and in vivo.
Abstract: Strategies for neural tissue repair heavily depend on our ability to temporally reconstruct the natural cellular microenvironment of neural cells. Biomaterials play a fundamental role in this context, as they provide the mechanical support for cells to attach and migrate to the injury site, as well as fundamental signals for differentiation. This review describes how different cellular processes (attachment, proliferation, and (directional) migration and differentiation) have been supported by different material parameters, in vitro and in vivo. Although incipient guidelines for biomaterial design become visible, literature in the field remains rather phenomenological. As in other fields of tissue regeneration, progress will depend on more systematic studies on cell-materials response, better understanding on how cells behave and understand signals in their natural milieu from neurobiology studies, and the translation of this knowledge into engineered microenvironments for clinical use.

45 citations


Journal ArticleDOI
TL;DR: In this article, the effect of stress on the optical properties at 1,550 nm of silicon nitride membranes attached to a silicon frame was investigated, and the resulting product of the optical absorption and thermo-optic coefficient was measured using photothermal common-path interferometry.
Abstract: Future gravitational-wave detectors operated at cryogenic temperatures are expected to be limited by thermal noise of the highly reflective mirror coatings. Silicon nitride is an interesting material for such coatings as it shows very low mechanical loss, a property related to low thermal noise, which is known to further decrease under stress. Low optical absorption is also required to maintain the low mirror temperature. Here, we investigate the effect of stress on the optical properties at 1,550 nm of silicon nitride membranes attached to a silicon frame. Our approach includes the measurement of the thermal expansion coefficient and the thermal conductivity of the membranes. The membrane and frame temperatures are varied, and translated into a change in stress using finite element modeling. The resulting product of the optical absorption and thermo-optic coefficient (dn/dT) is measured using photothermal common-path interferometry.

Journal ArticleDOI
TL;DR: In this article, the authors address a number of fundamental questions regarding the topological description of materials characterized by a highly porous three-dimensional structure with bending as the major deformation mechanism.
Abstract: This work addresses a number of fundamental questions regarding the topological description of materials characterized by a highly porous three-dimensional structure with bending as the major deformation mechanism. Highly efficient finite-element beam models were used for generating data on the mechanical behavior of structures with different topologies, ranging from highly coordinated bcc to Gibson–Ashby structures. Random cutting enabled a continuous modification of average coordination numbers ranging from the maximum connectivity to the percolation-cluster transition of the 3D network. The computed macroscopic mechanical properties – Young’s modulus, yield strength, and Poisson’s ratio – combined with the cut fraction, average coordination number, and statistical information on the local coordination numbers formed a database consisting of more than 100 different structures. Via data mining, the interdependencies of topological parameters and relationships between topological parameters with mechanical properties were discovered. A scaled genus density could be identified, which assumes a linear dependency on the average coordination number. Feeding statistical information about the local coordination numbers of detectable junctions with coordination number of 3 and higher to an artificial neural network enables the determination the average coordination number without any knowledge of the fully connected structure. This parameter serves as a common key for determining the cut fraction, the scaled genus density, and the macroscopic mechanical properties. The dependencies of macroscopic Young’s modulus, yield strength, and Poisson’s ratio on the cut fraction (or average coordination number) could be represented as master curves, covering a large range of structures from a coordination number of 8 (bcc reference) to 1.5, close to the percolation-cluster transition. The suggested fit functions with a single adjustable parameter agree with the numerical data within a few percent error. Artificial neural networks allow a further reduction of the error by at least a factor of 2. All data for macroscopic Young’s modulus and yield strength are covered by a single master curve. This leads to the important conclusion that the relative loss of macroscopic strength due to pinching-off of ligaments corresponds to that of macroscopic Young’s modulus. Experimental data in literature support this unexpected finding.

