scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Eukaryotic Microbiology in 2010"


Journal ArticleDOI
TL;DR: The separation of lineages A and B, based on sequence differences and phylogenetic reconstruction, is so pronounced as to characterize two species of “C. bombi,” which is proposed to retain C. bombs for the more common lineage A and suggest the name Crithidia expoeki n.
Abstract: This study provides, for the first time, sequence data for the protozoan flagellates Crithidia bombi and Crithidia mellificae (Kinetoplastea: Trypanosomatidae). We amplified the partial sequences of the small subunit ribosomal RNA (SSU rRNA), glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH), cytochrome b (Cyt b), and the complete internal transcribed spacer region 1 (ITS1) of the ribosomal RNA gene region for 66 clones of C. bombi from Switzerland and Alaska. Furthermore, we sequenced the same stretch of SSU rRNA and gGAPDH for one isolate of C. mellificae from Switzerland. All four molecular markers classified the C. bombi samples into two distinct lineages A and B. Both lineages were found in the two sampling locations. Variation within lineages was small or non-existing. Sequence differences between lineages were 1.64% for SSU rRNA, 4.36% for gGAPDH, and 12.02% for Cyt b. The ITS1-sequences of lineages A and B have diverged so much that no alignment was possible. With regard to ITS1, we additionally found fragment length polymorphism (variation in microsatellite repeat numbers) as well as nucleotide diversity within each lineage. Furthermore, the sequences of SSU rRNA and gGAPDH of C. mellificae were different from both lineages of C. bombi. The separation of lineages A and B, based on sequence differences and phylogenetic reconstruction, is so pronounced as to characterize two species of "C. bombi." We propose to retain C. bombi for the more common lineage A and suggest the name Crithidia expoeki n. sp. for lineage B.

113 citations


Journal ArticleDOI
TL;DR: It is suggested that P. theridion should be given status as a new species in a new genus based on characteristics of the morphology, unique development involving a vertebrate fish as well as a crustacean ectoparasite host, and the results of the phylogenetic analyses.
Abstract: Paranucleospora theridion n. gen, n. sp., infecting both Atlantic salmon (Salmo salar) and its copepod parasite Lepeophtheirus salmonis is described. The microsporidian exhibits nuclei in diplokaryotic arrangement during all known life-cycle stages in salmon, but only in the merogonal stages and early sporogonal stage in salmon lice. All developmental stages of P. theridion are in direct contact with the host cell cytoplasm or nucleoplasm. In salmon, two developmental cycles were observed, producing spores in the cytoplasm of phagocytes or epidermal cells (Cycle-I) and in the nuclei of epidermal cells (Cycle-II), respectively. Cycle-I spores are small and thin walled with a short polar tube, and are believed to be autoinfective. The larger oval intranuclear Cycle-II spores have a thick endospore and a longer polar tube, and are probably responsible for transmission from salmon to L. salmonis. Parasite development in the salmon louse occurs in several different cell types that may be extremely hypertrophied due to P. theridion proliferation. Diplokaryotic merogony precedes monokaryotic sporogony. The rounded spores produced are comparable to the intranuclear spores in the salmon in most aspects, and likely transmit the infection to salmon. Phylogenetic analysis of P. theridion partial rDNA sequences place the parasite in a position between Nucleospora salmonis and Enterocytozoon bieneusi. Based on characteristics of the morphology, unique development involving a vertebrate fish as well as a crustacean ectoparasite host, and the results of the phylogenetic analyses it is suggested that P. theridion should be given status as a new species in a new genus.

108 citations


Journal ArticleDOI
TL;DR: Six variable regions of the small subunit (SSU) rDNA of foraminifera, known to have rapidly evolving ribosomal genes, are compared and it is proposed that the expansion segment of Helix 37 appears to be the best candidate for barcoding foraminifiera.
Abstract: Ribosomal DNA (rDNA) sequences have been shown to be very useful for identification of microbial eukaryotes. Usually, complete or long partial sequences of the rDNA genes are analysed. However, the development of new massive sequencing technologies producing a large amount of relatively short sequences raises the question about the minimum length of rDNA fragments necessary for species distinction in environmental sampling. To answer this question, we compared six variable regions of the small subunit (SSU) rDNA of foraminifera, known to have rapidly evolving ribosomal genes. For each region, we analysed (1) the sequence divergence between and within foraminiferal morphospecies, (2) the intraspecific polymorphism, and (3) the ability of each region to recognize the phylotypes inferred from analysis of a longer fragment. Our results show that although the variable regions differ considerably between taxonomic groups, most of them perform very well as species identifiers. Taking into account different analyses, the expansion segment of Helix 37 appears to be the best candidate for barcoding foraminifera. We propose that this relatively short region, averaging 50-60 nt in length, could be an ideal barcode for identification of foraminifera in environmental samples using massive sequencing approach.

