scispace - formally typeset
Search or ask a question

Showing papers in "International Journal of Nanomedicine in 2019"


Journal ArticleDOI
TL;DR: The present review discusses the current state of the art in AD therapeutics and diagnostics, including labeling and imaging techniques employed as contrast agents for better visualization and sensing of the plaques and points to an urgent need for nanotechnology as an efficient therapeutic strategy to increase the bioavailability of drugs in the central nervous system.
Abstract: Currently, 47 million people live with dementia globally, and it is estimated to increase more than threefold (~131 million) by 2050. Alzheimer's disease (AD) is one of the major causative factors to induce progressive dementia. AD is a neurodegenerative disease, and its pathogenesis has been attributed to extracellular aggregates of amyloid β (Aβ) plaques and intracellular neurofibrillary tangles made of hyperphosphorylated τ-protein in cortical and limbic areas of the human brain. It is characterized by memory loss and progressive neurocognitive dysfunction. The anomalous processing of APP by β-secretases and γ-secretases leads to production of Aβ40 and Aβ42 monomers, which further oligomerize and aggregate into senile plaques. The disease also intensifies through infectious agents like HIV. Additionally, during disease pathogenesis, the presence of high concentrations of Aβ peptides in central nervous system initiates microglial infiltration. Upon coming into vicinity of Aβ, microglia get activated, endocytose Aβ, and contribute toward their clearance via TREM2 surface receptors, simultaneously triggering innate immunoresponse against the aggregation. In addition to a detailed report on causative factors leading to AD, the present review also discusses the current state of the art in AD therapeutics and diagnostics, including labeling and imaging techniques employed as contrast agents for better visualization and sensing of the plaques. The review also points to an urgent need for nanotechnology as an efficient therapeutic strategy to increase the bioavailability of drugs in the central nervous system.

485 citations


Journal ArticleDOI
TL;DR: Novel outcomes of green synthesis in the field of nanotechnology are appreciable where the synthesis and design of NPs have proven potential outcomes in diverse fields.
Abstract: Background: Nanotechnology explores a variety of promising approaches in the area of material sciences on a molecular level, and silver nanoparticles (AgNPs) are of leading interest in the present scenario This review is a comprehensive contribution in the field of green synthesis, characterization, and biological activities of AgNPs using different biological sources Methods: Biosynthesis of AgNPs can be accomplished by physical, chemical, and green synthesis; however, synthesis via biological precursors has shown remarkable outcomes In available reported data, these entities are used as reducing agents where the synthesized NPs are characterized by ultraviolet-visible and Fourier-transform infrared spectra and X-ray diffraction, scanning electron microscopy, and transmission electron microscopy Results: Modulation of metals to a nanoscale drastically changes their chemical, physical, and optical properties, and is exploited further via antibacterial, antifungal, anticancer, antioxidant, and cardioprotective activities Results showed excellent growth inhibition of the microorganism Conclusion: Novel outcomes of green synthesis in the field of nanotechnology are appreciable where the synthesis and design of NPs have proven potential outcomes in diverse fields The study of green synthesis can be extended to conduct the in silco and in vitro research to confirm these findings

295 citations


Journal ArticleDOI
TL;DR: This study proved that AgNPs could play antimicrobial roles on the multidrug-resistant P. aeruginosa in a concentration- and time-dependent manner and confirmed the excessive production of ROS.
Abstract: Background The threat of drug-resistant Pseudomonas aeruginosa requires great efforts to develop highly effective and safe bactericide. Objective This study aimed to investigate the antibacterial activity and mechanism of silver nanoparticles (AgNPs) against multidrug-resistant P. aeruginosa. Methods The antimicrobial effect of AgNPs on clinical isolates of resistant P. aeruginosa was assessed by minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC). In multidrug-resistant P. aeruginosa, the alterations of morphology and structure were observed by the transmission electron microscopy (TEM); the differentially expressed proteins were analyzed by quantitative proteomics; the production of reactive oxygen species (ROS) was assayed by H2DCF-DA staining; the activity of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) was chemically measured and the apoptosis-like effect was determined by flow cytometry. Results Antimicrobial tests revealed that AgNPs had highly bactericidal effect on the drug-resistant or multidrug-resistant P. aeruginosa with the MIC range of 1.406-5.625 µg/mL and the MBC range of 2.813-5.625 µg/mL. TEM showed that AgNPs could enter the multidrug-resistant bacteria and impair their morphology and structure. The proteomics quantified that, in the AgNP-treated bacteria, the levels of SOD, CAT, and POD, such as alkyl hydroperoxide reductase and organic hydroperoxide resistance protein, were obviously high, as well as the significant upregulation of low oxygen regulatory oxidases, including cbb3-type cytochrome c oxidase subunit P2, N2, and O2. Further results confirmed the excessive production of ROS. The antioxidants, reduced glutathione and ascorbic acid, partially antagonized the antibacterial action of AgNPs. The apoptosis-like rate of AgNP-treated bacteria was remarkably higher than that of the untreated bacteria (P Conclusion This study proved that AgNPs could play antimicrobial roles on the multidrug-resistant P. aeruginosa in a concentration- and time-dependent manner. The main mechanism involves the disequilibrium of oxidation and antioxidation processes and the failure to eliminate the excessive ROS.

256 citations


Journal ArticleDOI
TL;DR: A fundamental transformation has occurred in the preparation of LPHNPs, characterized by a transition from a two-step to a one-step strategy, involving synchronous self-assembly of polymers and lipids.
Abstract: Lipid-polymer hybrid nanoparticles (LPHNPs) are next-generation core-shell nanostructures, conceptually derived from both liposome and polymeric nanoparticles (NPs), where a polymer core remains enveloped by a lipid layer. Although they have garnered significant interest, they remain not yet widely exploited or ubiquitous. Recently, a fundamental transformation has occurred in the preparation of LPHNPs, characterized by a transition from a two-step to a one-step strategy, involving synchronous self-assembly of polymers and lipids. Owing to its two-in-one structure, this approach is of particular interest as a combinatorial drug delivery platform in oncology. In particular, the outer surface can be decorated in multifarious ways for active targeting of anticancer therapy, delivery of DNA or RNA materials, and use as a diagnostic imaging agent. This review will provide an update on recent key advancements in design, synthesis, and bioactivity evaluation as well as discussion of future clinical possibilities of LPHNPs.

