scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Biomedical Materials Research Part B in 2015"


Journal ArticleDOI
TL;DR: Hot extruded Zn-1Mg with homogenous microstructure, uniform as well as slow degradation, improved mechanical properties, and good biocompatibility was believed to be an excellent candidate material for load-bearing biodegradable implant application.
Abstract: Zinc–Magnesium (Zn–Mg) alloy as a novel biodegradable metal holds great potential in biodegradable implant applications as it is more corrosion resistant than Magnesium (Mg). However, the mechanical properties, biodegradation uniformity, and cytotoxicity of Zn–Mg alloy remained as concerns. In this study, hot extrusion process was applied to Zn–1 wt % Mg (Zn–1Mg) to refine its microstructure. Effects of hot extrusion on biodegradation behavior and mechanical properties of Zn–1Mg were investigated in comparison with Mg rare earth element alloy WE43. Metallurgical analysis revealed significant grain size reduction, and immersion test found that corrosion rates of WE43 and Zn–1Mg were reduced by 35% and 57%, respectively after extrusion. Moreover, hot extrusion resulted in a much more uniform biodegradation in extruded Zn–1Mg alloy and WE43. In vitro cytotoxicity test results indicated that Zn–1Mg alloy was biocompatible. Therefore, hot extruded Zn–1Mg with homogenous microstructure, uniform as well as slow degradation, improved mechanical properties, and good biocompatibility was believed to be an excellent candidate material for load-bearing biodegradable implant application. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 103B: 1632–1640, 2015.

165 citations


Journal ArticleDOI
TL;DR: The collagen-HA scaffold presented here is an open and well-defined platform that supports robust bone formation and should facilitate the further development of collagen-hydroxyapatite biomaterials for bone tissue engineering.
Abstract: Osteoprogenitor cells combined with supportive biomaterials represent a promising approach to advance the standard of care for bone grafting procedures. However, this approach faces challenges, including inconsistent bone formation, cell survival in the implant, and appropriate biomaterial degradation. We have developed a collagen-hydroxyapatite (HA) scaffold that supports consistent osteogenesis by donor-derived osteoprogenitors, and is more easily degraded than a pure ceramic scaffold. Herein, the material properties are characterized as well as cell attachment, viability, and progenitor distribution in vitro. Furthermore, we examined the biological performance in vivo in a critical-size mouse calvarial defect. To aid in the evaluation of the in-house collagen-HA scaffold, the in vivo performance was compared with a commercial collagen-HA scaffold (Healos(®) , Depuy). The in-house collagen-HA scaffold supported consistent bone formation by predominantly donor-derived osteoblasts, nearly completely filling a 3.5 mm calvarial defect with bone in all samples (n = 5) after 3 weeks of implantation. In terms of bone formation and donor cell retention at 3 weeks postimplantation, no statistical difference was found between the in-house and commercial scaffold following quantitative histomorphometry. The collagen-HA scaffold presented here is an open and well-defined platform that supports robust bone formation and should facilitate the further development of collagen-hydroxyapatite biomaterials for bone tissue engineering.

121 citations


Journal ArticleDOI
TL;DR: The ability to produce blended nanofibers from protein and synthetic polymers represents a significant advancement in development of composite materials with structural and material properties that will support biomedical applications.
Abstract: Keratin-based composite nanofibers have been fabricated by an electrospinning technique. Aqueous soluble keratin extracted from human hair was successfully blended with poly(e-caprolactone) (PCL) in different ratios and transformed into nanofibrous membranes. Toward the potential use of this nanofibrous membrane in tissue engineering, its physicochemical properties, such as morphology, mechanical strength, crystallinity, chemical structure, and integrity in aqueous medium were studied and its cellular compatibility was determined. Nanofibrous membranes with PCL/keratin ratios from 100/00 to 70/30 showed good uniformity in fiber morphology and suitable mechanical properties, and retained the integrity of their fibrous structure in buffered solutions. Experimental results, using cell viability assays and scanning electron microscopy imaging, showed that the nanofibrous membranes supported 3T3 cell viability. The ability to produce blended nanofibers from protein and synthetic polymers represents a significant advancement in development of composite materials with structural and material properties that will support biomedical applications. This provides new nanofibrous materials for applications in tissue engineering and regenerative medicine.

108 citations


Journal ArticleDOI
TL;DR: The presence of SrO and MgO as dopants in TCP scaffolds improves mechanical and in vivo biological performance and has the potential for early wound healing through accelerated osteogenesis and vasculogenesis.
Abstract: The presence of interconnected macro pores allows guided tissue regeneration in tissue engineering scaffolds. However, highly porous scaffolds suffer from having poor mechanical strength. Previously, we showed that microwave sintering could successfully be used to improve mechanical strength of macro porous tricalcium phosphate (TCP) scaffolds. This study reports the presence of SrO and MgO as dopants in TCP scaffolds improves mechanical and in vivo biological performance. We have used direct three dimensional printing (3DP) technology for scaffold fabrication. These 3DP scaffolds possessed multiscale porosity, that is, 3D interconnected designed macro pores along with intrinsic micro pores. A significant increase in mechanical strength, between 37 and 41%, was achieved due to SrO and MgO doping in TCP as compared with pure TCP. Maximum compressive strengths of 9.38 ± 1.86 MPa and 12.01 ± 1.56 MPa were achieved by conventional and microwave sintering, respectively, for SrO-MgO-doped 3DP scaffolds with 500 μm designed pores. Histomorphological and histomorphometric analysis revealed a significantly higher osteoid, bone and haversian canal formation induced by the presence of SrO and MgO dopants in 3DP TCP as compared with pure TCP scaffolds when tested in rabbit femoral condyle defect model. Increased osteon and thus enhanced network of blood vessel formation, and osteocalcin expression were observed in the doped TCP scaffolds. Our results show that these 3DP SrO-MgO-doped TCP scaffolds have the potential for early wound healing through accelerated osteogenesis and vasculogenesis. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 103B: 679–690, 2015.