97 citations


Journal ArticleDOI
TL;DR: This work reviews evidence supporting the importance of the protozooplankton–ichthyoplankton trophic link, including examples from the amateur aquarium trade, the commercial aquaculture industry, and contemporary studies of larval fish, and offers suggestions for quantifying the importance.
Abstract: Since the introduction of the microbial loop concept, awareness of the role played by protozooplankton in marine food webs has grown. By consuming bacteria, and then being consumed by metazooplankton, protozoa form a trophic link that channels dissolved organic material into the "classic" marine food chain. Beyond enhancing energy transfer to higher trophic levels, protozoa play a key role in improving the food quality of metazooplankton. Here, we consider a third role played by protozoa, but one that has received comparatively little attention: that as prey items for ichthyoplankton. For >100 years it has been known that fish larvae consume protozoa. Despite this, fisheries scientists and biological oceanographers still largely ignore protozoa when assessing the foodweb dynamics that regulate the growth and survival of larval fish. We review evidence supporting the importance of the protozooplankton-ichthyoplankton link, including examples from the amateur aquarium trade, the commercial aquaculture industry, and contemporary studies of larval fish. We then consider why this potentially important link continues to receive very little attention. We conclude by offering suggestions for quantifying the importance of the protozooplankton-ichthyoplankton trophic link, using both existing methods and new technologies.

87 citations


Journal ArticleDOI
TL;DR: Based on morphological and molecular analyses, this dinoflagellate Paragymnodinium shiwhaense is a new species, also within a new genus, and the phylogenetic trees show that it belongs within the Gymnod inium sensu stricto clade.
Abstract: The mixotrophic dinoflagellate Paragymnodinium shiwhaense n. gen., n. sp. is described from living cells and from cells prepared by light, scanning electron, and transmission electron microscopy. In addition, sequences of the small subunit (SSU) and large subunit (LSU) rDNA and photosynthetic pigments are reported. The episome is conical, while the hyposome is hemispherical. Cells are covered with polygonal amphiesmal vesicles arranged in 16 rows and containing a very thin plate-like component. There is neither an apical groove nor apical line of narrow plates. Instead, there is a sulcal extension-like furrow. The cingulum is as wide as 0.2-0.3 x cell length and displaced by 0.2-0.3 x cell length. Cell length and width of live cells fed Amphidinium carterae were 8.4-19.3 and 6.1-16.0 microm, respectively. Paragymnodinium shiwhaense does not have a nuclear envelope chamber nor a nuclear fibrous connective (NFC). Cells contain chloroplasts, nematocysts, trichocysts, and peduncle, though eyespots, pyrenoids, and pusules are absent. The main accessory pigment is peridinin. The sequence of the SSU rDNA of this dinoflagellate (GenBank AM408889) is 4% different from that of Gymnodinium aureolum, Lepidodinium viride, and Gymnodinium catenatum, the three closest species, while the LSU rDNA was 17-18% different from that of G. catenatum, Lepidodinium chlorophorum, and Gymnodinium nolleri. The phylogenetic trees show that this dinoflagellate belongs within the Gymnodinium sensu stricto clade. However, in contrast to Gymnodinium spp., cells lack nuclear envelope chambers, NFC, and an apical groove. Unlike Polykrikos spp., which have a taeniocyst-nematocyst complex, P. shiwhaense has nematocysts without taeniocysts. In addition, P. shiwhaense does not have ocelloids in contrast to Warnowia spp. and Nematodinium spp. Therefore, based on morphological and molecular analyses, we suggest that this taxon is a new species, also within a new genus.

