scispace - formally typeset
Search or ask a question

Showing papers in "Iawa Journal in 2019"


Journal ArticleDOI
TL;DR: An overview of wood formation processes up to tree-ring development, bearing in mind that the combined action of intrinsic factors and environmental drivers determines the anatomical traits of a tree ring formed at a specific time and position within the tree’s architecture is provided.
Abstract: It is noteworthy that the largest part of global vegetation biomass depends on a thin layer of cells: the vascular cambium. Understanding the wood formation processes and relationships with environmental factors is a crucial and timely research question requiring interdisciplinary efforts, also to upscale the information gained and to evaluate implications for tree growth and forest productivity. We provide an overview of wood formation processes up to tree-ring development, bearing in mind that the combined action of intrinsic factors and environmental drivers determines the anatomical traits of a tree ring formed at a specific time and position within the tree’s architecture. After briefly reviewing intrinsic factors, we focus attention on environmental drivers highlighting how a correct interpretation of environmental signals in tree rings must be grounded in a deep knowledge of xylogenesis and consequent wood anatomical traits. We provide guidelines on novel methods and approaches recently developed to study xylem formation. We refer to existing literature on established techniques for retrospective analyses in tree-ring series of anatomical and isotopic traits, to assess long-term ecophysiological responses to environmental variations, also giving advice on possible bias because of interand within-tree variability. Finally, we highlight that, once the temporal axis of intra-annual tree-ring variability of xylem traits is established by xylogenesis analysis, a multidisciplinary approach linking classical dendro-ecology, wood functional traits (dendro-anatomy) and eco-physiology (here focusing on dendro-isotopes) allows a better interpretation of past environmental events hidden in tree rings, and more reliable forecasts of wood growth in response to climate change.

80 citations


Journal ArticleDOI
TL;DR: Based on perfusion experiments and modelling, pore constrictions in fibrous pit membranes are estimated to be well below 50 nm, and typically smaller than 20 nm as mentioned in this paper, which is in line with the observed xylem water potentials values that generally induce spread of embolism.
Abstract: Pit membranes in bordered pits of tracheary elements of angiosperm xylem represent primary cell walls that undergo structural and chemical modifications, not only during cell death but also during and after their role as safety valves for water transport between conduits. Cellulose microfibrils, which are typically grouped in aggregates with a diameter between 20 to 30 nm, make up their main component. While it is clear that pectins and hemicellulose are removed from immature pit membranes during hydrolysis, recent observations of amphiphilic lipids and proteins associated with pit membranes raise important questions about drought-induced embolism formation and spread via air-seeding from gas-filled conduits. Indeed, mechanisms behind air-seeding remain poorly understood, which is due in part to little attention paid to the three-dimensional structure of pit membranes in earlier studies. Based on perfusion experiments and modelling, pore constrictions in fibrous pit membranes are estimated to be well below 50 nm, and typically smaller than 20 nm. Together with the low dynamic surface tensions of amphiphilic lipids at air-water interfaces in pit membranes, 5 to 20 nm pore constrictions are in line with the observed xylem water potentials values that generally induce spread of embolism. Moreover, pit membranes appear to show ideal porous medium properties for sap flow to promote hydraulic efficiency and safety due to their very high porosity (pore volume fraction), with highly interconnected, non-tortuous pore pathways, and the occurrence of multiple pore constrictions within a single pore. This three-dimensional view of pit membranes as mesoporous media may explain the relationship between pit membrane thickness and embolism resistance, but is largely incompatible with earlier, two-dimensional views on air-seeding. It is hypothesised that pit membranes enable water transport under negative pressure by producing stable, surfactant coated nanobubbles while preventing the entry of large bubbles that would cause embolism.

61 citations


Journal ArticleDOI
TL;DR: In this article, a correlation between vessel length and diameter within poplar stem xylem tissue using both silicone-injection and analysis of tissue volumes scanned using high-resolution computed tomography (microCT) was found.
Abstract: Xylem vessels interconnect to form the vessel network that is responsible for long-distance water transport through the plant. As plants dehydrate, the water column within vessels cavitates and gas emboli form, which block transport through embolized vessels. The impact of vessel blockages on transport through the xylem tissue depends upon vessel size and the arrangement and connections between vessels in the network. We examined if there was a correlation between vessel length and diameter within poplar stem xylem tissue using both silicone-injection and analysis of tissue volumes scanned using high-resolution computed tomography (microCT). We then used microCT to scan intact stems sampled over varying water potentials to examine if larger vessels, which would have the greatest impact on hydraulic transport, were more vulnerable to cavitation and embolism than smaller vessels. Within the xylem tissue, larger diameter vessels tended to be longer than narrow diameter vessels. Vessel size distributions indicated that most vessels were narrow and short, with fewer large vessels. Larger volume vessels tended to embolize at higher water potentials and the mean vessel volume of embolized vessels declined as water potentials declined. Hydraulic transport through the xylem tissue was near zero when about 40% of the vessels within the xylem tissue volume were embolized, suggesting important vessel network effects occur as water moves through a three-dimensional (3D) tissue. The structure of the vessel network is important in understanding the impact of emboli within vessels on the overall hydraulic function of xylem tissue.