103 citations


Journal ArticleDOI
TL;DR: A strategy for controllable and sustained release of silver over several weeks has been developed for combating bacterial infection and encrustation in urinary devices and can potentially have a large impact on reducing patient morbidity and healthcare expenditure.
Abstract: Urinary tract infections constitute a large proportion of nosocomial infections, and the urinary catheter is the most important predisposing factor. Encrustation induced by urease-producing uropathogens like Proteus mirabilis causes further complications. In the present work, a strategy for controllable and sustained release of silver over several weeks has been developed for combating bacterial infection and encrustation in urinary devices. Silver nanoparticles (AgNPs) were first immobilized on polydopamine (PDA) pre-treated silicone catheter surface and this was followed by another PDA coating. The number of AgNP-PDA bilayers could be manipulated to control the amount of silver loaded and its subsequent release. Poly(sulfobetaine methacrylate-co-acrylamide) was then grafted to provide an antifouling outer layer, and to ensure free diffusion of Ag from the surface. The micron-scale combination of an antifouling coating with AgNP-PDA bilayers reduced colonization of the urinary catheter by uropathogens by approximately two orders of magnitude. With one and two AgNP-PDA bilayers, the coated catheter could resist encrustation for 12 and 45 days, respectively, compared with approximately 6 days with the Dover™ silver-coated catheter. Such anti-infective and anti-encrustation catheters can potentially have a large impact on reducing patient morbidity and healthcare expenditure.

101 citations


Journal ArticleDOI
TL;DR: It is suggested that PURION® Processed dHACM contains substantially more cytokines than single layer amnion products, and therefore dHacM may be more effective at delivering growth factors to a healing wound than amnions alone.
Abstract: Human amniotic membrane allografts have proven effective at improving healing of cutaneous wounds. The mechanism of action for these therapeutic effects is poorly understood but is thought to involve the resident growth factors present in near term amniotic tissue. To determine the relative cytokine contribution of the amnion and chorion in amniotic allografts, the content of 18 cytokines involved in wound healing were measured in samples of PURION® Processed dehydrated amnion, chorion, and amnion/chorion membrane (dHACM) grafts by multiplex enzyme-linked immunosorbent assay array. Both amnion and chorion contained similar amounts of each factor when normalized per dry weight; however, when calculated per surface area of tissue applied to a wound, amnion contained on average only 25% as much of each factor as the chorion. Therefore, an allograft containing both amnion and chorion would contain four to five times more cytokine than a single layer amnion allograft alone. Both single layer amnion and multilayer allografts containing amnion and chorion are currently marketed for wound repair. To examine the role of tissue processing technique in cytokine retention, cytokine contents in representative dehydrated single layer wound care products were measured. The results demonstrated that cytokine content varied significantly among the allografts tested, and that PURION® Processed single layer amnion grafts contained more cytokines than other single layer products. These results suggest that PURION® Processed dHACM contains substantially more cytokines than single layer amnion products, and therefore dHACM may be more effective at delivering growth factors to a healing wound than amnion alone.

97 citations


Journal ArticleDOI
TL;DR: The results show, that these new FeMn alloy systems with lower Mn concentrations exhibit good mechanical features as well as suitable in vitro biocompatibility and corrosion properties, and the evaluation of these alloys in a mouse model led to unexpected results.
Abstract: The principle of biodegradation for the production of temporary implant materials (e.g. stents) plays an important role in the treatment of congenital heart defects. In the last decade several attempts have been made with different alloy materials-mainly based on iron and magnesium. None of the currently available materials in this field have demonstrated satisfying results and have therefore not found entry into broad clinical practice. While magnesium or magnesium alloy systems corrode too fast, the corrosion rate of pure iron-stents is too slow for cardiovascular applications. In the last years FeMn alloy systems were developed with the idea that galvanic effects, caused by different electrochemical properties of Fe and Mn, would increase the corrosion rate. In vitro tests with alloys containing up to 30% Mn showed promising results in terms of biocompatibility. This study deals with the development of new FeMn alloy systems with lower Mn concentrations (FeMn 0.5 wt %, FeMn 2.7 wt %, FeMn 6.9 wt %) to avoid Mn toxicity. Our results show, that these alloys exhibit good mechanical features as well as suitable in vitro biocompatibility and corrosion properties. In contrast, the evaluation of these alloys in a mouse model led to unexpected results-even after 9 months no significant corrosion was detectable. Preliminary SEM investigations showed that passivation layers (FeMn phosphates) might be the reason for corrosion resistance. If this can be proved in further experiments, strategies to prevent or dissolve those layers need to be developed to expedite the in vivo corrosion of FeMn alloys.

94 citations


Journal ArticleDOI
TL;DR: Conclusions are suggested that calcium sulfate, functions, as well as PMMA in the patient setting for infection control, as the primary option for treatment of orthopedic infections.
Abstract: Antibiotic-loaded bone cement is a primary option for treatment of orthopedic infections. Poly(methyl methacrylate) (PMMA) is a widely used cement that, when loaded with antibiotics in spacer or bead form, has been shown to reduce infection rates. However, PMMA is not resorbable and requires a second surgery for removal, while also acting as a potential foreign body for bacterial colonization. Alternatively, resorbable bone cements, such as calcium sulfate, have been proposed and present the advantage of being completely reabsorbed. It is unknown whether the antibiotic elution characteristics of absorbable bone cements are similar to PMMA. This study (1) characterized antibiotic elution from synthetic, highly purified calcium sulfate cement beads of varying sizes against pathogenic bacteria both in liquid culture and seeded on agar plates, (2) tested calcium sulfate beads against PMMA beads loaded with the same antibiotics, and (3) analyzed the structural differences between how PMMA and calcium sulfate bind to antibiotics. In every assay, the calcium sulfate beads performed as well as, or better than, the PMMA beads in inhibition of bacterial growth and elution of vancomycin in vitro with complete elution observed from calcium sulfate within three days. These data suggest that calcium sulfate, functions, as well as PMMA in the patient setting for infection control.