68 citations


Journal ArticleDOI
TL;DR: The results of the present study suggest that P. shiwhaense can have a considerable grazing impact on algal populations.
Abstract: To investigate feeding by the newly described mixotrophic dinoflagellate Gymnodinium smaydae , we explored the feeding mechanism and the kinds of prey species that G. smaydae is able to feed on. In addition, we measured the growth and ingestion rates of G. smaydae on optimal and suboptimal algal prey Heterocapsa rotundata and Heterocapsa triquetra as a function of prey concentration. Among the 19 algal prey species offered, G. smaydae ingested only thecate dinoflagellates H. rotundata , H. triquetra , Heterocapsa sp., and Scrippsiella trochoidea . Among the peduncle-feeding dinoflagellates so far reported, G. smaydae is the only grazer that is able to feed on S. trochoidea and one of the two species that are able to feed on H. triquetra . However, G. smaydae did not feed on the raphidophyte Heterosigma akashiwo , the cryptophytes Teleaulax sp. and Rhodomonas salina , and the small dinoflagellate Amphidinium carterae which all the other peduncle-feeding dinoflagellates except Stoeckeria algicida are able to feed on. G. smaydae fed on algal prey using a peduncle after anchoring the prey by a tow filament. All Heterocapsa species supported high positive growth of G. smaydae , S. trochoidea only helped in merely maintaining the predator population. With increasing mean prey concentration, the growth and ingestion rates for G. smaydae on H. rotundata increased rapidly, but became saturated at concentrations of 455 ng C ml − 1 (3500 cells ml − 1 ), while that on H. triquetra increased rapidly, but slowly at concentrations of 293 ng C ml − 1 (945 cells ml − 1 ). The maximum specific growth rates (i.e., mixotrophic growth) of G. smaydae on H. rotundata and H. triquetra were 2.226 d − 1 and 1.053 d − 1 , respectively, at 20 °C under a 14:10 h light–dark cycle of 20 μE m − 2 s − 1 , while the growth rates (i.e., phototrophic growth) under the same light conditions without added prey were 0.005 to − 0.051 d − 1 . The maximum ingestion rates of G. smaydae on H. rotundata and H. triquetra were 1.59 ng C grazer − 1 d − 1 (12.3 cells grazer − 1 d − 1 ) and 0.24 ng C grazer − 1 d − 1 (0.8 cells grazer − 1 d − 1 ), respectively. The calculated grazing coefficients for G. smaydae on co-occurring H. rotundata or H. triquetra were up to 0.23 h − 1 or 0.02 h − 1 , respectively (i.e., 21% or 2% of the population of H. rotundata or H. triquetra was removed by G. smaydae populations in 1 h). The results of the present study suggest that G. smaydae can sometimes have a considerable grazing impact on the population of H. rotundata .

68 citations


Journal ArticleDOI
TL;DR: Environmental RNA and DNA from microbial mats of cold‐seep sediment in Sagami Bay, Japan, are isolated and retrieved eukaryotic small‐subunit ribosomal RNA sequences with polymerase chain reaction methods followed by clone library construction, suggesting that ciliates are active in the environment.
Abstract: Cold seeps are areas of the seafloor where hydrogen sulfide- and methane-rich fluid seepage occurs, often sustaining chemosynthetic ecosystems. It is well known that both archaea and bacteria oxidize sulfides and methane to produce chemical energy and that several endemic animals use this energy to thrive in cold seeps. On the other hand, there is little knowledge regarding diversity and ecology of microbial eukaryotes in this ecosystem. In this study we isolated environmental RNA and DNA from microbial mats of cold-seep sediment in Sagami Bay, Japan, and retrieved eukaryotic small-subunit ribosomal RNA sequences with polymerase chain reaction methods followed by clone library construction. Most RNA-derived clones obtained were from ciliates, although DNA-derived clones were mainly from the fungus Cryptococcus curvatus, suggesting that ciliates are active in the environment. The ciliate sequences were phylogenetically diverse, and represented eight known class lineages as well as undesignated lineages. Because most ciliates are bacterivorous, it is highly likely that the ciliates for which sequences were recovered play a role in the food web of this ecosystem as grazers of microbial mats. In addition, given that the environment studied is under highly reduced (anoxic) conditions, based on the prokaryotic community structure deduced from T-RFLP profiles, the ciliates detected may be obligatory or facultative anaerobes.