43 citations


Journal ArticleDOI
TL;DR: The relationship between the cell wall ultrastructure of waterlogged wooden archeological artifacts and the state of water bound to cell walls and free in voids is fundamental to develop consolidating and drying technologies as discussed by the authors.
Abstract: The relationship between the cell wall ultrastructure of waterlogged wooden archeological artifacts and the state of water bound to cell walls and free in voids is fundamental to develop consolidating and drying technologies. Herein, a lacquer-wooden ware and a boat-coffin dating 4th century BC were selected as representative artifacts to study. Wood anatomy results indicated that they belonged to Idesia sp. and Machilus sp., respectively. They exhibited a typical spongy texture, as revealed by SEM observations, and their water contents had increased significantly. Solid state NMR, Py-GC/MS, imaging FTIR microscopy and 2D-XRD results demonstrated that the deterioration resulted from the partial cleavages of both polysaccharide backbones and cellulose hydrogen-bonding networks, almost complete elimination of acetyl side chains of hemicellulose, the partial depletion of β-O-4 interlinks, as well as oxidation and demethylation/demethoxylation of lignin. These further caused the disoriented arrangement of crystalline cellulose, and the decrease in cellulose crystallite dimensions and crystallinity. In consequence, mesopores and macropores formed, and the number of moisture-adsorbed sites and their accessibility increased. Moreover, results on free water deduced by the changes of pore structure and the maximum monolayer water capacity achieved by the GAB model indicated that water in waterlogged archeological wooden artifacts was mainly free water in mesopores.

29 citations


Journal ArticleDOI
TL;DR: In this article, the relationship of cell wall micro-and ultrastructure to bacterial degradation of the wood cell wall is discussed, and the main topics covered are cell wall structure and composition.
Abstract: This review presents information on the relationship of ultrastructure and composition of wood cell walls, in order to understand how wood degrading bacteria utilise cell wall components for their nutrition. A brief outline of the structure and composition of plant cell walls and the degradation patterns associated with bacterial degradation of wood cell walls precedes the description of the relationship of cell wall micro- and ultrastructure to bacterial degradation of the cell wall. The main topics covered are cell wall structure and composition, patterns of cell wall degradation by erosion and tunnelling bacteria, and the relationship of cell wall ultrastructure and composition to wood degradation by erosion and tunnelling bacteria. Finally, pertinent information from select recent studies employing molecular approaches to identify bacteria which can degrade lignin and other wood cell wall components is presented, and prospects for future investigations on wood degrading bacteria are explored.

24 citations


Journal ArticleDOI
TL;DR: Accumulating evidence suggests that this taxonomic breadth of wood production reflects mosaic deployment of basic developmental mechanisms, some of which are derived by common ancestry.
Abstract: Studies of anatomically preserved fossils provide a wealth of information on the evolution of plant vascular systems through time, from the oldest evidence of vascular plants more than 400 million years ago to the rise of the modern angiosperm-dominated flora. In reviewing the key contributions of the fossil record, we discuss knowledge gaps and major outstanding questions about the processes attending the evolution of vascular systems. The appearance and diversification of early vascular plants in the late Silurian-Devonian was accompanied by the evolution of different types of tracheids, which initially improved the hydraulics of conduction but had less of an effect on mechanical support. This was followed in the Devonian and Carboniferous by an increase in complexity of the organization of primary vascular tissues, with different types of steles evolving in response to mechanical, hydraulic, and developmental regulatory constraints. Concurrently, secondary vascular tissues, such as wood, produced by unifacial or bifacial cambia are documented in a wide array of plant groups, including some that do not undergo secondary growth today. While wood production has traditionally been thought to have evolved independently in different lineages, accumulating evidence suggests that this taxonomic breadth reflects mosaic deployment of basic developmental mechanisms, some of which are derived by common ancestry. For most of vascular plant history, wood contained a single type of conducting element: tracheids (homoxyly). However, quantitative (e.g. diameter and length) and qualitative (e.g. pitting type) diversity of these tracheids allowed various taxa to cover a broad range of hydraulic properties. A second type of conducting elements, vessels, is first documented in an extinct late Permian (c. 260 Ma) group. While the putative hydraulic advantages of vessels are still debated, wood characterized by presence of vessels (heteroxyly) would become the dominant type, following the diversification of angiosperms during the Cretaceous.

22 citations


Journal ArticleDOI
TL;DR: In this article, the authors revisited questions about changes in the incidences of functional wood anatomical traits through geologic time and compared the similarities of these traits in the fossil record with modern wood anatomical diversity patterns to test classical (Baileyan) and more recent ecophyletic hypotheses of xylem evolution.
Abstract: We revisited questions about changes in the incidences of functional wood anatomical traits through geologic time and compared the incidences of these traits in the fossil record with modern wood anatomical diversity patterns in order to test classical (“Baileyan”) and more recent ecophyletic hypotheses of xylem evolution. We contrast patterns through time for tropical and higher (paleo)latitudes. Data are from the InsideWood database. There are striking differences between woods from high and mid latitudes versus tropical (paleo)-latitudes. At temperate and subtropical latitudes (Laurasia and high latitude Gondwana), the epoch by epoch time series supports the Baileyan transformation series of vessel-bearing woody angiosperms (basal woody angiosperms and eudicots): “primitive” features such as scalariform perforations, exclusively solitary vessels, apotracheal diffuse parenchyma and heterocellular rays abound in the Cretaceous and become much less frequent in the Cenozoic, especially post-Eocene. In contrast, in the paleotropics hardly any changes occur in the incidences - each epoch has an equally “modern” spectrum of wood anatomical attributes. Although climatic gradients from the poles to the equator were less steep in the Cretaceous than in the late Cenozoic, the wood anatomical differences between mid-high latitude woods and tropical woods were much more pronounced in the Cretaceous than in later epochs. This seeming paradox is discussed but we cannot resolve it. We suggest that tropical conditions have accelerated xylem evolution towards greater hydraulic efficiency (simple perforations), biological defense and hydraulic repair (elaborate paratracheal parenchyma patterns) as evidenced by late Cretaceous tropical latitude woods having near modern incidences of almost all traits. At higher paleolatitudes of both the Northern and Southern Hemisphere “ancestral” features such as scalariform perforations were retained in cooler and frost-prone regions where they were not selected against in mesic habitats because of lower demands on conductive efficiency, and could even be advantageous in trapping freeze-thaw embolisms. The fossil wood record remains too incomplete for testing hypotheses on the wood anatomy of the earliest angiosperms. The low incidence of so-called “xerophobic” woods sensu Feild with scalariform perforations with numerous (over 40) closely spaced bars in the Cretaceous tropical fossil record is puzzling. At higher paleolatitudes such woods are common in the Cretaceous. Ring porosity, an indicator of seasonal climates and deciduousness, occurs at low levels in the Cretaceous and Paleogene at higher paleolatitudes only, and reaches modern levels in the Miocene. In Neogene and Recent temperate Northern Hemisphere, wide vessels are virtually restricted to ring-porous woods. In the tropics, there is a low incidence of ring porosity throughout all epochs. The fossil record indicates that ecophysiological adaptation to tropical or temperate conditions was already evident in the Cretaceous with considerable latitudinal differences.