Journal ArticleDOI
TL;DR: A review of polymer coatings used for combating microbially-induced corrosion can be found in this article, where the main purpose of the review is to summarize up the progressive status of polymeric coatings.
Abstract: Biocorrosion has been considered as big trouble in many industries and marine environments due to causing great economic loss. The main disadvantages of present approaches to prevent corrosion include being limited by environmental factors, being expensive, inapplicable to field, and sometimes inefficient. Studies show that polymer coatings with anti-corrosion and anti-microbial properties have been widely accepted as a novel and effective approach to preventbiocorrosion. The main purpose of this review is to summarize up the progressive status of polymer coatings used for combating microbially-induced corrosion. Polymers used to synthesize protective coatings are generally divided into three categories: i) traditional polymers incorporated with biocides, ii) antibacterial polymers containing quaternary ammonium compounds, and iii) conductive polymers. The strategies to synthesize polymer coatings resort mainly to grafting anti-bacterial polymers from the metal substrate surface using novel surface-functionalization approaches, such as free radical polymerization, chemically oxidative polymerization and surface-initiated atom transfer radical polymerization, as opposed to the traditional approaches of dip coating or spin coating.

Journal ArticleDOI
TL;DR: This review focuses on recent advancements in the development of strategies for musculoskeletal interface engineering using different biomaterial-based platforms and surface modification techniques.
Abstract: Tissue engineering aims to bring together biomaterials, cells and signaling molecules within properly designed microenvironments in order to create viable treatment options for the lost or malfunctioning tissues. Design and production of scaffolds and cell-laden grafts that can mimic the complex structure and function of native tissues are among the most important elements of tissue engineering strategy. Although all tissues have their own complex structure, an even more complex case in terms of engineering a proper carrier material is encountered at the tissue interfaces, where two distinct tissues come together. The interfaces in the body can be examined in four categories; cartilage-bone and ligament-bone interfaces at the knee and the spine, tendon-bone interfaces at the shoulder and the feet and muscle-tendon interface at the skeletal system. These interfaces are seen mainly at the soft-to-hard tissue transitions and they are especially susceptible to injury and tear due to the biomechanical inconsistency between these tissues where high strain fields are present. Therefore, engineering the musculoskeletal tissue interfaces remain a challenge. This review focuses on recent advancements in the development of strategies for musculoskeletal interface engineering using different biomaterial-based platforms and surface modification techniques.

Journal ArticleDOI
TL;DR: In this article, numerical and analytical approaches to the self-equilibrium problem of novel units of tense-grity metamaterials composed of class theta=1 tensegrity prisms are presented.
Abstract: This study formulates numerical and analytical approaches to the self-equilibrium problem of novel units of tensegrity metamaterials composed of class theta=1 tensegrity prisms. The freestanding placements of the examined structures are determined for varying geometries, and it is shown that such configurations exhibit a large number of infinitesimal mechanisms. The latter can be effectively stabilized by applying self-equilibrated systems of internal forces induced by cable prestretching. The equilibrium equations of class theta=1 tensegrity prisms are studied for varying values of two aspect parameters, and local solutions to the self-equilibrium problem are determined by recourse to Newton-Raphson iterations. Such a numerical approach to the form-finding problem can be easily generalized to arbitrary tensegrity systems. An analytical approach is also proposed for the class $\theta=1$ units analyzed in the present work. The potential of such structures for development of novel mechanical metamaterials is discussed, in the light of recent findings concerned with structural lattices alternating lumped masses and tensegrity units.

Journal ArticleDOI
TL;DR: The chiral stationary phase for high-performance liquid chromatography shows good chiral recognition ability and high uniformity in both the liquid phase and the solid phase.
Abstract: This article was submitted to Colloidal Materials and Interfaces, a section of the journal Frontiers in Materials This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice No use, distribution or reproduction is permitted which does not comply with these terms

Journal ArticleDOI
TL;DR: The body-centered cubic (BCC) Ti15Zr15Nb35Ta35 high-entropy alloy showed superconducting behavior at around 8 K.
Abstract: The body-centered cubic (BCC) Ti15Zr15Nb35Ta35 high-entropy alloy showed superconducting behavior at around 8 K. The electronic specific heat coefficient and the lattice specific heat coefficient β were determined to be γ=9.3±0.1 mJ/mol K2 and β=0.28±0.01 mJ/mol K4, respectively. It was found that the electronic specific heat Ces does follow the exponential behavior of the Bardeen-Cooper-Schrieffer (BCS) theory. Nevertheless, the specific heat jump (ΔC/γTc ) at the superconducting transition temperature which was determined to be 1.71 deviates appreciably from that for a weak electron-phonon coupling BCS superconductor. Within the framework of the strong-coupled theory, our analysis suggests that theTi15Zr15Nb35Ta35 HEA is an intermediate electron-phonon coupled BCS-type superconductor.