94 citations


Journal ArticleDOI
TL;DR: Chitosan-alginate membrane modulated the inflammatory phase, stimulated fibroplasia and collagenesis, accelerating wound healing process in rats, and showed faster reepithelialization on 7(th) day than SL group, although similar in other days.
Abstract: The purpose of this study was to evaluate the efficacy of chitosan-alginate membrane to accelerate wound healing in experimental cutaneous wounds. Two wounds were performed in Wistar rats by punching (1.5 cm diameter), treated with membranes moistened with saline solution (CAM group) or with saline only (SL group). After 2, 7, 14, and 21 days of surgery, five rats of each group were euthanized and reepithelialization was evaluated. The wounds/scars were harvested for histological, flow cytometry, neutrophil infiltrate, and hydroxyproline analysis. CAM group presented higher inflammatory cells recruitment as compared to SL group on 2(nd) day. On the 7(th) day, CAM group showed higher CD11b(+) level and lower of neutrophils than SL group. The CAM group presented higher CD4(+) cells influx than SL group on 2(nd) day, but it decreased during the follow up and became lower on 14(th) and 21(st) days. Higher fibroplasia was noticed on days 7 and 14 as well as higher collagenesis on 21(st) in the CAM group in comparison to SL group. CAM group showed faster reepithelialization on 7(th) day than SL group, although similar in other days. In conclusion, chitosan-alginate membrane modulated the inflammatory phase, stimulated fibroplasia and collagenesis, accelerating wound healing process in rats.

89 citations


Journal ArticleDOI
TL;DR: The objective of this article is to investigate the tensile properties of commonly used sutures in cutaneous surgery and find Silk and rapid polyglactin 910 had the highest initial modulus of nonabsorbable and absorbable sutURES, respectively.
Abstract: Comprehensive studies comparing tensile properties of sutures are over 25 years old and do not include recent advances in suture materials. Accordingly, the objective of this article is to investigate the tensile properties of commonly used sutures in cutaneous surgery. Thirteen 3-0 sized modern sutures (four nonabsorbable and nine absorbable) were tensile tested in both straight and knotted configurations according to the procedures outlined by the United States Pharmacopeia. Glycomer 631 was found to have the highest failure load (56.1 N) of unknotted absorbable sutures, while polyglyconate (34.2 N) and glycomer 631 (34.3 N) had the highest failure loads of knotted absorbable sutures. Nylon (30.9 N) and polypropylene (18.9 N) had the greatest failure loads of straight and knotted nonabsorbable sutures, respectively. Polydioxane was found to have the most elongation prior to breakage (144%) of absorbable sutures. Silk (8701 MPa) and rapid polyglactin 910 (9320 MPa) had the highest initial modulus of nonabsorbable and absorbable sutures, respectively. The new data presented in the study provide important information for guiding the selection of suture materials for specific surgeries.

85 citations


Journal ArticleDOI
TL;DR: This study is a novel tissue engineering concept for the reconstruction of a damaged tissue without the in vitro cell seeding and proliferation prior to the in vivo implantation.
Abstract: In the present study, we have fabricated electrospun poly(e-caprolactone)-based membranes, characterized and studied the in vivo cell migration and proliferation and wound healing activity. Moreover, we did not seed any cells prior to the animal implantation and we could observe excellent fibroblast attachment and cell proliferation. Further full thickness excision wound on guinea pig completely healed within 35 days. We could reach in an assumption that the enhanced cell proliferation and wound healing might be due to the surface degradation of the polymer under physiological conditions and the formation of functional groups like hydroxyl and carboxyl groups that promoted cell proliferation in a cell adhesion protein mediated mechanism. This study is a novel tissue engineering concept for the reconstruction of a damaged tissue without the in vitro cell seeding and proliferation prior to the in vivo implantation. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 103B: 1445–1454, 2015.

Journal ArticleDOI
TL;DR: 3D culturing of adipocytes in bacterial nanocellulose macroporous scaffolds is a promising method for fabrication of adipose tissue as an in vitro model for adipose biology and metabolic disease.
Abstract: There is an increased interest in developing adipose tissue for in vitro and in vivo applications. Current two-dimensional (2D) cell-culture systems of adipocytes are limited, and new methods to culture adipocytes in three-dimensional (3D) are warranted as a more life-like model to study metabolic diseases such as obesity and diabetes. In this study, we have evaluated different porous bacterial nanocellulose scaffolds for 3D adipose tissue. In an initial pilot study, we compared adipogenic differentiation of mice mesenchymal stem cells from a cell line on 2D and 3D scaffolds of bacterial nanocellulose. The 3D scaffolds were engineered by crosslinking homogenized cellulose fibrils using alginate and freeze drying the mixture to obtain a porous structure. Quenching the scaffolds in liquid nitrogen resulted in smaller pores compared to slower freezing using isopropanol. We found that on 2D surfaces, the cells were scarcely distributed and showed limited formation of lipid droplets, whereas cells grown in macroporous 3D scaffolds contained more cells growing in clusters, containing large lipid droplets. All four types of scaffolds contained a lot of adipocytes, but scaffolds with smaller pores contained larger cell clusters than scaffolds with bigger pores, with viable adipocytes present even 4 weeks after differentiation. Scaffolds with lower alginate fractions retained their pore integrity better. We conclude that 3D culturing of adipocytes in bacterial nanocellulose macroporous scaffolds is a promising method for fabrication of adipose tissue as an in vitro model for adipose biology and metabolic disease.