20 citations


Journal ArticleDOI
Lloyd Donaldson1, Adya P. Singh1, Laura G. Raymond1, Stefan J. Hill1, Uwe Schmitt 
TL;DR: In this article, the distribution of extractives in sapwood and heartwood of Douglas-fir was studied using fluorescence microscopy, and different types of extractive including flavonoids, resin acids, and tannins were localized to heartwood cell walls, resin canals, and rays, using autofluorescence or staining of flavonoid with Naturstoff A reagent.
Abstract: Douglas-fir (Pseudotsuga menziesii) has distinctly colored heartwood as a result of extractive deposition during heartwood formation. This is known to affect natural durability and treatability with preservatives, as well as other types of wood modification involving infiltration with chemicals. The distribution of extractives in sapwood and heartwood of Douglas-fir was studied using fluorescence microscopy. Several different types of extractive including flavonoids, resin acids, and tannins were localized to heartwood cell walls, resin canals, and rays, using autofluorescence or staining of flavonoids with Naturstoff A reagent. Extractives were found to infiltrate the cell walls of heartwood tracheids and were also present to a lesser extent in sapwood tracheid cell walls, especially in regions adjacent to the resin canals. Forster resonance energy transfer measurements showed that the accessibility of lignin lining cell wall micropores to rhodamine dye was reduced by about 50%, probably as a result of cell wall-bound tannin-like materials which accumulate in heartwood relative to sapwood, and are responsible for the orange color of the heartwood. These results indicate that micro-distribution of heartwood extractives affects cell wall porosity which is reduced by the accumulation of heartwood extractives in softwood tracheid cell walls.

20 citations


Journal ArticleDOI
TL;DR: Data showed that Pinus pinea and Arbutus unedo are characterised by a high plastic response to climate and formed a high frequency of L-IADFs (occurrence of earlywoodlike conduits in latewood), and the two species, although forming the same type of IADFs, showed different sensitivity to environmental factors.
Abstract: Mediterranean trees and shrubs form intra-annual density fluctuations (IADFs) in tree rings as a sign of their plasticity in wood formation in response to intraseasonal variations of environmental conditions. Different species show a different aptitude to form IADFs, due to their diverse ability to cope with climate stressors, since the occurrence of IADFs may affect plant hydraulics. Dendroecology and quantitative wood anatomy were used to characterise IADFs in Pinus pinea and Arbutus unedo co-occurring at a Mediterranean site in Italy. The relations between climate parameters (i.e. temperature and precipitation) and intra-annual tree-ring traits (i. e. IADF frequency and conduit size) were analysed to highlight the main triggers for IADF formation and their functional role. Data showed that both species are characterised by a high plastic response to climate and formed a high frequency of L-IADFs (occurrence of earlywoodlike conduits in latewood). The two species, although forming the same type of IADFs, showed different sensitivity to environmental factors. Pinus pinea showed a high dependence of tracheid size on temperature, while Arbutus unedo was more sensitive to precipitation in spring and autumn. Arbutus unedo promptly developed more than one IADF per year in response to rainfall events following drought periods. The overall results were useful to compare the aptitude of the two species in forming IADFs and to highlight the factors priming their formation. This is useful to understand wood growth reactions to environmental drivers and to evaluate the adaptive capabilities in these two species, and thus to predict forest reactions after climate changes.

19 citations


Journal ArticleDOI
Lloyd Donaldson1
TL;DR: In this article, the authors focus on how the development of imaging techniques and their application to wood cell walls has led to an understanding of cell wall organisation and the relationship between micro and macro scale properties in wood and wood-based materials.
Abstract: In the last 100 years, major advances have been made in understanding wood cell wall ultrastructure in tracheids, fibres, vessels and parenchyma and its relationship with xylem function and wood properties. This review will focus on how the development of imaging techniques and their application to wood cell walls has led to an understanding of cell wall organisation and the relationship between micro and macro scale properties in wood and wood-based materials. Topics such as wood formation, wood chemistry and reaction wood have recently been reviewed elsewhere and are considered only briefly in this review. Two features of wood cell walls have dominated the literature; orientation and layering of cellulose which determines the longitudinal stiffness of wood, and the distribution (topochemistry) of lignin which determines compression strength and pulping properties.