238 citations


Journal ArticleDOI
TL;DR: This review aims to describe the mechanisms of ZnO NPs toxicity against fungi and bacteria and how the different structural and physical-chemical characteristics of ZoNPs can interfere in their antimicrobial activity.
Abstract: The inappropriate use of antimicrobials has resulted in the selection of resistant strains. Thus, a great number of studies have focused on the investigation of new antimicrobial agents. The use of zinc oxide nanoparticles (ZnO NPs) to optimise the fight against microbial resistance has been receiving increased attention due to the non-specific activity of inorganic antimicrobial agents. The small particle size and the high surface area of ZnO NPs can enhance antimicrobial activity, causing an improvement in surface reactivity. In addition, surface modifiers covering ZnO NPs can play a role in mediating antimicrobial activity since the surface properties of nanomaterials alter their interactions with cells; this may interfere with the antimicrobial effect of ZnO NPs. The possibility of using surface modifiers with groups toxic to microorganisms can improve the antimicrobial activity of ZnO NPs. Understanding the exact toxicity mechanisms is crucial to elucidating the antimicrobial activity of ZnO NPs in bacteria and fungi. Therefore, this review aims to describe the mechanisms of ZnO NPs toxicity against fungi and bacteria and how the different structural and physical-chemical characteristics of ZnO NPs can interfere in their antimicrobial activity.

176 citations


Journal ArticleDOI
TL;DR: This review aimed to demonstrate the present knowledge of MSC-derived exosome in cancer research and to illustrate current approaches to make use of modified exosomes as a platform in therapeutic strategies in cancer.
Abstract: Mesenchymal stem cells (MSCs) are multipotent stromal cells present in various adult tissues. Several studies suggest that MSCs secrete exosomes that perform as mediators in the tumor niche and play several roles in tumorigenesis, angiogenesis, and metastasis. In contrast, there are other studies supporting the tumor-suppressing effects of MSC-derived exosomes. Therefore, the exact association of MSC exosomes and tumor cells remains open to debate. This review aimed to demonstrate the present knowledge of MSC-derived exosomes in cancer research and to illustrate current approaches to make use of modified exosomes as a platform in therapeutic strategies in cancer.

169 citations


Journal ArticleDOI
TL;DR: The results suggest that the size of AgNPs can not only affect the efficiency of cellular uptake, but also the type of endocytosis.
Abstract: Purpose: Silver nanoparticles (AgNPs) have been widely applied in various fields as excellent antibacterial reagents over the past decades. Although the particle size is considered as the most crucial factor influencing cellular uptake, transportation, and accumulation behaviors, there are still many controversies regarding the correlation between size and uptake of AgNPs. In this study, size-dependent cellular uptake of AgNPs with different diameters was investigated in B16 cells. Methods: The uptake of AgNPs was investigated by inductively coupled plasma-mass spectrometry (ICP-MS) and transmission electron microscopic (TEM) imaging in B16 cells. Results: Twenty nanometer and 100 nm AgNPs had the lowest and highest uptake efficiency at both 12 hours and 24 hours, respectively. Smaller AgNPs crossed the plasma membrane faster with uniform distribution: 5 nm AgNPs were detected in both cytoplasm and nucleus at 0.5 hours after incubation. Larger AgNPs were extremely difficult to migrate: 100 nm AgNPs were detected in the nucleus at 12 hours after incubation. Internalization of AgNPs was directly observed, mainly within membrane-bound structures, such as intracellular vesicles and late endosomes. The uptake of all four-sized AgNPs (5 nm, 20 nm, 50 nm, 100 nm) decreased significantly after the pre-treatment with chlorpromazine hydrochloride, which can specifically inhibit the clathrin-mediated endocytosis. The internalization efficiencies of AgNPs (5 nm, 20 nm, 50 nm) were markedly reduced by methyl-β-cyclodextrin, a specific caveolin-mediated endocytosis inhibitor, whereas 5-(N-ethyl-N-isopropyl) amiloride as an inhibitor of macropinocytosis inhibited the uptake of larger sizes of AgNPs (50 nm and 100 nm). Conclusion: The results suggest that the size of AgNPs can not only affect the efficiency of cellular uptake, but also the type of endocytosis. The clathrin-mediated endocytosis may be the most common endocytic pathway for AgNPs in B16 cells, and AgNPs at each size were likely to enter cells by a major internalization pathway.

162 citations


Journal ArticleDOI
TL;DR: The progress of siRNA therapy as well as its medical application via nanoparticle-mediated delivery for cancer treatment are discussed.
Abstract: Cancer is one of the most complex diseases that has resulted in multiple genetic disorders and cellular abnormalities. Globally, cancer is the most common health concern disease that is affecting human beings. Great efforts have been made over the past decades in biology with the aim of searching novel and more efficient tools in therapy. Thus, small interfering RNAs (siRNAs) have been considered one of the most noteworthy developments which are able to regulate gene expression following a process known as RNA interference (RNAi). RNAi is a post-transcriptional mechanism that involves the inhibition of gene expression through promoting cleavage on a specific area of a target messenger RNA (mRNA). This technology has shown promising therapeutic results for a good number of diseases, especially in cancer. However, siRNA therapeutics have to face important drawbacks in therapy including stability and successful siRNA delivery in vivo. In this regard, the development of effective siRNA delivery systems has helped addressing these issues by opening novel therapeutic windows which have allowed to build up important advances in Nanomedicine. In this review, we discuss the progress of siRNA therapy as well as its medical application via nanoparticle-mediated delivery for cancer treatment.