Journal ArticleDOI
TL;DR: Results suggest that the sterilization approach can be selected to modulate biomaterial properties to favor cellular adhesion and has relevance in tissue engineering and regenerative medicine applications.
Abstract: Terminal sterilization induces physical and chemical changes in the extracellular matrix (ECM) of ex vivo-derived biomaterials due to their aggressive mechanism of action. Prior studies have focused on how sterilization affects the mechanical integrity of tissue-based biomaterials but have rarely characterized effects on early cellular interaction, which is indicative of the biological response. Using a model fibrocartilage disc scaffold, these investigations compare the effect of three common sterilization methods [peracetic acid (PAA), gamma irradiation (GI), and ethylene oxide (EtO)] on a range of material properties and characterized early cellular interactions. GI and EtO produced unfavorable structural damage that contributed to inferior cell adhesion. Conversely, exposure to PAA resulted in limited structural alterations while inducing chemical modifications that favored cell attachment. Results suggest that the sterilization approach can be selected to modulate biomaterial properties to favor cellular adhesion and has relevance in tissue engineering and regenerative medicine applications. Furthermore, the study of cellular interactions with modified biomaterials in vitro provides information of how materials may react in subsequent clinical applications.

Journal ArticleDOI
TL;DR: It is suggested that the heat-compression technique reduces the rate of biodegradation of the PRF membrane without sacrificing its biocompatibility and that theHeat-compressed PRF membranes easily could be prepared at chair-side and applied as a barrier membrane in the GTR treatment.
Abstract: Platelet-rich fibrin (PRF) was developed as an advanced form of platelet-rich plasma to eliminate xenofactors, such as bovine thrombin, and it is mainly used as a source of growth factor for tissue regeneration. Furthermore, although a minor application, PRF in a compressed membrane-like form has also been used as a substitute for commercially available barrier membranes in guided-tissue regeneration (GTR) treatment. However, the PRF membrane is resorbed within 2 weeks or less at implantation sites; therefore, it can barely maintain sufficient space for bone regeneration. In this study, we developed and optimized a heat-compression technique and tested the feasibility of the resulting PRF membrane. Freshly prepared human PRF was first compressed with dry gauze and subsequently with a hot iron. Biodegradability was microscopically examined in vitro by treatment with plasmin at 37°C or in vivo by subcutaneous implantation in nude mice. Compared with the control gauze-compressed PRF, the heat-compressed PRF appeared plasmin-resistant and remained stable for longer than 10 days in vitro. Additionally, in animal implantation studies, the heat-compressed PRF was observed at least for 3 weeks postimplantation in vivo whereas the control PRF was completely resorbed within 2 weeks. Therefore, these findings suggest that the heat-compression technique reduces the rate of biodegradation of the PRF membrane without sacrificing its biocompatibility and that the heat-compressed PRF membrane easily could be prepared at chair-side and applied as a barrier membrane in the GTR treatment.

Journal ArticleDOI
Fengxuan Han1, Fang Zhou1, Xiaoling Yang1, Jin Zhao1, Yunhui Zhao1, Xiaoyan Yuan1 
TL;DR: The obtained preliminary experiment results showed that the hydrogel/PLGA graded scaffold combining multiphasic composition and spatial dual growth-factor delivery would be useful for cartilage-bone interface tissue defect repair.
Abstract: Repair of cartilage-bone interface tissue remains challenging, because it combines different cell types and gradients of composition and properties. To enable simultaneous regeneration of bone, cartilage, and especially their interface, a conically graded scaffold of chitosan-gelatin hydrogel/poly(l-lactide-co-glycolide) (PLGA) was facilely prepared in the study. The chitosan-gelatin hydrogel containing transforming growth factor β1 (TGF-β1) was used for chondrogenesis, while the PLGA scaffold loading bone morphogenetic protein-2 (BMP-2) for osteogenesis. The conically graded transition from the hydrogel to PLGA scaffold and graded variation in amount of growth factors from TGF-β1 to BMP-2 benefited the cartilage-bone interface reconstruction. The graded scaffold exhibited spatio-temporal delivery of TGF-β1 and BMP-2. Preliminary results of in vitro cell culture demonstrated that the hydrogel and PLGA phases could promote bone marrow mesenchymal stem cells toward chondrogenic and osteogenic differentiation, respectively. From the result of the pilot in vivo experiment, it showed that the regenerated hyaline-like cartilage surface and subchondral bone excellently integrated with the native tissues were found by using the TGF-β1 and BMP-2 double-loaded hydrogel/PLGA graded scaffold via H&E and immunohistochemical stainings of collagen I, collagen II, and osteocalcin at 2 months. The obtained preliminary experiment results showed that the hydrogel/PLGA graded scaffold combining multiphasic composition and spatial dual growth-factor delivery would be useful for cartilage-bone interface tissue defect repair.