Journal ArticleDOI
TL;DR: This mini-review considers new materials that employ topographical, chemical, electrical, and/or mechanical cues for use in neuronal repair and predicts that Manipulating and integrating these elements in different combinations will generate new technologies to enhance neural repair.
Abstract: As they differentiate from neuroblasts, nascent neurons become highly polarized and elongate. Neurons extend and elaborate fine and fragile cellular extensions that form circuits enabling long-distance communication and signal integration within the body. While other organ systems are developing, projections of differentiating neurons find paths to distant targets. Subsequent post-developmental neuronal damage is catastrophic because the cues for reinnervation are no longer active. Advances in biomaterials are enabling fabrication of micro-environments that encourage neuronal regrowth and restoration of function by recreating these developmental cues. This mini-review considers new materials that employ topographical, chemical, electrical, and/or mechanical cues for use in neuronal repair. Manipulating and integrating these elements in different combinations will generate new technologies to enhance neural repair.

Journal ArticleDOI
TL;DR: Improved clinical translation will be achieved by combining clinically relevant therapies with biomaterials strategies, and no clinical treatment exists to regenerate lost tissue in animal models of stroke.
Abstract: Stroke is a devastating disease for which no clinical treatment exists to regenerate lost tissue. Strategies for brain repair in animal models of stroke include the delivery of drug or cell-based therapeutics; however, the complex anatomy and functional organization of the brain presents many challenges. Biomaterials may alleviate some of these challenges by providing a scaffold, localizing the therapy to the site of action, and/or modulating cues to brain cells. Here, the challenges associated with delivery of therapeutics to the brain and the biomaterial strategies used to overcome these challenges are described. For example, innovative hydrogel delivery systems have been designed to provide sustained trophic factor delivery for endogenous repair and to support transplanted cell survival and integration. Novel treatments, such as electrical stimulation of transplanted cells and the delivery of factors for the direct reprogramming of astrocytes into neurons, may be further enhanced by biomaterial delivery systems. Ultimately, improved clinical translation will be achieved by combining clinically relevant therapies with biomaterials strategies.

Journal ArticleDOI
TL;DR: A recent mini-review as mentioned in this paper focused on developments in high-throughput molecular simulations of MOFs for CO2 separations and discussed the opportunities and challenges in the field and addressed the potential future developments.
Abstract: Metal organic frameworks (MOFs) have emerged as great alternatives to traditional nanoporous materials for CO2 separation applications. MOFs are porous materials that are formed by self-assembly of transition metals and organic ligands. The most important advantage of MOFs over well-known porous materials is the possibility to generate multiple materials with varying structural properties and chemical functionalities by changing the combination of metal centers and organic linkers during the synthesis. This leads to a large diversity of materials with various pore sizes and shapes that can be efficiently used for CO2 separations. Since the number of synthesized MOFs has already reached to several thousand, experimental investigation of each MOF at the lab-scale is not practical. High-throughput computational screening of MOFs is a great opportunity to identify the best materials for CO2 separation and to gain molecular-level insights into the structure-performance relationships. This type of knowledge can be used to design new materials with the desired structural features that can lead to extraordinarily high CO2 selectivities. In this mini-review, we focused on developments in high-throughput molecular simulations of MOFs for CO2 separations. After reviewing the current studies on this topic, we discussed the opportunities and challenges in the field and addressed the potential future developments.