150 citations


Journal ArticleDOI
TL;DR: The effects of curcumin nanoparticles and their possible mechanism/s of action has been elucidated in various central nervous system (CNS)-related diseases including Parkinson's disease, Huntington disease, Alzheimer’s disease, Multiple sclerosis, epilepsy and Amyotrophic Lateral Sclerosis.
Abstract: Curcumin as a hydrophobic polyphenol is extracted from the rhizome of Curcuma longa. Curcumin is widely used as a dietary spice and a topical medication for the treatment of inflammatory disorders in Asia. This compound also possesses remarkable anti-inflammatory and neuroprotective effects with the ability to pass from the blood brain barrier. Based on several pharmacological activities of curcumin, it has been introduced as an ideal candidate for different neurological disorders. Despite the pleiotropic activities of curcumin, poor solubility, rapid clearance and low stability have limited its clinical application. In recent years, nano-based drug delivery system has effectively improved the aqueous solubility and bioavailability of curcumin. In this review article, the effects of curcumin nanoparticles and their possible mechanism/s of action has been elucidated in various central nervous system (CNS)-related diseases including Parkinson's disease, Huntington disease, Alzheimer's disease, Multiple sclerosis, epilepsy and Amyotrophic Lateral Sclerosis. Furthermore, recent evidences about administration of nano-curcumin in the clinical trial phase have been described in the present review article.

150 citations


Journal ArticleDOI
TL;DR: The prepared Exo-Dox showed enhanced cellular uptake efficiency and anti-tumor effect in osteosarcoma MG63 cell line but low cytotoxicity in myocardial H9C2 cell line, suggesting it could be used as an excellent chemotherapeutic drug for treatment of osteosARcoma in vitro.
Abstract: Purpose The primary goal of the present study was to develop the nano-drug consisting of doxorubicin and exosome derived from mesenchymal stem cells, and to explore its effect on osteosarcoma in vitro. Methods The exosomes were isolated from bone marrow MSCs (BM-MSCs) by an Exosome Isolation Kit. The exosome-loaded doxorubicin (Exo-Dox) was prepared by mixing exosome with Dox-HCl, desalinizing with triethylamine and then dialyzing against PBS overnight. The nanoparticle tracking analysis (NTA) and transmission electron microscope (TEM) were used to characterize of the exosome and Exo-Dox. The cytotoxicity of Exo-Dox was determined by CCK-8 assay. Further, the cellular uptake of different drugs was analyzed using inverted fluorescence microscope and flow cytometry. Results The typical exosome structures can be observed by TEM. After loading with doxorubicin, its size is larger than free exosome. Compared with the free Dox, the prepared Exo-Dox showed enhanced cellular uptake efficiency and anti-tumor effect in osteosarcoma MG63 cell line but low cytotoxicity in myocardial H9C2 cell line. Conclusion The prepared Exo-Dox could be used as an excellent chemotherapeutic drug for treatment of osteosarcoma in vitro. Considering the tumor-homing feature of BM-MSCs, the Exo-Dox may be a good candidate for targeted osteosarcoma treatment in future study.

149 citations


Journal ArticleDOI
TL;DR: This review illustrates recent advances in the field drug and small molecule delivery such as fluorouracil, folic acid, doxorubicin, paclitaxel, and daunorubsicin when using gold and iron oxide NPs as carriers of anticancer therapeutic agents.
Abstract: Conventional cancer treatment techniques show several limitations including low or no specificity and consequently a low efficacy in discriminating between cancer cells and healthy cells. Recent nanotechnology developments have introduced smart and novel therapeutic nanomaterials that take advantage of various targeting approaches. The use of nanotechnology in medicine and, more specifically, drug delivery is set to spread even more rapidly than it has over the past two decades. Currently, many nanoparticles (NPs) are under investigation for drug delivery including those for cancer therapy. Targeted nanomaterials bind selectively to cancer cells and greatly affect them with only a minor effect on healthy cells. Gold nanoparticles (Au-NPs), specifically, have been identified as significant candidates for new cancer therapeutic modalities because of their biocompatibility, easy functionalization and fabrication, optical tunable characteristics, and chemophysical stability. In the last decade, there has been significant research on Au-NPs and their biomedical applications. Functionalized Au-NPs represent highly attractive and promising candidates for drug delivery, owing to their unique dimensions, tunable surface functionalities, and controllable drug release. Further, iron oxide NPs due to their "superparamagnetic" properties have been studied and have demonstrated successful employment in numerous applications. In targeted drug delivery systems, drug-loaded iron oxide NPs can accumulate at the tumor site with the aid of an external magnetic field. This can lead to incremental effectiveness in drug release to the tumor site and vanquish cancer cells without harming healthy cells. In order for the application of iron oxide NPs in the human body to be realized, they should be biodegradable and biocompatible to minimize toxicity. This review illustrates recent advances in the field drug and small molecule delivery such as fluorouracil, folic acid, doxorubicin, paclitaxel, and daunorubicin, specifically when using gold and iron oxide NPs as carriers of anticancer therapeutic agents.