Journal ArticleDOI
TL;DR: Biocompatibility of all implant types was demonstrated by the absence of inflammatory infiltration by mononuclear cells (lymphocytes, neutrophils, and eosinophils), and no osteoclastic or foreign body reaction was observed in the vicinity of the implants.
Abstract: The use of porous titanium-based implant materials for bone contact has been gaining ground in recent years. Selective laser melting (SLM) is a rapid prototyping method by which porous implants with highly defined external dimensions and internal architecture can be produced. The coating of porous implants produced by SLM with ceramic layers based on calcium phosphate (CaP) remains relatively unexplored, as does the doping of such coatings with magnesium (Mg) to promote bone formation. In this study, Mg-doped coatings of the CaP types octacalcium phosphate and hydroxyapatite (HA) were deposited on such porous implants using the pulsed laser deposition method. The coated implants were subsequently implanted in a rabbit femoral defect model for 6 months. Uncoated implants served as a reference material. Bone-implant contact and bone volume in the region of interest were evaluated by histopathological techniques using a tri-chromatographic Masson-Goldner staining method and by microcomputed tomography (µCT) analysis of the volume of interest in the vicinity of implants. Histopathological analysis revealed that all implant types integrated directly with surrounding bone with ingrowth of newly formed bone into the pores of the implants. Biocompatibility of all implant types was demonstrated by the absence of inflammatory infiltration by mononuclear cells (lymphocytes), neutrophils, and eosinophils. No osteoclastic or foreign body reaction was observed in the vicinity of the implants. µCT analysis revealed a significant increase in bone volume for implants coated with Mg-doped HA compared to uncoated implants.

Journal ArticleDOI
TL;DR: The porosity measured was found to vary between the porosity methods evaluated herein, and to get a complete picture of a cement's porosity more than one method is recommended.
Abstract: The porosity of a material can be determined using a diversity of methods; however, the results from these methods have so far not been compared and analyzed for calcium phosphate cements (CPCs). The aim of this study was to compare a fast and easy method for porosity meas- urements with some commonly used porosity methods for CPCs. The investigated method is based on the assumption that when a wet cement sample is dried, the volume of the evaporated water is equal to the volume of pores within the cement. Moreover, different methods of drying the cements were evaluated for acidic CPCs. The results showed that dry- ing at room temperature (22 6 1 � C) is preferable, since a phase transformation was observed at higher temperatures. The results also showed that drying for 24 h in vacuum was sufficient to achieve water-free cements. The porosity meas- ured was found to vary between the porosity methods eval- uated herein, and to get a complete picture of a cement's porosity more than one method is recommended. Water evaporation, is, however, a fast and easy method to estimate the porosity of CPCs and could simplify porosity measure- ments in the future. V C

Journal ArticleDOI
TL;DR: Both low shrinkage composites showed less volumetric polymerization contraction than the regular composite and the use of dental adhesive decreased the totalvolumetric shrinkage for all evaluated composites.
Abstract: Department of Prosthodontics, University of Sao Paulo - Bauru College of Dentistry, Bauru, SP, BrazilReceived 6 March 2014; revised 3 June 2014; accepted 29 June 2014Published online 00 Month 2014 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/jbm.b.33258Abstract: Objectives: The aim of this study was to quantifythe polymerization volumetric shrinkage of one regular andtwo low shrinkage bulk fill composites in class I cavitieswith or without an adhesive layer, using three-dimensional(3D) micro-computed tomography (lCT). Methods: Class Icavity preparations (2.5 mm depth 3 4 mm length 3 4mmwide) were standardized in 36 extracted human thirdmolars, which were randomly divided in six groups (n56each) as follows: Group VIT (regular composite withoutbonding agent); Group SDR (low shrinkage flowable com-posite without bonding agent); Group TET (low shrinkagecomposite without bonding agent); Group VIT/P (regularcomposite with bonding agent); Group SDR/X (low shrink-age flowable composite with bonding agent); TET/T (lowshrinkage composite with bonding agent). Each tooth wasscanned via mCT at cavity preparation, immediately aftercavity filling, and after light-curing. Acquired lCT data wereimported into Amira software for analysis and volume val-ues evaluated between steps from cavity preparation untillight-curing. Results: Both low shrinkage compositesshowed a significantly less volumetric shrinkage than VIT.The use of dental adhesive significantly decreased the aver-age volumetric contraction similarly for the three compo-sites, by about 20%. Conclusion: Both low shrinkagecomposites showed less volumetric polymerization contrac-tion than the regular composite. The use of dental adhesivedecreased the total volumetric shrinkage for all evaluatedcomposites.

Journal ArticleDOI
TL;DR: The influence of silica-based film coatings on the surface of yttrium-stabilized tetragonal zirconia polycrystal (Y-TZP) is evaluated in particular on the durability of the bond strength between the ceramic and resin cement.
Abstract: This study evaluated the influence of silica-based film coatings on the surface of yttrium-stabilized tetragonal zirconia polycrystal (Y-TZP), in particular on the durability of the bond strength between the ceramic and resin cement. Eighty Y-TZP (In-Ceram YZ, Vita) blocks (4 × 4 × 3 mm) were obtained and divided into four groups according to the surface treatments (n = 20): tribochemical silica coating (TBS; Cojet, 3M/ESPE), 5 nm SiO2 nanofilm and silanization (F-5), 500 nm SiO2 nanofilm and silanization (F-500), and 500 nm SiO2 nanofilm + hydrofluoric-acid-etching + silanization (F-500HF). Specimens of composite resin (3.25 mm in diameter and 3 mm in height) were cemented to Y-TZP blocks using resin cement (Relyx ARC). Half of the specimens from each group were tested 24 h after adhesion (B: baseline condition), and the other half were subjected to aging (A: storage for 90 days and 10,000 thermal cycles). The specimens were subjected to shear testing (SBS) (1 mm/min). After testing, the surfaces were analyzed with a stereomicroscope and scanning electron microscope. Micromorphologic and elemental chemical analyses of the treated Y-TZP surface were made by X-ray energy dispersive spectroscopy. Bond strength data were statistically analyzed by Kruskal-Wallis/Mann-Whitney tests (α = 0.05). The surface treatment showed significant differences for B (p = 0.0001) and A (p = 0.0000) conditions. In both storage conditions, TBS and F-5 groups promoted the significantly highest bond strength. Most of the specimens presented adhesive failure. The X-ray energy dispersive spectroscopy analysis depicted the highest peak of silica in the TBS, F-5, and F-500 groups. The adhesion to zirconia can be improved if the surface receives a 5 nm layer of SiO2 nanofilm or is subjected to sandblasting with silica particles, followed by silanization.