19 citations


Journal ArticleDOI
TL;DR: In this article, the authors used the Fourier transform ion cyclotron resonance mass spectrometry (DART-FTICR-MS) combined with multivariate statistical analysis to extract chemical information from xylarium wood specimens and to explore the feasibility of distinguishing P. santalinus and P. tinctorius.
Abstract: Pterocarpus santalinus, listed in CITES Appendix II, is an endangered timber species as a result of illegal harvesting due to its high value and commercial demand. The growing demand for P. santalinus and timbers with the morphologically similar Pterocarpus tinctorius has resulted in confusion as well as identification problems. Therefore, it is of vital importance to explore reliable ways to accurately discriminate between P. santalinus and P. tinctorius. In this study, the method of direct analysis in real time and fourier transform ion cyclotron resonance mass spectrometry (DART-FTICR-MS), combined with multivariate statistical analysis, was used to extract chemical information from xylarium wood specimens and to explore the feasibility of distinguishing these two species. Significant differences were observed in their DART-FTICR-MS spectra. Orthogonal partial least square-discriminant analysis (OPLS-DA) showed the highest prediction, with an accuracy of 100%. These findings demonstrate the feasibility of authenticating wood types using DART-FTICR-MS coupled with multivariate statistical analysis.

Journal ArticleDOI
TL;DR: Both species show a unique adaptation to deal with height-related constraints using species-specific co-variation amongst wood traits, while site does not contribute much to the wood variation.
Abstract: Covariation amongst wood traits along the stem axis is important to maintain hydraulic integrity ensuring sufficient sap flow to the canopy. Here, we test how wood traits (co)vary along the trunk and whether two seasonally dry Brazilian habitats (cerrado and caatinga) influence this variation in two co-occurring species, Tocoyena formosa (Rubiaceae) and Tabebuia aurea (Bignoniaceae). The samples were collected at five heights along the main trunk of three individuals per species in both sites. We used light, scanning and transmission electron microscopy to observe the wood traits. Out of 13 wood traits, nine show relationships with sampling height: eight traits predict height in T. formosa and five in T. aurea. Contrastingly, only three traits show differences between sites and only for T. formosa. The intratrunk wood variation is reflected by the hydraulically weighted vessel diameter showing a curvilinear relationship, disagreeing with the prediction of a continuous vessel widening from tip to base. In both species, the largest vessels are linked to the thinnest intervessel pit membranes. Wood density increases basipetally for both species, being site-dependent and correlated with vessel traits in T. formosa, and site-independent and determined by fiber wall thickness in T. aurea. Furthermore, the functional role of rays was found to be different for each species, and may be related to the marked difference in ray composition. In conclusion, both species show a unique adaptation to deal with height-related constraints using species-specific co-variation amongst wood traits, while site does not contribute much to the wood variation.

Journal ArticleDOI
TL;DR: The first computer-aided identification key designed for charcoals from French Guiana is presented, based on the wood anatomy of 507 species belonging to 274 genera and 71 families, which covers respectively 28%, 67% and 86% of the tree species, generA and families currently listed in this part of Amazonia.
Abstract: Tropical tree floras are highly diverse and many genera and species share similar anatomical patterns, making the identification of tropical wood charcoal very difficult. Appropriate tools to characterize charcoal anatomy are thus needed to facilitate and improve identification in such species-rich areas. This paper presents the first computer-aided identification key designed for charcoals from French Guiana, based on the wood anatomy of 507 species belonging to 274 genera and 71 families, which covers respectively 28%, 67% and 86% of the tree species, genera and families currently listed in this part of Amazonia. Species of the same genus are recorded together except those described under a synonym genus in Detienne et al. (1982) that were kept separately. As a result, the key contains 289 ‘items’ and mostly aims to identify charcoals at the genus level. It records 26 anatomical features leading to 112 feature states, almost all of which are illustrated by SEM photographs of charcoal. The descriptions were mostly taken from Detienne et al.’s guidebook on tropical woods of French Guiana (1982) and follow the IAWA list of microscopic features for hardwood identification (Wheeler et al. 1989). Some adjustments were made to a few features and those that are unrelated to charcoal identification were excluded. The whole tool, named CharKey, contains the key itself and the associated database including photographs. It can be downloaded on Figshare at https://figshare.com/s/d7d40060b53d2ad60389 ( doi: 10.6084/m9.figshare.6396005 ). CharKey is accessible using the free software Xper 2 , specifically conceived for taxonomic description and computer aided-identification.

Journal ArticleDOI
TL;DR: In this paper, the effect of temperature and precipitation on xylem phenology were sequentially included in stepwise regressions and used to predict the duration of each phenological phase under three future climate scenarios at different concentrations of greenhouse gases (RCP 2.6; 4.5; 8.5).
Abstract: Xylem phenology has been widely recognised as an ecological indicator of the impact of environmental changes on forest ecosystems, especially at the edge of a species distribution. We investigated xylem phenology of silver fir (Abies alba Mill.) in three sites in Italy, between the 38th and 46th parallels. The phases of xylem phenology were assessed weekly on wood microcores collected from March to November 2015 to calculate timing and duration of xylem cell production. The effect of temperature and precipitation on xylem phenology were sequentially included in stepwise regressions and used to predict the duration of each phenological phase under three future climatic scenarios at different concentrations of greenhouse gases (RCP 2.6; 4. 5; 8. 5). A growing season of 163 days was detected in the southern site that was longer compared to the central (132 days) and northern (120 days) sites. A longer duration of xylogenesis was mostly related to a delayed completion of xylem differentiation in autumn rather than an earlier onset of cambium reactivation in spring. Overall, 67–76% of the duration of phenological phases was controlled by growing season precipitation, while 24 –33% was influenced by minimum temperature. Inclusion of both the above factors in the modelling exercise simulated a lengthening of the silver fir growing season during the 21st century. A longer duration of xylogenesis was envisaged in the scenario RCP 8. 5, especially in the central site. Population and climate gradients need to be considered when addressing phenological shifts and growth dynamics of silver fir in Mediterranean mountains.