Journal ArticleDOI
TL;DR: Investigation of the aqueous and hexane extracts of Lampranthus coccineus and Malephora lutea for the synthesis of silver nanoparticles found its possible antiviral activity to be similar to those of the co-crystal inhibitors.
Abstract: Background Viral and microbial infections constitute one of the most important life-threatening problems. The emergence of new viral and bacterial infectious diseases increases the demand for new therapeutic drugs. Purpose The objective of this study was to use the aqueous and hexane extracts of Lampranthus coccineus and Malephora lutea F. Aizoaceae for the synthesis of silver nanoparticles, and to investigate its possible antiviral activity. In addition to the investigation of the phytochemical composition of the crude methanolic extracts of the two plants through UPLC-MS metabolomic profiling, and it was followed by molecular docking in order to explore the chemical compounds that might contribute to the antiviral potential. Methods The formation of SNPs was further confirmed using a transmission electron microscope (TEM), UV-Visible spectroscopy and Fourier transform infrared spectroscopy. The antiviral activity of the synthesized nanoparticles was evaluated using MTT assay against HSV-1, HAV-10 virus and Coxsackie B4 virus. Metabolomics profiling was performed using UPLC-MS and molecular docking was performed via Autodock4 and visualization was done using the Discovery studio. Results The early signs of SNPs synthesis were detected by a color change from yellow to reddish brown color. The TEM analysis of SNPs showed spherical nanoparticles with mean size ranges between 10.12 nm to 27.89 nm, and 8.91 nm 14.48 nm for Lampranthus coccineus and Malephora lutea aqueous and hexane extracts respectively. The UV-Visible spectrophotometric analysis showed an absorption peak at λmax of 417 nm.The green synthesized SNPs of L. coccineus and M. lutea showed remarkable antiviral activity against HSV-1, HAV-10, and CoxB4 virus. Metabolomics profiling of the methanolic extract of L. coccineus and M. lutea resulted in identifying 12 compounds. The docking study predicted the patterns of interactions between the compounds of L. coccineus and M. lutea with herpes simplex thymidine kinase, hepatitis A 3c proteinase, and Coxsackievirus B4 3c protease, which was similar to those of the co-crystal inhibitors and this can provide a supposed explanation for the antiviral activity of the aqueous and nano extracts of L. coccineus and M. lutea. Conclusion These results highlight that SNPs of L. coccineus and M. lutea could have antiviral activity against HSV-1, HAV-10, and CoxB4 virus.

Journal ArticleDOI
TL;DR: The development of a hydrogel-based novel wound dressing material loaded with reduced graphene oxide (rGO) to promote cell proliferation, cell migration and angiogenesis for wound healing applications suggests that these formulations could be used as a functional wound healing material for the healing of chronic wounds.
Abstract: Purpose Non-healing or slow healing chronic wounds are among serious complications of diabetes that eventually result in amputation of limbs and increased morbidities and mortalities. Chronic diabetic wounds show reduced blood vessel formation (lack of angiogenesis), inadequate cell proliferation and poor cell migration near wounds. In this paper, we report the development of a hydrogel-based novel wound dressing material loaded with reduced graphene oxide (rGO) to promote cell proliferation, cell migration and angiogenesis for wound healing applications. Methods Gelatin-methacryloyl (GelMA) based hydrogels loaded with different concentrations of rGO were fabricated by UV crosslinking. Morphological and physical characterizations (porosity, degradation, and swelling) of rGO incorporated GelMA hydrogel was performed. In vitro cell proliferation, cell viability and cell migration potential of the hydrogels were analyzed by MTT assay, live/dead staining, and wound healing scratch assay respectively. Finally, in vivo chicken embryo angiogenesis (CEO) testing was performed to evaluate the angiogenic potential of the prepared hydrogel. Results The experimental results showed that the developed hydrogel possessed enough porosity and exudate-absorbing capacity. The biocompatibility of prepared hydrogel on three different cell lines (3T3 fibroblasts, EA.hy926 endothelial cells, and HaCaT keratinocytes) was confirmed by in vitro cell culture studies (live/dead assay). The GelMA hydrogel containing 0.002% w/w rGO considerably increased the proliferation and migration of cells as evident from MTT assay and wound healing scratch assay. Furthermore, rGO impregnated GelMA hydrogel significantly enhanced the angiogenesis in the chick embryo model. Conclusion The positive effect of 0.002% w/w rGO impregnated GelMA hydrogels on angiogenesis, cell migration and cell proliferation suggests that these formulations could be used as a functional wound healing material for the healing of chronic wounds.

Journal ArticleDOI
TL;DR: The results showed that the presently formulated OX26@GNPs are not suitable nanocarriers nor contrast agents under oxidative stress for the diagnosis and treatment of ischemic stroke, and suggested that the cytotoxicity of GNPs in the brain is significantly associated with their surface charge.
Abstract: Introduction This study was conducted to evaluate OX26-PEG-coated gold nanoparticles (GNPs) (OX26@GNPs) as a novel targeted nanoparticulate system on cell survival after ischemic stroke. Materials and methods Dynamic light scattering (DLS), zeta sizer, and transmission electron microscopy (TEM) were performed to characterize the OX26@GNPs. The effect of OX26@GNPs on infarct volume, neuronal loss, and necroptosis was evaluated 24 h after reperfusion using 2, 3,5-Triphenyltetrazolium chloride (TTC) staining, Nissl staining and Western blot assay, respectively. Results Conjugation of OX26-PEG to the surface of the 25 nm colloidal gold particles increased their size to 32±2 nm, while a zeta potential change of -40.4 to 3.40 mV remarkably increased the stability of the nanoparticles. Most importantly, OX26@GNPs significantly increased the infarcted brain tissue, while bare GNPs and PEGylated GNPs had no effect on the infarct volume. However, our results indicated an extension of necroptotic cell death, followed by cell membrane damage. Conclusion Collectively, our results showed that the presently formulated OX26@GNPs are not suitable nanocarriers nor contrast agents under oxidative stress for the diagnosis and treatment of ischemic stroke. Moreover, our findings suggest that the cytotoxicity of GNPs in the brain is significantly associated with their surface charge.

Journal ArticleDOI
TL;DR: The morphological dependence of the antimicrobial activity of the Ag NPs can be explained by the difference in the Ag ion release depending on the shape, and it will be possible to control the antimacterial activity by controlling the shape and size of theAg NPs.
Abstract: Purpose: An important application of silver nanoparticles (Ag NPs) is their use as an antimicrobial and wound dressing material. The aim of this study is to investigate the morphological dependence on the antimicrobial activity and cellular response of Ag NPs. Materials and methods: Ag NPs of various shapes were synthesized in an aqueous solution using a simple method. The morphology of the synthesized Ag NPs was observed via TEM imaging. The antimicrobial activity of the Ag NPs with different morphologies was evaluated against various microorganisms (Escherichia coli [E. coli], Staphylococcus aureus [S. aureus], Pseudomonas aeruginosa [P. aeruginosa]). The antimicrobial activity of the Ag NPs was also examined according to the concentration in terms of the growth rate of E. coli. Results: The TEM images indicated that the Ag NPs with different morphologies (sphere, disk and triangular plate) had been successfully synthesized. The antimicrobial activity obtained from the inhibition zone was in the order of spherical Ag NPs > disk Ag NPs > triangular plate Ag NPs. In contrast, fibroblast cells grew well in all types of Ag NPs when the cell viability was evaluated via an MTT assay. An inductively coupled plasma mass assay showed that the difference in the antimicrobial activities of the Ag NPs was closely associated with the difference in the release rate of the Ag ions due to the difference in the surface area of the Ag NPs. Conclusion: The morphological dependence of the antimicrobial activity of the Ag NPs can be explained by the difference in the Ag ion release depending on the shape. Therefore, it will be possible to control the antimicrobial activity by controlling the shape and size of the Ag NPs.