Journal ArticleDOI
TL;DR: It was found that Cu-SS could inhibit the happening of inflammation with lower TNF-α expression in the bone tissue post implantation compared with 317L SS, indicating a unique application advantage in orthopedics.
Abstract: A newly developed copper-bearing stainless steel (Cu-SS) by directly immobilizing proper amount of Cu into a medical stainless steel (317L SS) during the metallurgical process could enable continuous release of trace amount of Cu2+ ions, which play the key role to offer the multibiofunctions of the stainless steel, including the osteogenic ability in the present study. The results of in vitro experiments clearly demonstrated that Cu2+ ions from Cu-SS could promote the osteogenic differentiation by stimulating the Alkaline phosphatase enzyme activity and the osteogenic gene expressions (Col1a1, Opn, and Runx2), and enhancing the adhesion and proliferation of osteoblasts cultured on its surface. The in vivo test further proved that more new bone tissue formed around the Cu-SS implant with more stable bone-to-implant contact in comparison with the 317L SS. In addition, Cu-SS showed satisfied bio- compatibility according to the results of in vitro cytotoxicity and in vivo histocompatibility, and its daily released amount of Cu2- ions in physiological saline solution was at trace level of ppb order (1.4 ppb/cm(2)), which is rather safe to human health. Apart from these results, it was also found that Cu-SS could inhibit the happening of inflammation with lower TNF-(x expression in the bone tissue post implantation compared with 317L SS. In addition to good biocompatibility, the overall findings demonstrated that the Cu-SS possessed obvious ability of promoting osteogenesis, indicating a unique application advantage in orthopedics. (C) 2014 Wiley Periodicals, Inc. J Blamed Mater Res Part B: Appl Biomater, 103B: 1433-1444,2015.

Journal ArticleDOI
TL;DR: An electrospun vascular graft from segmented polyurethanes with tunable properties by altering material chemistry and graft microarchitecture is developed to reduce intimal hyperplasia associated with low compliance in synthetic grafts and improve long-term clinical success.
Abstract: Coronary artery bypass grafting (CABG) is one of the most commonly performed major surgeries in the United States. Autologous vessels such as the saphenous vein are the current gold standard for treatment; however, synthetic vascular prostheses made of expanded poly(tetrafluoroethylene) (ePTFE) or poly(ethylene terephthalate) (PET) are used when autologous vessels are unavailable. These synthetic grafts have a high failure rate in small diameter (<4 mm) applications due to rapid re-occlusion via intimal hyperplasia. Current strategies to improve clinical performance are focused on preventing intimal hyperplasia by fabricating grafts with compliance and burst pressure similar to native vessels. To this end, we have developed an electrospun vascular graft from segmented polyurethanes with tunable properties by altering material chemistry and graft microarchitecture. Relationships between polyurethane tensile properties and biomechanical properties were elucidated to select polymers with desirable properties. Graft thickness, fiber tortuosity, and fiber fusions were modulated to provide additional tools for controlling graft properties. Using a combination of these strategies, a vascular graft with compliance and burst pressure exceeding the saphenous vein autograft was fabricated (compliance = 6.0 ± 0.6 %/mmHg × 10−4, burst pressure = 2260 ± 160 mmHg). This graft is hypothesized to reduce intimal hyperplasia associated with low compliance in synthetic grafts and improve long term clinical success. Additionally, the fundamental relationships between electrospun mesh microarchitecture and mechanical properties identified in this work can be utilized in various biomedical applications.

Journal ArticleDOI
TL;DR: The prepared bioactive Si-HAp coatings could be considered for applications in orthopedics and dentistry to improve the osteointegration of bone implants.
Abstract: Aims: The aim of this work was to deposit silicon-substituted hydroxyapatite (Si-HAp) coatings on titanium for biomedical applications, since it is known that Si-HAp is able to promote osteoblastic cells activity, resulting in the enhanced bone ingrowth. Materials and Methods: Pulsed laser deposition (PLD) method was used for coatings preparation. For depositions, Si-HAp targets (1.4 wt % of Si), made up from nanopowders synthesized by wet method, were used. Results: Microstructural and mechanical properties of the produced coatings, as a function of substrate temperature, were investigated by scanning electron and atomic force microscopies, X-ray diffraction, Fourier transform infrared spectroscopy, and Vickers microhardness. In the temperature range of 400–600°C, 1.4–1.5 µm thick Si-HAp films, presenting composition similar to that of the used target, were deposited. The prepared coatings were dense, crystalline, and nanostructured, characterized by nanotopography of surface and enhanced hardness. Whereas the substrate temperature of 750°C was too high and led to the HAp decomposition. Moreover, the bioactivity of coatings was evaluated by in vitro tests in an osteoblastic/osteoclastic culture medium (α-Modified Eagle's Medium). Conclusions: The prepared bioactive Si-HAp coatings could be considered for applications in orthopedics and dentistry to improve the osteointegration of bone implants. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 103B: 1621–1631, 2015.