Journal ArticleDOI
TL;DR: The Battery Point Formation of eastern Canada hosts an Emsian (c. 400-395 Ma) flora that marks one of the rare occurrences of anatomically-preserved Early Devonian plants.
Abstract: The Battery Point Formation of eastern Canada hosts an Emsian (c. 400–395 Ma) flora that marks one of the rare occurrences of anatomically-preserved Early Devonian plants. We describe four new euphyllophytes from small permineralized axes in this unit. Leptocentroxyla tetrarcha gen. et sp. nov. has a four-ribbed mesarch actinostele with Psilophyton-type (P-type) tracheids and a central area of scalariform tracheids. Stenoloboxyla ambigua gen. et sp. nov. has a bar-shaped to three-ribbed mesarch stele lacking central protoxylem, with one of the ribs less pronounced, P-type tracheids, and sclerenchyma forming a discontinuous layer in the cortex. Jowingera triloba gen. et sp. nov. has a three-ribbed mesarch actinostele with central protoxylem and P-type tracheids. Tainioxyla quebecana gen. et sp. nov. has bar-shaped xylem with mesarch protoxylem strands, P-type tracheids, and anatomy typical of cambial growth initiation. These new species raise the diversity of Battery Point Formation permineralized plants to nine genera, adding significantly to the diversity of Early Devonian plants characterized anatomically. The four species encompass structural diversity of unexpected breadth and novelty for their age. They are different from both older and coeval euphyllophytes and from younger euphyllophytes, exhibiting combinations of derived and plesiomorphic characters. Their mesarch actinosteles and barshaped protosteles, histological differentiation within metaxylem and cortex, and secondary growth, represent aspects of structural complexity common in more derived Middle-Late Devonian euphyllophytes. Concurrently, the four species share P-type tracheids typical of Early Devonian basal euphyllophytes with simpler anatomies. These new fossils offer a first glimpse of a plexus of plants representing a previously unsuspected stage of euphyllophyte morphoanatomical evolution. They demonstrate significant euphyllophyte diversification and exploration of structural complexity under way during the Early Devonian, against a background of plesiomorphic-type tracheids. When more completely characterized, these Emsian plants will provide links for resolving phylogenetic relationships at the base of the euphyllophyte clade.

Journal ArticleDOI
TL;DR: Testing if five major traits of the leafand wood-economics spectra explain climate-growth relationships in 14 Mediterranean trees and shrubs finds WD is a relevant functional trait useful to predict the performance of Mediterranean woody plant species, specifically concerning their growth responses to climate.
Abstract: Functional traits are considered to influence the performance of woody plants. However, few field studies have tested this idea by using radial-growth data. Here, I test if five major traits of the leafand wood-economics spectra (height, leaf area, specific leaf area – SLA, wood density – WD and hydraulic diameter) explain climate-growth relationships in 14 Mediterranean trees and shrubs. Traits were measured for both gymnosperm (four Juniperus species plus three Pinus species) and angiosperm species (two Quercus species, two Pistacia species, Arbutus unedo, Celtis australis, and one Tamarix species). Climategrowth relationships were calculated relating ring-width indices (RWIs) and local climate data. Leaf area and SLA were high in broadleaf deciduous species (e.g., C. australis), and low in junipers. WD reached minimum and maximum values in pine and oak species, respectively. WD explained 45 % of the variation of the association observed between RWI and April precipitation, one of the main climatic variables driving radial growth. Therefore, WD is a relevant functional trait useful to predict the performance of Mediterranean woody plant species, specifically concerning their growth responses to climate. Functional traits as WD should be further explored to explain growth variability between and within woody species, and to link this variability with responsiveness to climate and ecosystem productivity.

Journal ArticleDOI
TL;DR: In this article, a previously described fossil wood from the Rio Turbio Formation was re-examined and described as Scalarixylon romeroi sp.nov.
Abstract: Over 80 samples of fossil woods were collected from numerous outcrops of the Rio Turbio Formation, southwestern Patagonia. Preservation of the woods is variable and only about half of these samples could be identified to genus level. The assemblage consists of six types of conifers and four types of dicotyledons, one of them a new species of Caldcluvioxylon (Cunoniaceae). We provide an emended diagnosis of Caldcluvioxylon. A previously described fossil wood from this stratigraphic unit, thought to have affinity with Proteaceae, was re-examined and is described herein as Scalarixylon romeroi sp.nov. Other families recognized in the Rio Turbio Formation wood assemblage are Araucariaceae, Podocarpaceae, and Nothofagaceae. Differences in the taxonomic composition of the upper and lower members of the Rio Turbio Formation are consistent with the age difference between them according to recent isotopic dating. The diversity of fossil wood is also consistent with the fossil leaves and pollen from each stratigraphic level and most of the taxa are shared with coeval Antarctic fossil wood floras.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the relationship between climate and radial tree growth of P. reticulata and determined the spatial correlation between seasonal climatic factors and tree-ring width.
Abstract: Relict tree species in the Andean mountains are important sources of information about climate variability and climate change. This study deals with dendroclimatology and growth patterns in Polylepis reticulata Hieron., growing at high elevation (mean of 4000 m a.s.l.) in three sites of the Ecuadorian Andes. The aims of the research were: (i) characterizing tree-ring boundaries; (ii) describing tree-ring patterns of the study sites; (iii) investigating the relationships between climate and radial tree growth; and (iv) determining the spatial correlation between seasonal climatic factors and tree-ring width of P. reticulata. Tree rings were characterized by semi-ring porosity and slight differences in fibre wall thickness between latewood and subsequent earlywood. In all sampling sites, tree rings in heartwood were more clearly visible than in sapwood. Tree-ring width was more related to temperature than to precipitation, with growth being also affected by site conditions and stand structure, as well as other local factors. No significant relationships were found between tree-ring chronologies of P. reticulata and El Nino-Southern Oscillation (ENSO) and Vapour Pressure Deficit indices. The study highlights that there is not a clear driving climate factor for radial growth of P. reticulata. Additional research is needed to study growth dynamics of this species and the impacts of local environmental variables.