Journal ArticleDOI
TL;DR: This review critically looks into the unlimited potential of graphene-based nanomaterials in future tissue engineering and regenerative therapy.
Abstract: Tissue engineering embraces the potential of recreating and replacing defective body parts by advancements in the medical field. Being a biocompatible nanomaterial with outstanding physical, chemical, optical, and biological properties, graphene-based materials were successfully employed in creating the perfect scaffold for a range of organs, starting from the skin through to the brain. Investigations on 2D and 3D tissue culture scaffolds incorporated with graphene or its derivatives have revealed the capability of this carbon material in mimicking in vivo environment. The porous morphology, great surface area, selective permeability of gases, excellent mechanical strength, good thermal and electrical conductivity, good optical properties, and biodegradability enable graphene materials to be the best component for scaffold engineering. Along with the apt microenvironment, this material was found to be efficient in differentiating stem cells into specific cell types. Furthermore, the scope of graphene nanomaterials in liver tissue engineering as a promising biomaterial is also discussed. This review critically looks into the unlimited potential of graphene-based nanomaterials in future tissue engineering and regenerative therapy.

Journal ArticleDOI
TL;DR: The different approaches used for cartilage and bone tissue engineering are discussed, including Electrospun nanofibrous scaffolds and hydrogel scaffolds, which mimic the native extracellular matrix of bone, providing a support for bone and cartilage tissue engineering.
Abstract: Given the enormous increase in the risks of bone and cartilage defects with the rise in the aging population, the current treatments available are insufficient for handling this burden, and the supply of donor organs for transplantation is limited. Therefore, tissue engineering is a promising approach for treating such defects. Advances in materials research and high-tech optimized fabrication of scaffolds have increased the efficiency of tissue engineering. Electrospun nanofibrous scaffolds and hydrogel scaffolds mimic the native extracellular matrix of bone, providing a support for bone and cartilage tissue engineering by increasing cell viability, adhesion, propagation, and homing, and osteogenic isolation and differentiation, vascularization, host integration, and load bearing. The use of these scaffolds with advanced three- and four-dimensional printing technologies has enabled customized bone grafting. In this review, we discuss the different approaches used for cartilage and bone tissue engineering.

Journal ArticleDOI
TL;DR: It is demonstrated that high aggregation grade in both AgNP samples attenuated their toxic effect toward living cells, and showed that nanoparticle behavior in complex systems can be estimated by simple compounds like sodium chloride and glutamine.
Abstract: Purpose The biomedical applications of silver nanoparticles (AgNPs) are heavily investigated due to their cytotoxic and antimicrobial properties. However, the scientific literature is lacking in data on the aggregation behavior of nanoparticles, especially regarding its impact on biological activity. Therefore, to assess the potential of AgNPs in therapeutic applications, two different AgNP samples were compared under biorelevant conditions. Methods Citrate-capped nanosilver was produced by classical chemical reduction and stabilization with sodium citrate (AgNP@C), while green tea extract was used to produce silver nanoparticles in a green synthesis approach (AgNP@GTs). Particle size, morphology, and crystallinity were characterized using transmission electron microscopy. To observe the effects of the most important biorelevant conditions on AgNP colloidal stability, aggregation grade measurements were carried out using UV-Vis spectroscopy and dynamic light scatterig, while MTT assay and a microdilution method were performed to evaluate the effects of aggregation on cytotoxicity and antimicrobial activity in a time-dependent manner. Results The aggregation behavior of AgNPs is mostly affected by pH and electrolyte concentration, while the presence of biomolecules can improve particle stability due to the biomolecular corona effect. We demonstrated that high aggregation grade in both AgNP samples attenuated their toxic effect toward living cells. However, AgNP@GT proved less prone to aggregation thus retained a degree of its toxicity. Conclusion To our knowledge, this is the first systematic examination regarding AgNP aggregation behavior with simultaneous measurements of its effect on biological activity. We showed that nanoparticle behavior in complex systems can be estimated by simple compounds like sodium chloride and glutamine. Electrostatic stabilization might not be suitable for biomedical AgNP applications, while green synthesis approaches could offer new frontiers to preserve nanoparticle toxicity by enhancing colloidal stability. The importance of properly selected synthesis methods must be emphasized as they profoundly influence colloidal stability, and therefore biological activity.