Journal ArticleDOI
TL;DR: The hybrid nanostructure-based biocatalysts formed exhibited a 2 to 4-fold higher thermostability as compared to the free enzyme, as well as an enhanced performance at higher temperatures and in a wider pH range.
Abstract: Hybrid nanostructures of magnetic iron nanoparticles and graphene oxide were synthesized and used as nanosupports for the covalent immobilization of β-glucosidase. This study revealed that the immobilization efficiency depends on the structure and the surface chemistry of nanostructures employed. The hybrid nanostructure-based biocatalysts formed exhibited a 2 to 4-fold higher thermostability as compared to the free enzyme, as well as an enhanced performance at higher temperatures (up to 70 °C) and in a wider pH range. Moreover, these biocatalysts retained a significant part of their bioactivity (up to 40 %) after 12 repeated reaction cycles.

Journal ArticleDOI
TL;DR: This mini-review includes works reported in the first half of 2018 and provides a timely update to the published review of hybrid and multi-source energy harvesters as well as on integrated harvester-storage systems and end users (e.g. sensors), including CMOS (complementary metal-oxide-semiconductor) technology-basedHarvesters and systems.
Abstract: Energy harvesting is one of the most rapidly growing of the emerging technologies. This field has arrived at the hybrid and multi-source era, where hybrid structures and novel materials are able to boost the energy conversion efficiency and/or make the harvesters capable of benefitting from multiple energy sources simultaneously. Such hybrid and multi-source energy harvesters have not frequently been reviewed in the past, potentially because of the small number of publications compared to that of their single-source and individual counterparts. However, as their number is becoming larger, it is now necessary to give sufficient and frequent reviews of developments in the field. Furthermore, an increasing number of developed energy harvesters are moving out of the laboratory into industrial markets. In practice, energy harvesters need to be integrated with energy storage and/or end users such as sensors and wireless sensor networks. Therefore, the harvester-storage and harvester-sensor integration systems also need to be reviewed frequently. This mini-review includes works reported in the first half of 2018 and provides a timely update to the published review. It focuses on the above-mentioned hybrid and multi-source energy harvesters as well as on integrated harvesters, energy storage systems and end users (e.g. sensors), including CMOS (complementary metal-oxide-semiconductor) technology-based harvesters and systems.

Journal ArticleDOI
TL;DR: In this paper, the geometrically nonlinear response of class ϑ = 1 tense-grity prisms is modeled as a collection of elastic springs reacting in tension (strings or cables) or compression (bars), under uniform uniaxial loading.
Abstract: The present work studies the geometrically nonlinear response of class ϑ=1 tensegrity prisms modeled as a collection of elastic springs reacting in tension (strings or cables) or compression (bars), under uniform uniaxial loading. The incremental equilibrium equations of the structure are numerically solved through a path-following procedure, with the aim of modeling the mechanical behavior of the structure in the large displacement regime. Several numerical results are presented with reference to a variety of physical models, which use two different materials for the cables and the bars, and show different aspect ratios associated with either 'standard' or 'expanded' configurations. An experimental validation of the predicted constitutive response is conducted with reference to a 'thick' and a 'slender' model, observing rather good theory vs. experiment matching. The given numerical and experimental results highlight that the elastic response of the examined structures may switch from stiffening to softening, depending on the geometry of the system, the magnitude of the external load, and the applied prestress. The outcomes of the current study confirm previous literature results on the elastic response of minimal tensegrity prisms, and pave the way to the use of tensegrity systems as nonlinear spring units forming tunable mechanical metamaterials.