Journal ArticleDOI
TL;DR: In this article, the seasonal radial growth responses to climate, drought and related climate atmospheric patterns have been compared in detail in wet and dry conifer forest ecosystems in northern Mexico conifer forests and compared growth responses in tree species from wet (Pseudotsuga menziesii) and dry sites (Pinus leiophylla).
Abstract: Warming-amplified drought stress may decrease productivity and growth in both wet and dry conifer forest ecosystems. However, the seasonal radial-growth responses to climate, drought and related climate atmospheric patterns have not been compared in detail in wet and dry sites. We focus on drought-prone northern Mexico conifer forests and compare growth responses in tree species from wet (Pseudotsuga menziesii) and dry sites (Pinus leiophylla). to characterize the responsiveness to interand intra-annual changes in water availability we used dendrochronology and measured tree-ring (TRW), earlywood (EW) and latewood (LW) widths. We calculated adjusted LW (LWadj) by removing the influence of EW on LW. We identified E(narrow tracheids within the earlywood) and L-type (wide tracheids within the latewood) intra-annual density fluctuations (IADFs) and related their frequencies to seasonal climate and drought. We also related growth to atmospheric patterns related to the El NinoSouthern Oscillation (ENSO) which drives precipitation patterns in the studied region. Wet-cool conditions during the prior winter and current spring linked to El Nino events enhanced TRW and EW, particularly in P. menziesii, whereas wet summer conditions enhanced LWadj. The formation of E(P. leiophylla) and L-type (P. menziesii) IADFs was associated with seasonal fluctuations in precipitation and temperature, suggesting different strategies to withstand drought. the sensitive P. menziesii strongly responded to short spring droughts, whereas the tolerant P. leiophylla responded to longer spring droughts. Seasonal wood measures (EW, LWadj) and IADFs are proxies of intra-annual fluctuations in water availability in similar conifer forests.

Journal ArticleDOI
TL;DR: Mistletoes are hemi-parasitic plants growing on many tree species that form root-like structures called haustoria that penetrate into the tree, taking up water and mineral nutrients and having significant influences on wood and needle anatomy.
Abstract: Mistletoes are hemi-parasitic plants growing on many tree species. They grow on the tree branches or trunk of a tree and form root-like structures called haustoria that penetrate into the tree, taking up water and mineral nutrients. Mistletoe is capable of causing a variety of effects to its hosts, including changes in wood formation and leaf development. We investigate and discuss the effects of pine mistletoe (Viscum album ssp. austriacum, Santalaceae) on branch wood and needle anatomy of Scots pine (Pinus sylvestris, Pinaceae). Parasitized and nonparasitized branches of Scots pine were sampled from host tree crowns of trees growing on the same site. Branches were taken from mid-crown facing south. They were cut at 2 cm proximal and 2 cm distal to the mistletoe on each host branch and at the corresponding position in the case of uninfected branches from the same host. The wood anatomy at proximal and distal parts and the parts at the corresponding position in the non-parasitized section was compared. The anatomy of one-year-old needles from both parasitized and non-parasitized branches was also compared. Mistletoe had significant influences on wood and needle anatomy. The major changes were the decreases in the double wall thickness, lumen area, tangential lumen area and radial lumen area of the tracheids in the wood and a decrease in vascular area in the needles. These results help to understand how mistletoe acts on its host.

Journal ArticleDOI
TL;DR: Observations of metaxylem vessels and pits in moso bamboo culm internodes were carried out using environmental scanning electron microscopy to examine mature bamboo fractures and resin casts and showed that bordered pits were distributed in relation to adjacent cell types with most pits between vessel and parenchyma cells and few pits between vessels and fibers of the bundle sheath.
Abstract: The flow of xylem sap in bamboo is closely associated with metaxylem vessels and the pits in their cell walls. These pits are essential components of the water-transport system and are key intercellular pathways for transverse permeation of treatment agents related to utilization. Observations of metaxylem vessels and pits in moso bamboo culm internodes were carried out using environmental scanning electron microscopy (ESEM) to examine mature bamboo fractures and resin casts. The results showed that bordered pits were distributed in relation to adjacent cell types with most pits between vessels and parenchyma cells and few pits between vessels and fibers of the bundle sheath. The pit arrangement was mainly opposite to alternate with apertures ranging from oval, flattened elliptical, or slit-like to coalescent. The vertical dimensions of inner apertures and outer apertures of the pits were about 0.9–2.7 μm and 1.1–3.8 μm, respectively. According to the relative position, and size difference between the inner apertures and their borders, the bordered pit shapes were categorized into three types, namely PI, PII and PIII (Fig. 3C). Half-bordered pit pairs were observed between vessels and direct contact parenchyma cells. Most vessel elements possessed simple perforation plates.