Journal ArticleDOI
TL;DR: Natamycin solid lipid nanoparticles (NAT-SLNs) represent a promising ocular delivery system for treatment of deep corneal keratitis and were found to be non-irritating toCorneal tissue.
Abstract: Background Fungal keratitis (FK) is a serious pathogenic condition usually associated with significant ocular morbidity. Natamycin (NAT) is the first-line and only medication approved by the Food and Drug Administration for the treatment of FK. However, NAT suffers from poor corneal penetration, which limits its efficacy for treating deep keratitis. Purpose The objective of this work was to prepare NAT solid lipid nanoparticles (NAT-SLNs) to achieve sustained drug release and increased corneal penetration. Methods NAT-SLNs were prepared using the emulsification-ultrasonication technique. Box- Behnken experimental design was applied to optimize the effects of independent processing variables (lipid concentration [X1], surfactant concentration [X2], and sonication frequency [X3]) on particle size (R1), zeta potential (ZP; R2), and drug entrapment efficiency (EE%) (R3) as responses. Drug release profile, ex vivo corneal permeation, antifungal susceptibility, and cytotoxicity of the optimized formula were evaluated. Results The optimized formula had a mean particle size of 42 r.nm (radius in nanometers), ZP of 26 mV, and EE% reached ~85%. NAT-SLNs showed an extended drug release profile of 10 hours, with enhanced corneal permeation in which the apparent permeability coefficient (Papp) and steady-state flux (Jss) reached 11.59×10-2 cm h-1 and 3.94 mol h-1, respectively, in comparison with 7.28×10-2 cm h-1 and 2.48 mol h-1 for the unformulated drug, respectively. Antifungal activity was significantly improved, as indicated by increases in the inhibition zone of 8 and 6 mm against Aspergillus fumigatus ATCC 1022 and a Candida albicans clinical isolate, respectively, and minimum inhibitory concentration values that were decreased 2.5-times against both of these pathogenic strains. NAT-SLNs were found to be non-irritating to corneal tissue. NAT-SLNs had a prolonged drug release rate, that improved corneal penetration, and increased antifungal activity without cytotoxic effects on corneal tissues. Conclusion Thus, NAT-SLNs represent a promising ocular delivery system for treatment of deep corneal keratitis.

Journal ArticleDOI
TL;DR: The features of albumin are reviewed, as well as its interaction with AuNPs, focusing on its biomedical applications, which have improved properties such as greater compatibility, bioavailability, longer circulation times, lower toxicity, and selective bioaccumulation.
Abstract: Nanotechnology is an emerging field which has created great opportunities either through the creation of new materials or by improving the properties of existing ones. Nanoscale materials with a wide range of applications in areas ranging from engineering to biomedicine have been produced. Gold nanoparticles (AuNPs) have emerged as a therapeutic agent, and are useful for imaging, drug delivery, and photodynamic and photothermal therapy. AuNPs have the advantage of ease of functionalization with therapeutic agents through covalent and ionic binding. Combining AuNPs and other materials can result in nanoplatforms, which can be useful for biomedical applications. Biomaterials such as biomolecules, polymers and proteins can improve the therapeutic properties of nanoparticles, such as their biocompatibility, biodistribution, stability and half-life. Serum albumin is a versatile, non-toxic, stable, and biodegradable protein, in which structural domains and functional groups allow the binding and capping of inorganic nanoparticles. AuNPs coated with albumin have improved properties such as greater compatibility, bioavailability, longer circulation times, lower toxicity, and selective bioaccumulation. In the current article, we review the features of albumin, as well as its interaction with AuNPs, focusing on its biomedical applications.

Journal ArticleDOI
TL;DR: The general characteristics of mesoporous silica nanoparticles – including their physicochemical properties and customizable surfaces – different stimuli that can be used to trigger targeted drug release, biocompatibility and finally, the drawbacks of these types of nanomaterials are summarized.
Abstract: The implementation of nanotechnology in medicine has opened new research horizons particularly in the field of therapeutic delivery. Mesoporous silica particles have emerged as biocompatible drug delivery systems with an enormous potential in the treatment of cancer among many other pathologies. In this review, we focus on the unique properties of these particles as chemotherapy delivery carriers. Here, we summarize the general characteristics of these nanomaterials - including their physicochemical properties and customizable surfaces - different stimuli that can be used to trigger targeted drug release, biocompatibility and finally, the drawbacks of these types of nanomaterials, highlighting some of the most important features of mesoporous silica nanoparticles in drug delivery.

Journal ArticleDOI
TL;DR: This review focuses on the recent researches on the liver toxicity of MNP and its mechanisms at cellular and subcellular levels to provide a scientific basis for the subsequent hepatotoxicity studies of MNPs.
Abstract: Metallic nanoparticles (MNPs) are new engineering materials with broad prospects for biomedical applications; thus, their biosafety has drawn great concern. The liver is the main detoxification organ of vertebrates. However, many issues concerning the interactions between MNPs and biological systems (cells and tissues) are unclear, particularly the toxic effects of MNPs on hepatocytes and other liver cells. Numerous researchers have shown that some MNPs can induce decreased cell survival rate, production of reactive oxygen species (ROS), mitochondrial damage, DNA strand breaks, and even autophagy, pyroptosis, apoptosis, or other forms of cell death. Our review focuses on the recent researches on the liver toxicity of MNPs and its mechanisms at cellular and subcellular levels to provide a scientific basis for the subsequent hepatotoxicity studies of MNPs.

Journal ArticleDOI
TL;DR: Bioavailability enhancement along-with long-term retention of the APM-loaded PLGA nanoparticles might be helpful for the once-daily regimen treatment.
Abstract: Background Apremilast (APM) is a novel, orally administered small molecule drug approved for treatment of psoriasis or psoriatic arthritis. Due to its low solubility and permeability, it is classified as a class IV drug according to BCS classification. Dose titration is recommended during APM treatment due to its tolerability and twice-daily dosing regimen issues. Materials and methods In this study, three different APM-loaded PLGA nanoparticles (F1-F3) were prepared by single emulsion and evaporation method. Based on particle size, PDI, zeta potential (ZP), entrapment efficiency (%EE), drug loading (%DL), and spectral characterization, the nanoparticles (F3) were optimized. The F3 nanoparticles were further evaluated for in vitro release and in vivo pharmacokinetic studies in rats. Results The optimized nanoparticles (F3) had particles size 307.3±8.5 nm with a low PDI value 0.317, ZP of -43.4±2.6 mV, EE of 61.1±1.9% and DL of 1.9±0.1%. The in vitro release profile showed a sustained release pattern of F3 nanoparticles of APM. The pharmacokinetic results showed 2.25 times increase in bio-availability of F3 nanoparticles compared to normal APM suspension. Moreover, significant increase in half-life and mean residence time confirms long-term retention of F3 nanoparticles. Conclusion Bioavailability enhancement along-with long-term retention of the APM-loaded PLGA nanoparticles might be helpful for the once-daily regimen treatment.