Journal ArticleDOI
TL;DR: Functional, autologous, 3D-shaped heart valves with clinical application potential were formed following in-body embedding of specially designed molds that were created within several hours by 3D printer.
Abstract: In-body tissue architecture--a novel and practical regeneration medicine technology--can be used to prepare a completely autologous heart valve, based on the shape of a mold. In this study, a three-dimensional (3D) printer was used to produce the molds. A 3D printer can easily reproduce the 3D-shape and size of native heart valves within several processing hours. For a tri-leaflet, valved conduit with a sinus of Valsalva (Biovalve type VII), the mold was assembled using two conduit parts and three sinus parts produced by the 3D printer. Biovalves were generated from completely autologous connective tissue, containing collagen and fibroblasts, within 2 months following the subcutaneous embedding of the molds (success rate, 27/30). In vitro evaluation, using a pulsatile circulation circuit, showed excellent valvular function with a durability of at least 10 days. Interposed between two expanded polytetrafluoroethylene grafts, the Biovalves (N = 3) were implanted in goats through an apico-aortic bypass procedure. Postoperative echocardiography showed smooth movement of the leaflets with minimal regurgitation under systemic circulation. After 1 month of implantation, smooth white leaflets were observed with minimal thrombus formation. Functional, autologous, 3D-shaped heart valves with clinical application potential were formed following in-body embedding of specially designed molds that were created within several hours by 3D printer.

Journal ArticleDOI
TL;DR: Examination of tissue reactions and exposure to metal ions and wear particles in periprosthetic tissues and blood samples from patients with titanium (Ti)-based hip prostheses that were revised due to wear, osteolysis, and/or aseptic loosening indicates that wear particles of different chemical composition induced similar inflammatory responses.
Abstract: Wear debris-induced inflammation is considered to be the main cause for periprosthetic osteolysis in total hip replacements (THR). The objective of this retrieval study was to examine the tissue reactions and exposure to metal ions and wear particles in periprosthetic tissues and blood samples from patients with titanium (Ti)-based hip prostheses that were revised due to wear, osteolysis, and/or aseptic loosening. Semiquantitative, histological tissue evaluations in 30 THR-patients revealed numerous wear debris-loaded macrophages, inflammatory cells, and necrosis in both groups. Particle load was highest in tissues adjacent to loosened cemented Ti stems that contained mainly submicron zirconium (Zr) dioxide particles. Particles containing pure Ti and Ti alloy elements were most abundant in tissues near retrieved uncemented cups. Polyethylene particles were also detected, but accounted only for a small portion of the total particle number. The blood concentrations of Ti and Zr were highly elevated in cases with high abrasive wear and osteolysis. Our findings indicate that wear particles of different chemical composition induced similar inflammatory responses, which suggests that particle size and load might be more important than the wear particle composition in periprosthetic inflammation and osteolysis.

Journal ArticleDOI
TL;DR: In this study, oleic acid capped silver nanoparticles (NP) were encapsulated into Poly(methyl methacrylate) (PMMA)-based bone cement samples at various ratios to guarantee that such material is safe to be used in orthopaedic surgical practice.
Abstract: Bone cement is widely used in surgical treatments for the fixation for orthopaedic devices. Subsequently, 2–3% of patients undergoing these procedures develop infections that are both a major health risk for patients and a cost for the health service providers; this is also aggravated by the fact that antibiotics are losing efficacy because of the rising resistance of microorganisms to these substances. In this study, oleic acid capped silver nanoparticles (NP) were encapsulated into Poly(methyl methacrylate) (PMMA)-based bone cement samples at various ratios. Antimicrobial activity against Methicillin Resistant Staphylococcus aureus, S. aureus, Staphylococcus epidermidis, Acinetobacter baumannii was exhibited at NP concentrations as low as 0.05% (w/w). Furthermore, the mechanical properties and cytotoxicity of the bone cement containing these NP were assessed to guarantee that such material is safe to be used in orthopaedic surgical practice.

Journal ArticleDOI
TL;DR: This study demonstrated the suitability of copper-crosslinked chitosan scaffolds for bone tissue engineering and provides the first evidence that inclusion of copper ions in scaffolds can enhance tissue regeneration.
Abstract: The objective of this study was to investigate the effects of a copper loaded chitosan scaffold on bone regeneration in critical-sized calvarial defects in rats. Chitosan scaffolds and copper-chitosan scaffolds were fabricated and characterized by scanning electron microscopy (SEM). Chitosan and copper-chitosan scaffolds were implanted into 5 mm diameter critical-sized calvarial defects in Fisher 344 male rats. Empty defects (no scaffolds) were included as a control. After 4 weeks, the rats were sacrificed for microcomputed tomography (micro-CT) and histological analysis of new bone tissue development. Microscopy images revealed the uniformly porous structure of chitosan and copper-chitosan scaffolds. Significant bone regeneration was noted in the defects treated with copper-chitosan scaffolds when evaluated using micro-CT and histological analysis, when compared with other groups tested. On analysis of the micro-CT scans, an eleven-fold and a two-fold increase in the new bone volume/total volume (BV/TV) % was found in defects treated with the copper-chitosan scaffolds, when compared to empty defects and chitosan scaffolds, respectively. This study demonstrated the suitability of copper-crosslinked chitosan scaffolds for bone tissue engineering and provides the first evidence that inclusion of copper ions in scaffolds can enhance tissue regeneration.

Journal ArticleDOI
TL;DR: In this study, chitosan-based hydrogels were formulated with material similarities to three of the four zones of articular cartilage and structural integrity was suggested to be the resultant of the presence of HA.
Abstract: In this study, chitosan-based hydrogels were formulated with material similarities to three of the four zones of articular cartilage. Gelatin, hyaluronic acid (HA), and β-tricalcium phosphate for the superficial, radial, and calcified zones, were blended in different amounts and tested for formation of uniform solution, gelability, and rheological characteristics. Confined compression in two configurations (series and parallel to anisotropy), and cyclical tests were performed at the physiological conditions. In vivo gelation and systemic effects were evaluated in male BALB/c mice subcutaneous model. At day 5, hydrogels were harvested along with the adjoining skin and analyzed by histology. Formulations that produced solutions after pH adjustments were selected for each zone. Anisotropic hydrogels were formed by mixing solutions from each zone, which showed uniform gradation. Addition of HA improved structural integrity relative to other formulations. When hydrogels were in series, combined hydrogel modulus was the average of all zones while that in parallel orientation was half of that series orientation. Cyclical tests demonstrated repeatable strength and durability. All formulations were injectable into the subcutaneous region. H/E stained tissues showed minimal invasion of inflammatory cells in radial and calcified zones. Structural integrity of the hydrogel is suggested to be the resultant of the presence of HA.