Journal ArticleDOI
TL;DR: The large diversity of tension Wood anatomy in tropical tree species is described, taking advantage of the recent understanding of tension wood anatomy and any link between this diversity and other ecological traits of the species is explored.
Abstract: Angiosperm trees produce tension wood to actively control their vertical position. Tension wood has often been characterised by the presence of an unlignified inner fibre wall layer called the G-layer. Using this definition, previous reports indicate that only one-third of all tree species have tension wood with G-layers. Here we aim to (i) describe the large diversity of tension wood anatomy in tropical tree species, taking advantage of the recent understanding of tension wood anatomy and (ii) explore any link between this diversity and other ecological traits of the species. We sampled tension wood and normal wood in 432 trees from 242 species in French Guiana. The samples were observed using safranin and astra blue staining combined with optical microscopy. Species were assigned to four anatomical groups depending on the presence/absence of G-layers, and their degree of lignification. The groups were analysed for functional traits including wood density and light preferences. Eighty-six% of the species had G-layers in their tension wood which was lignified in most species, with various patterns of lignification. Only a few species did not have G-layers. We found significantly more species with lignified G-layers among shade-tolerant and shade-demanding species as well as species with a high wood density. Our results bring up-to-date the incidence of species with/without G-layers in the tropical lowland forest where lignified G-layers are the most common anatomy of tension wood. Species without G-layers may share a common mechanism with the bark motor taking over the wood motor. We discuss the functional role of lignin in the G-layer.

Journal ArticleDOI
TL;DR: WD is one of the best available proxies for P50, but does not necessarily reflect the mechanism behind resistance to cavitation, while the new trait, based on estimation of conductivity loss as a dynamic process, provided even stronger correlations.
Abstract: Relationships between hydraulic vulnerability expressed as P 50 (the air pressure causing 50% loss of hydraulic conductivity) and within-ring differences in wood density (WD) and anatomical features were investigated with the aim to find efficient proxies for P 50 relating to functional aspects. WD and tracheid dimensions were measured with SilviScan on Norway spruce ( Picea abies (L.) Karst.) trunk wood. P 50 was strongly related to mean WD ( r = - 0.64) and conduit wall reinforcement (( t / b ) 2 ), the square of the ratio between the tracheid double wall thickness ( t ) and the lumen width ( b ), where use of tangential lumen width (( t / b t ) 2 ) gave better results ( r = - 0.54) than radial lumen width ( r = - 0.31). The correlations of P 50 with earlywood (EW), transition wood (TW) and latewood (LW) traits were lower than with the specimen averages, both for WD ( r = - 0.60 for WD EW , r = - 0.56 for WD TW , r = - 0.23 for WD LW ) and all anatomical traits. The loss of hydraulic conductivity was addressed as a dynamic process and was simulated by defining consecutive phases of 5% theoretical conductivity loss. WD and tracheid traits were calculated and correlated with P 50 values of each specimen. Tightest correlations were found for ( t / b t ) 2 , at relative cumulated theoretical conductivities until 45 to 50% ( r = - 0.75).We conclude that WD is one of the best available proxies for P 50 , but does not necessarily reflect the mechanism behind resistance to cavitation. The new trait, based on estimation of conductivity loss as a dynamic process, provided even stronger correlations.

Journal ArticleDOI
TL;DR: In this article, the authors use the analogy between the flow of water under tension in a plant and an electrical circuit to develop an extension of Wilson's single tracheid model to the tissue scale.
Abstract: The origin of xylem in the Silurian was a major step in plant evolution, leading to diverse growth forms with various mechanical and hydraulic properties. In the fossil record, these properties can only be investigated using models based on extant plant physiology. Regarding hydraulics, previous studies have considered either the properties of a single tracheid or of a set of independent tubes. Here, we use the analogy between the flow of water under tension in a plant and an electrical circuit to develop an extension of Wilson's single tracheid model to the tissue scale. Upscaling to the tissue-level allows considering wood as a heterogeneous tissue by taking into account differences in tracheid density and the presence of rays. The new model provides a more biologically accurate representation of fossil wood hydraulic properties. The single tracheid and new tissue models are applied to two conspecific specimens of Callixylon (Progymnospermopsida, Archeopteridales) from the Late Devonian of Morocco. Differences are shown at the tissue level that cannot be suspected at the single tracheid level. Callixylon represents the first trees with a conifer-like wood and is a major component of Late Devonian floras world-wide. Our results show that the anatomical disparity of its wood might have led to hydraulic plasticity, allowing growth in various environmental conditions. More generally, the new tissue-model suggests that the various combinations of tracheid and ray sizes present in Palaeozoic plants might have led to a higher variety of ecophysiologies than suspected based solely on the properties of individual tracheids.

Journal ArticleDOI
TL;DR: Very marked spatial variations are found that indicate that A. durangensis responds differently to drought conditions depending on the indices of density, and mean (MeanD) and minimum (MND) wood density values are more sensitive to climate than maximum (MXD).
Abstract: Ongoing climate change is expected to alter forests by affecting forest productivity, with implications for the ecological functions of these systems. Despite its great dendrochronological potential, little research has been conducted into the use of wood density as a proxy for determining sensitivity to climate variability in Mexico. The response of Abies durangensis Martinez, in terms of wood density and growth ring width, to monthly climatic values (mean temperature, accumulated precipitation and the drought index SPEI) was analyzed through correlation analysis. Abies durangensis presents a high response, in terms of radial growth, to climatic conditions. Tree-ring widths are more sensitive to hydroclimatic variables, whereas wood density values are more sensitive to temperature. In particular, mean (MeanD) and minimum (MND) wood density values are more sensitive to climate than maximum (MXD). We found very marked spatial variations that indicate that A. durangensis responds differently to drought conditions depending on the indices of density.