Journal ArticleDOI
TL;DR: The role of various physiological barriers including the blood–brain barrier and blood-cerebrospinal fluid barrier on the drug therapy and the mechanism of drug transport across the BBB is discussed and various factors affecting the drug targeting efficiency of the developed novel carrier system are illustrated.
Abstract: The treatment of central nervous system (CNS) disorders always remains a challenge for the researchers. The presence of various physiological barriers, primarily the blood-brain barrier (BBB) limits the accessibility of the brain and hinders the efficacy of various drug therapies. Hence, drug targeting to the brain, particularly to the diseased cells by circumventing the physiological barriers is essential to develop a promising therapy for the treatment of brain disorders. Presently, the investigations emphasize the role of different nanocarrier systems or surface modified target specific novel carrier system to improve the efficiency and reduce the side effects of the brain therapeutics. Such approaches supposed to circumvent the BBB or have the ability to cross the barrier function and thus increases the drug concentration in the brain. Although the efficacy of novel carrier system depends upon various physiological factors like active efflux transport, protein corona of the brain, stability, and toxicity of the nanocarrier, physicochemical properties, patient-related factors and many more. Hence, to develop a promising carrier system, it is essential to understand the physiology of the brain and BBB and also the other associated factors. Along with this, some alternative route like direct nose-to-brain drug delivery can also offer a better means to access the brain without exposure of the BBB. In this review, we have discussed the role of various physiological barriers including the BBB and blood-cerebrospinal fluid barrier (BCSFB) on the drug therapy and the mechanism of drug transport across the BBB. Further, we discussed different novel strategies for brain targeting of drug including, polymeric nanoparticles, lipidic nanoparticles, inorganic nanoparticles, liposomes, nanogels, nanoemulsions, dendrimers, quantum dots, etc. along with the intranasal drug delivery to the brain. We have also illustrated various factors affecting the drug targeting efficiency of the developed novel carrier system.

Journal ArticleDOI
TL;DR: This work biosynthesized AgNPs with strong antibacterial, anticancer and cell wound healing properties using endophytic fungus T. purpureogenus to synthesize Tp-AgNPs using mycelial extract of endophyty fungus Talaromyces pur Pureogenus.
Abstract: Background: Biogenic silver nanoparticles (AgNPs) have wider range of biomedical applications. The present work synthesized Tp-AgNPs using mycelial extract of endophytic fungus Talaromyces purpureogenus (MEEF), characterized, and analyzed for antibacterial, anti-proliferation and cell wounding healing activities. Methods: The synthesized Tp-AgNPs were characterized by UV-visible spectrophotometer (UV-Vis), field emission transmission electron microscopy (FETEM) with energy-dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), particle size analysis (PSA) and X-ray diffraction (XRD). Further, antibacterial activity was determined by Kirby-Bauer test and anti-proliferation activity was tested in human lung carcinoma A549 by water-soluble tetrazolium and flow cytometer assay. In addition, cell wounding healing activity was determined by scratch assay. Results: UV-Vis results displayed a strong absorption peak from 390 nm to 420 nm, which indicated the successful synthesis of Tp-AgNPs. FETEM-EDS results indicated the round and triangle shaped Tp-AgNPs with the average size of 25 nm in accordance with PSA. FTIR analysis indicated the involvement of various functional molecules from MEEF in the synthesis of Tp-AgNPs. XRD result proved nature of Tp-AgNPs as a high-quality crystal. The Tp-AgNPs significantly inhibited the growth of bacterial pathogens at the minimal inhibitory concentration of 16.12 μg.mL-1 for Gram+, and 13.98 μg.mL-1 for Gram- bacteria. Further, Tp-AgNPs (2 μg.mL-1) showed a strong anti-proliferation effect in A549. Interestingly, Tp-AgNPs was not cytotoxic to normal NIH3T3 cells. In addition, the NPs exhibited a strong cell wounding healing activity. Conclusion: This work biosynthesized AgNPs with strong antibacterial, anticancer and cell wound healing properties using endophytic fungus T. purpureogenus.

Journal ArticleDOI
TL;DR: This review article focuses on recent developments in ICG complexation strategies to improve near-infrared fluorescence-guided tumor surgery, describing targeted and nontargeted ICG nanoparticle models and ICGcomplexation with targeting agents.
Abstract: Surgery is the frontline treatment for a large number of cancers. The objective of these excisional surgeries is the complete removal of the primary tumor with sufficient safety margins. Removal of the entire tumor is essential to improve the chances of a full recovery. To help surgeons achieve this objective, near-infrared fluorescence-guided surgical techniques are of great interest. The concomitant use of fluorescence and indocyanine green (ICG) has proved effective in the identification and characterization of tumors. Moreover, ICG is authorized by the Food and Drug Administration and the European Medicines Agency and is therefore the subject of a large number of studies. ICG is one of the most commonly used fluorophores in near-infrared fluorescence-guided techniques. However, it also has some disadvantages, such as limited photostability, a moderate fluorescence quantum yield, a high plasma protein binding rate, and undesired aggregation in aqueous solution. In addition, ICG does not specifically target tumor cells. One way to exploit the capabilities of ICG while offsetting these drawbacks is to develop high-performance near-infrared nanocomplexes formulated with ICG (with high selectivity for tumors, high tumor-to-background ratios, and minimal toxicity). In this review article, we focus on recent developments in ICG complexation strategies to improve near-infrared fluorescence-guided tumor surgery. We describe targeted and nontargeted ICG nanoparticle models and ICG complexation with targeting agents.