Journal ArticleDOI
TL;DR: The CCG scaffolds exhibit excellent support for adipose-derived mesenchymal stem cells (ADMSCs) attachment and proliferation, and they can improve the osteogenic differentiation and neovascularization capacities of ADMSCs.
Abstract: In this study, we have developed ι-carrageenan/chitosan/gelatin (CCG) scaffold containing multiple functional groups (-NH2, -OH, -COOH, and –SO3H) to resemble the native extracellular matrix (ECM), using the ion-shielding technology and ultrasonic dispersion method. Fourier transform infrared spectroscopy (FTIR) of the CCG scaffolds suggests that the formation of CCG network involves electrostatic interactions between ι-carrageenan (ι-CA) and chitosan/gelatin, and the covalent cross-linking among amino groups of chitosan and/or gelatin. Scanning electron microscopic (SEM) observation reveals that the porous structure of scaffolds can be modulated by the ratio of ι-CA to chitosan/gelatin. The swelling ratio of the hydrogels increases as the ι-CA contents increase. Using differential scanning calorimetry, we found that the double helix structure of ι-CA is only stabilized at low contents of ι-CA in the CCG scaffolds (e.g., 5 wt %). The scaffolds containing 5% ι-CA showed the best protein adsorption capacity (4.46 ± 0.63 μg protein/mg scaffold) and elastic modulus (5.37 ± 1.03 MPa). In addition, the CCG scaffolds exhibit excellent support for adipose-derived mesenchymal stem cells (ADMSCs) attachment and proliferation, and they can improve the osteogenic differentiation and neovascularization capacities of ADMSCs. Overall, we conclude that the CCG may represent an ideal scaffold material for bone tissue engineering. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 103B: 1498–1510, 2015.

Journal ArticleDOI
TL;DR: The results revealed that the PEO/PLLA composite coating improved the corrosion resistance of AZ31 alloy significantly and played a critical role in sustaining the integrity of the implant in long-term service.
Abstract: Magnesium and its alloys have large potential as degradable and absorbable biomaterials because of their mechanical properties and biocompatibility. However, their corrosion resistance is usually inadequate especially in physiological environment, which limits their broad applications in biomedical areas. In this work, plasma electrolytic oxidized/poly(l-lactide) (PEO/PLLA) composite coating was successfully fabricated on biodegradable AZ31 alloy by combing PEO process and sealing with PLLA. The microstructure, elemental composition, and phase composition of the PEO/PLLA composite coating were investigated. The in vitro degradation of the PEO/PLLA composite coating in simulated body fluid (SBF) was also systematically evaluated. The results revealed that the PEO/PLLA composite coating improved the corrosion resistance of AZ31 alloy significantly. The corrosion potential shifted from −1.663V to more positive position −1.317 V and the corrosion current density was reduced with six-order of magnitude. The Mg2+ ions, hydrogen release, and pH value change of solution caused by degradation were all decreased significantly. Moreover, the PEO process played a critical role in sustaining the integrity of the implant in long-term service. The result of hemolysis test showed that the PEO/PLLA composite coating vested AZ31 alloy a low hemolysis ratio (0.806 ± 0.771)%, which is much lower than the safe value of 5% according to ISO 10993-4. For the cytocompatibility test, compared with bare AZ31 alloy and PEO coating, MC3T3-E1 cells showed much better adhesion and proliferation on the PEO/PLLA composite coating with nearly 4-fold increase of cells after 7-day cultivation, indicating that the PEO/PLLA composite coating has good biocompatibility for biomedical applications. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 103B: 342–354, 2015.

Journal ArticleDOI
TL;DR: The results suggest that through a process of selection appropriate methods of preparation and bioglass composition it is possible to design and obtain porous materials with suitable properties for regeneration of bone tissue.
Abstract: In this study, two different composition gel derived silica-rich (S2) or calcium-rich (A2) bioactive glasses (SBG) from a basic CaOP2O5SiO2 system were incorporated into poly(e-caprolactone) (PCL) matrix to obtain novel bioactive composite scaffolds for bone tissue engineering applications. The composites were fabricated in the form of highly porous 3D scaffolds using following preparation methods: solvent casting particulate leaching (SCPL), solid–liquid phase separation, phase inversion (PI). Scaffolds containing 21% vol. of each bioactive glass were characterized for architecture, crystallinity, hydrolytic degradation, surface bioactivity, and cellular response. Results indicated that the use of different preparation methods leads to obtain highly porous (60–90%) materials with differentiated morphology: pore shape, size, and distributions. Thermal analysis (DSC) showed that the preparation method of materials and addition of bioactive glass particles into polymer matrix induced the changes of PCL crystallinity. Composites obtained by SCPL and PI method containing A2 SBG rapidly formed a hydroxyapatite calcium phosphate surface layer after incubation in SBF. Bioactive glasses used as filler in composite scaffolds could neutralize the released acidic by-products of the polymer degradation. Preliminary in vitro biological studies of the composites in contact with osteoblastic cells showed good biocompatibility of the obtained materials. Addition of bioactive glass into the PCL matrix promotes mineralization estimated on the basis of the ALP activity. These results suggest that through a process of selection appropriate methods of preparation and bioglass composition it is possible to design and obtain porous materials with suitable properties for regeneration of bone tissue. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 103B: 1580–1593, 2015.