Journal ArticleDOI
TL;DR: In this paper, the effects of reduction and annealing on the structure of single layer graphene samples from reduced GO produced via the Langmuir- Schaefer process is investigated.
Abstract: Graphene has outstanding properties that make it an auspicious material for many applications. This work presents the production of graphene oxide (GO) via the Langmuir – Schaefer process and the subsequent restoration of single layer graphene flakes (SLGF) via the chemical reduction and thermal annealing of the GO. Scanning electron microscopy and optical images were used to evaluate the morphology and surface coverage of the substrate with GO flakes. Through this technique, smooth dispersion; controllable development and population of the GO single flakes on the Si substrate without size limitation have been achieved. The height distribution of the GO was monitored after each processing step by AFM measurements. Additionally, the effects of each process on the structure of the samples was systematically studied via 2D Laser Raman spectroscopy (LRS) mapping. The determination of the layer number on each graphene flake was accomplished by the monitoring of the observed Raman shifts as a function of the position and confirmed via AFM measurements. The spectroscopic analysis of the single flakes was performed in order to study their topography and identify their quality as a function of the processing steps. Via the topographic 2D analysis of both the first and second order vibrational modes as a function of the position on the crystal, the degree of graphitization and /or the presence of defects, as well as the presence of internal stresses were mapped. Such a systematic determination of the effects of reduction and annealing on the structure of single layer graphene samples from reduced GO produced via the Langmuir – Schaefer process is for the first time reported in literature.

Journal ArticleDOI
TL;DR: In this article, the authors highlight this valuable feature and its related methodology, review current advances, and briefly discuss future perspectives, and provide a specific example on the ability of QCM D to detect lipid organization changes of cholesterol containing solid-supported lipid vesicle layers (SVLs) upon the addition of aspirin.
Abstract: Solid-supported lipid membranes are popular models that connect biological and artificial materials used in bio-technological applications. Controlling the lipid organization and the related functions of these model systems entails understanding and characterizing their phase behavior. Quartz crystal microbalance with dissipation (QCM-D) is an acoustic-based surface-sensitive technique which is widely used in bio-interfacial science of solid-supported lipid membranes. Its sensitivity to mass and energy dissipation changes at the solid-lipid layer-liquid interface allows the detection of phase transformations of solid-supported membrane geometries. In this perspective, we highlight this valuable feature and its related methodology, review current advances and briefly discuss future perspectives. Furthermore, a specific example on the ability of QCM D to detect lipid organization changes of cholesterol containing solid-supported lipid vesicle layers (SVLs) upon the addition of aspirin is also provided

Journal ArticleDOI
TL;DR: In this article, the authors discuss the theoretical treatment of defects in metals starting from experimental findings and discuss the impact of improved theoretical techniques on the predictive power of defects and dislocations.
Abstract: Our understanding of defects in materials science has changed tremendously over the last century. While one hundred years ago they were often ignored by scientists, nowadays they are in the spotlight of scientific interest and whole branches of technology have emerged from their skillful handling. The first part of this article gives a historical overview and discusses why defects are so important for modern material science. In the second part, we review the treatment of defects in semiconductors. We start by explaining the assumptions and approximations involved in ab-initio calculations and then discuss the treatment of defects in materials. In the third part, we focus on defects in metals. We discuss the theoretical treatment of vacancies in metals starting from experimental findings. The impact of improved theoretical techniques on the predictive power is discussed. This is illustrated with the role of vacancies in intermetallic compounds and random alloys. The last section deals with dislocations.

Journal ArticleDOI
TL;DR: In this paper, a s-hinge-shaped elastic unit cell elements from which new class of architected modular 2D and 3D lattices can be printed or assembled.
Abstract: Stress distribution has led to the design of both tough and lightweight materials. Truss structures distribute stress well and are commonly used to design lightweight materials for applications experiencing low strains. In 3D lattices, however, few structures allow high elastic compression and tunable deformation. This is particularly true for auxetic material designs, such as the prototypical re-entrant honeycomb with sharp corners, which are particularly susceptible to stress concentrations. There is a pressing need for lightweight lattice designs that are dynamic, as well as resistant to fatigue. Truss designs based on hinged structures exist in nature and delocalize stress rather than concentrating it in small areas. They have inspired us to develop s-hinge shaped elastic unit cell elements from which new class of architected modular 2D and 3D lattices can be printed or assembled. These lattices feature locally tunable Poisson ratios (auxetic), large elastic deformations without fatigue, as well as mechanical switching between multistable states. We demonstrate 3D printed structures with stress delocalization that enables macroscopic 30% cyclable elastic strains, far exceeding those intrinsic to the materials that constitute them (6%). We also present a simple semi-analytical model of the deformations which is able to predict the mechanical properties of the structures within < 5% error of experimental measurements from a few parameters such as dimensions and material properties. Using this model, we discovered and experimentally verified a critical angle of the s-hinge enabling bistable transformations between auxetic and normal materials. The dynamic modeling tools developed here could be used for complex 3D designs from any 3D printable material (metals, ceramics, and polymers). Locally tunable deformation and much higher elastic strains than the parent material would enable the next generation of compact, foldable and expandable structures. Mixing unit cells with different hinge angles, we designed gradient Poisson’s ratio materials, as well as ones with multiple stable states where elastic energy can be stored in latching structures, offering prospects for multi-functional designs. Much like the energy efficient Venus flytrap, such structures can store elastic energy and release it on demand when appropriate stimuli are present.