Journal ArticleDOI
Xiaoxia Cai1, Qingxia Zhu1, Yun Zeng1, Qi Zeng1, Xueli Chen1, Yonghua Zhan1 
TL;DR: Recent advances in the use of MONs as MRI contrast agents for tumor detection and diagnosis are reported, as are the advances in in vivo toxicity, distribution and tumor microenvironment-responsive enhanced tumor chemotherapy and radiotherapy as well as photothermal and photodynamic therapies.
Abstract: Contrast agents (CAs) play a crucial role in high-quality magnetic resonance imaging (MRI) applications. At present, as a result of the Gd-based CAs which are associated with renal fibrosis as well as the inherent dark imaging characteristics of superparamagnetic iron oxide nanoparticles, Mn-based CAs which have a good biocompatibility and bright images are considered ideal for MRI. In addition, manganese oxide nanoparticles (MONs, such as MnO, MnO2, Mn3O4, and MnOx) have attracted attention as T1-weighted magnetic resonance CAs due to the short circulation time of Mn(II) ion chelate and the size-controlled circulation time of colloidal nanoparticles. In this review, recent advances in the use of MONs as MRI contrast agents for tumor detection and diagnosis are reported, as are the advances in in vivo toxicity, distribution and tumor microenvironment-responsive enhanced tumor chemotherapy and radiotherapy as well as photothermal and photodynamic therapies.

Journal ArticleDOI
TL;DR: These results support the use of alginate-based drug delivery systems as carriers for MFS for drug toxicity reduction and control of the fungal infection in the in vivo model of G. mellonella.
Abstract: Introduction and objective Previous studies indicate that miltefosine (MFS) may be an alternative as an antifungal agent; however, it presents several adverse effects. Thus, the aim of this study was to produce miltefosine-loaded alginate nanoparticles (MFS.Alg) for toxicity reduction to be used as an alternative for the treatment of cryptococcosis and candidiasis. Methods Alginate nanoparticles were produced using the external emulsification/gelation method, and their physicochemical and morphological characteristics were analyzed. MFS encapsulation efficiency, release assay and toxicity on red blood cells and on Galleria mellonella larvae were assessed. The antifungal activity was evaluated using in vitro and in vivo larval models of G. mellonella infected with Candida albicans (SC5314 and IAL-40), Cryptococcus neoformans H99 and Cryptococcus gattii ATCC 56990. The treatment efficacy was evaluated by survival curve, colony forming unit (CFU) counting and histopathological analysis. Results MFS.Alg nanoparticles presented a mean size of 279.1±56.7 nm, a polydispersity index of 0.42±0.15 and a zeta potential of -39.7±5.2 mV. The encapsulation efficiency of MFS was 81.70±6.64%, and its release from the nanoparticles occurred in a sustained manner. MFS in alginate nanoparticles presented no hemolytic effect and no toxicity in G. mellonella larvae. Treatment with MFS.Alg extended the survival time of larvae infected with C. albicans and C. gattii. In addition, the fungal burden reduction was confirmed by CFU and histopathological data for all groups treated with 200 mg/Kg of MFS.Alg. Conclusion These results support the use of alginate-based drug delivery systems as carriers for MFS for drug toxicity reduction and control of the fungal infection in the in vivo model of G. mellonella.

Journal ArticleDOI
TL;DR: The results indicate that the particle size of AuNPs and target cell type are critical determinants of cellular uptake, cytotoxicity and underlying mechanisms, and biological distribution in vivo, which deserves careful consideration in the future biomedical applications.
Abstract: Background Gold nanoparticles (AuNPs) have shown great promise in biomedical applications. However, the interaction of AuNPs with biological systems, its underlying mechanisms and influencing factors need to be further elucidated. Purpose The aim of this study was to systematically investigate the effects of particle size on the uptake and cytotoxicity of AuNPs in normal cells and cancer cells as well as their biological distribution in vivo. Results Our data demonstrated that the uptake of AuNPs increased in HepG2 cancer cells but decreased in L02 normal cells, with the increase of particle size (5-50 nm). In both cancer cells and normal cells, small (5 nm) AuNPs exhibited greater cytotoxicity than large ones (20 and 50 nm). Interestingly, 5 nm AuNPs induced both apoptosis and necrosis in HepG2 cells through the production of reactive oxygen species (ROS) and the activation of pro-caspase3, whereas it mainly induced necrosis in L02 cells through the overexpression of TLR2 and the release of IL-6 and IL-1a cytokines. Among them, 50 nm AuNPs showed the longest blood circulation and highest distribution in liver and spleen, and the treatment of 5 nm AuNPs but not 20 nm and 50 nm AuNPs resulted in the increase of neutrophils and slight hepatotoxicity in mice. Conclusion Our results indicate that the particle size of AuNPs and target cell type are critical determinants of cellular uptake, cytotoxicity and underlying mechanisms, and biological distribution in vivo, which deserves careful consideration in the future biomedical applications.

Journal ArticleDOI
TL;DR: Novel nanotechnologies were rapidly developed to target the delivery of hydrophobic PSs into microorganisms for the antimicrobial performance improvement of aPDT, showing great potential to serve as carriers for PSs to substantially enhance the PDT therapeutic effects.
Abstract: Oral diseases such as tooth caries, periodontal diseases, endodontic infections, etc., are prevalent worldwide. The heavy burden of oral infectious diseases and their consequences on the patients' quality of life indicates a strong need for developing effective therapies. Advanced understandings of such oral diseases, e.g., inflammatory periodontal lesions, have raised the demand for antibacterial therapeutic strategies, because these diseases are caused by viruses and bacteria. The application of antimicrobial photodynamic therapy (aPDT) on oral infectious diseases has attracted tremendous interest in the past decade. However, aPDT had a minimal effect on the viability of organized biofilms due to the hydrophobic nature of the majority of the photosensitizers (PSs). Therefore, novel nanotechnologies were rapidly developed to target the delivery of hydrophobic PSs into microorganisms for the antimicrobial performance improvement of aPDT. This review focuses on the state-of-the-art of nanomaterials applications in aPDT against oral infectious diseases. The first part of this article focuses on the cutting-edge research on the synthesis, toxicity, and therapeutic effects of various forms of nanomaterials serving as PS carriers for aPDT applications. The second part discusses nanomaterials applications for aPDT in treatments of oral diseases. These novel bioactive nanomaterials have demonstrated great potential to serve as carriers for PSs to substantially enhance the PDT therapeutic effects. Furthermore, the novel aPDT applications not only have exciting therapeutic potential to inhibit bacterial plaque-initiated oral diseases, but also have a wide applicability to other biomedical and tissue engineering applications.