Journal ArticleDOI
TL;DR: Classification was done based on luthier literature, woods used in commercially available electric guitars, commercially available tonewoods and by interviewing Finnish luthiers to find substitute woods for a certain guitar wood class.
Abstract: Many endangered tropical hardwoods are commonly used in electric guitars. In order to find alternative woods, the current electric guitar woods need to be studied and classified as most research in this field has focused on acoustic instruments. Classification was done based on luthier literature, woods used in commercially available electric guitars, commercially available tonewoods and by interviewing Finnish luthiers. Here, the electric guitar woods are divided into three distinct classes based on how they are used in the guitar: low-density wood used in the body only (alder, poplar, basswood, ash), medium-density wood used in the body and neck (maple and mahogany), and high-density wood used in the fretboard only (rosewood and ebony). Together, these three classes span a wide range of anatomical and mechanical properties, but each class itself is limited to a relatively narrow parameter space. Statistically significant differences between these classes and the average hardwoods exist in the wood anatomy (size and organization of vessels, fibres, rays and axial parenchyma), in the mechanical properties (density, elastic modulus, Janka hardness, etc.) and in the average price per volume. In order to find substitute woods for a certain guitar wood class, density and elastic modulus can already be used to rule out most wood species. Based on principal component analysis of the elastomechanical and anatomical properties of commercially available hardwoods, few species are similar to the low- and high-density class woods. However, for all of the three electric guitar wood classes, non-endangered wood species are already commercially available from tonewood retailers that match the class characteristics presented here.


Journal ArticleDOI
TL;DR: In this paper, the hydraulic conductance of the secondary xylem of three shrubby or arborescent plant fossils (a probably new genus of Cladoxylopsida, the archaeopteridalean genus Callixylon and the stenokolean genus Brabantophyton) was studied.
Abstract: Most evolutionary innovations in plant vascular tissues, including secondary growth, occurred during the Devonian period (~420 to 360 million years ago). Such innovations had a major impact on land colonisation by plants and on their biodiversity. Here, we show the hydraulic conductance of the secondary xylem of three shrubby or arborescent plant fossils (a probably new genus of Cladoxylopsida, the archaeopteridalean genus Callixylon and the stenokolean genus Brabantophyton). Evidences come from the Ronquières fossil site (Belgium). This site is considered mid-late Givetian/earliest Frasnian in age. Results reveal that hydraulic conductivity of these early woody plants is more or less similar to that of modern gymnosperms, meaning that water transport was already as efficient in Devonian plants as it is in living plants. Our results further suggest that tracheids with features helping for optimised water transport were quickly selected in the evolutionary history of vascular plants.

Journal ArticleDOI
TL;DR: SIR-Legno as discussed by the authors is a wood atlas and accompanying software, developed for the identification of 48 Italian timber species based on a recently proposed list of macroscopic features for wood identification.
Abstract: Wood identification has never been more important to serve the purpose of global forest protection, by controlling international illegal timber trade and enabling the enforcement of timber trade regulations. Macroscopic wood identification is the fastest method for the first identification of an unknown timber and, with proper training, it can be performed by operators in the timber industry, restorers and curators of cultural heritage, wood traders, designers, students and customs officers. Here we describe a wood atlas and accompanying software, SIR-Legno, developed for the identification of 48 Italian timber species based on a recently proposed list of macroscopic features for wood identification. For each species the atlas provides a complete macroscopic description plus information on natural durability, end-use class, physico-mechanical properties, conservation status, maximum diameter of the bole and most frequent uses. For each genus covered by the atlas, information about species number, CITES-listed species, main commercial timbers, similarly-named timbers from other genera, geographical distribution and notes on species or species group recognition at macroscopic and microscopic level are provided. SIR-Legno is an educational product, a handy identification key and a tool to search woods by their natural durability, end-use class and physico-mechanical properties. Both the atlas and the software can be freely downloaded from the web. Thanks to the adoption of a codified list of characters and a transferable design, SIR-Legno can be easily replicated or expanded to other databases in order to include new species. SIR-Legno is freeware and works on any version of Windows.

Journal ArticleDOI
TL;DR: This work discusses the main factors influencing tree growth in this environment, whether it is the local hydrological cycle or climate, and puts a particular focus on the reliability of the climate signal recorded by living peatland trees, comparing it with that found in subfossil trees.
Abstract: Peatland ecosystems are an important archive of paleoclimatic information. Within this context, tree-ring data from trees growing in such ecosystems are extremely valuable resources, and subfossil trees from peat bogs have been widely employed in dendroclimatological studies. However, there are still gaps in our understanding of the relationships among tree growth, peatland hydrology and climate factors. Here, we summarize the principal studies on living peatland trees, with a particular focus on their use as a source of information on past climatic conditions. We discuss the main factors influencing tree growth in this environment, whether it is the local hydrological cycle or climate. We put a particular focus on the reliability of the climate signal recorded by living peatland trees, comparing it with that found in subfossil trees. Finally, we discuss the relevance of quantitative wood anatomy in the context of peatland ecosystems research.