Journal ArticleDOI
TL;DR: In this article, the authors provide an overview of the current state-of-the-art of research in this field, and a perspective on the factors decisive to its growth, in particular the polymer-graphene interphase.
Abstract: The fast-growing interest in smart textiles for wearable electronics or sensors is stimulating considerable activity in the development of functional fibers and fabrics that incorporate graphene, due to its outstanding electrical, mechanical and thermal properties, amongst others. This paper provides an overview of the current state- of-the-art of research in this field, and a perspective on the factors decisive to its growth, in particular the polymer-graphene interphase.

Journal ArticleDOI
TL;DR: Si@SiOx/Graphene nanosheet (GNS) nanocomposites as high performance anode materials for lithium-ion batteries are synthesized by mechanically blending the mixture of expanded graphite with Si nanoparticles, and characterized by X-ray diffraction, Raman spectrum, field emission scanning electron microscopy and transmission electron microscope as mentioned in this paper.
Abstract: Si@SiOx/Graphene nanosheet (GNS) nanocomposites as high performance anode materials for lithium-ion batteries are synthesized by mechanically blending the mixture of expanded graphite with Si nanoparticles, and characterized by X-ray diffraction, Raman spectrum, field emission scanning electron microscopy and transmission electron microscopy. During the ball milling process, the size of Si nanoparticles will decrease, and the layer of expanded graphite can be peeled off to thin multilayers. Electrochemical performances reveal that the obtained Si@SiOx/GNS nanocomposites exhibit improved cycling stability, high reversible lithium storage capacity and superior rate capability, e.g. the discharge capacity is kept as high as 1055 mAh g-1 within 50 cycles at a current density of 200 mA g-1, retaining 63.6% of the initial value. The high performance of the obtained nanocomposites can be ascribed to GNS prepared through heat-treat and ball-milling methods, the decrease in the size of Si nanoparticles and SiOx layer on Si surface, which enhance the interactions between Si and GNS.

Journal ArticleDOI
TL;DR: In this paper, the thermal energy storage materials were developed by encapsulating a paraffin having a melting temperature of 6 °C (M6D) in a thermoplastic polyurethane (TPU), and the most important physical properties of the resulting samples were investigated from a thermo-mechanical point of view.
Abstract: In this work innovative the thermal energy storage materials were developed by encapsulating a paraffin having a melting temperature of 6 °C (M6D) in a thermoplastic polyurethane (TPU), and the most important physical properties of the resulting samples were investigated from a thermo-mechanical point of view. Field emission scanning electron microscope (FESEM) micrographs demonstrated a homogeneous microcapsules distribution and good interfacial adhesion with the TPU matrix even at elevated M6D concentrations. With a capsule concentration of 60 wt% it was possible to obtain elevated melting enthalpy values (up to 95 J/g), retaining the energy storage/release properties even after 50 thermal cycles. The hardness and the dimensional stability of the TPU matrix above its glass transition temperature were strongly increased upon M6D addition, but this stiffening effect was associated to a certain embrittlement. The investigated blends could be applied for winter sport application for low temperature thermal energy storage/release materials.