66 citations


Journal ArticleDOI
TL;DR: Most fermenting strains tested showed increased wax ester synthesis under anaerobic conditions as well as the increased synthesis of odd‐numbered fatty acids and alcohols suggesting an activation of the mitochondrial fatty acid biosynthesis pathway.
Abstract: Euglena gracilis is able to synthesize adenosine triphosphate under anaerobic conditions through a malonyl-independent fatty acid synthesis leading to wax ester fermentation. Mitochondrial fatty acid synthesis uses acetyl-CoA and propionyl-CoA as C2- and C3-donors for de novo synthesis of even- and odd-numbered fatty acids, respectively. Euglena's wax ester fermentation has only been described in the E. gracilis strain 1224-5/25 Z. Here we investigate eight E. gracilis strains isolated in 1932-1958 from different localities in Europe and two bleached substrains of E. gracilis 1224-5/25, obtained by treatment with streptomycin and ofloxacin, and examine their anaerobic growth, wax ester fermentation, and wax ester composition. Under ambient oxygen levels, all strains accumulated wax esters in concentrations between 0.3% and 3.5% of the dry weight, but the strains revealed marked differences in wax ester accumulation with respect to anaerobic growth. Most fermenting strains tested showed increased wax ester synthesis under anaerobic conditions as well as the increased synthesis of odd-numbered fatty acids and alcohols suggesting an activation of the mitochondrial fatty acid biosynthesis pathway. Addition of the elongase inhibitor flufenacet to the growth medium specifically reduced the accumulation of odd-numbered fatty acids and alcohols and tended to increase the overall yield of anaerobic wax esters.

59 citations


Journal ArticleDOI
TL;DR: Two new trypanosomatid species isolated from the intestinal tract of heteropteran insect hosts were described based on molecular phylogenetic analyses of Spliced Leader (SL) RNA gene repeats, glycosomal glyceraldehyde phosphate dehydrogenase, and small subunit ribosomal RNA genes, as well as by morphology.
Abstract: Two new trypanosomatid species (Euglenozoa, Kinetoplastea) isolated from the intestinal tract of heteropteran insect hosts were described based on molecular phylogenetic analyses of Spliced Leader (SL) RNA gene repeats, glycosomal glyceraldehyde phosphate dehydrogenase, and small subunit ribosomal RNA genes, as well as by morphology. Leptomonas barvae n. sp., from a mirid host Collaria oleosa, was found to represent one of the closest monoxenous (one host) relatives of the dixenous (two hosts) parasitic genus Leishmania. This finding further supports the origin of these dixenous parasites from monoxenous progenitors in the Neotropics. Blastocrithidia largi n. sp., from a largid host Largus cinctus, is among a few members of this genus available in culture. The species is a close relative of Blastocrithidia triatomae and is a member of a new monophyletic phylogenetic group characterized by formation of straphanger cysts.

55 citations


Journal ArticleDOI
TL;DR: To assess diversity among cryptic species of the ciliate genus Strombidium, small subunit ribosomal DNA gene (SSU‐rDNA) was characterized from several lineages that had been identified previously as distinct based on the internal transcribed spacer regions of the rDNA locus.
Abstract: To assess diversity among cryptic species of the ciliate genus Strombidium, we characterized the small subunit ribosomal DNA gene (SSU-rDNA) from several lineages that had been identified previously as distinct based on the internal transcribed spacer regions of the rDNA locus We sequenced SSU-rDNA from four members of a cryptic species cluster of ciliates from tidepools in the North Atlantic Ocean One of the sequences was very similar (>99% similarity) to that of Strombidium apolatum The other three sequences differed from each other and from the closest named species on GenBank by 4–10% We were able to cultivate only one of these three species Here we name it Strombidium rassoulzadegani n sp and describe its morphology, behavior, and feeding The history of observations of tidepool Strombidiidae is discussed along with hypotheses about how they may partition the tidepool niche for coexistence Given the apparent high degree of cryptic diversity of ribotypes in the Strombidiidae, we recommend that no new species descriptions be made without accompanying genetic information

53 citations


Journal ArticleDOI
TL;DR: It is determined that C. mesnili spores grow within the intestinal epithelium where they establish themselves intercellularly, and this high selection pressure placed on hosts supports the importance of C. Mesnili as a model parasite for the study of host–parasite biology in permanent lakes.
Abstract: Caullerya mesnili is a protozoan endoparasite in the gut epithelium of Daphnia, which causes regular epidemics in lakes throughout Europe. Its classification has remained unchanged for over a century, leaving it placed with the Haplosporidia, despite speculation that this position is incorrect. The difficulty in classifying C. mesnili stems from its few known morphological and ecological characteristics, as well as a lack of genetic markers. Here we sequenced the nuclear small subunit (SSU) and internal transcribed spacer rDNA regions of C. mesnili samples from 10 locations. Based on sequence similarities, we suggest the re-classification of C. mesnili to the Ichthyosporea, a class of protists near the animal-fungi divergence. We report average intragenomic variation of 0.75% and 2.27% in the SSU and internal transcribed spacer regions, respectively. From electron micrographs and light microscopy of histological sections we determined that C. mesnili spores grow within the intestinal epithelium where they establish themselves intercellularly. In addition, we confirmed previous accounts regarding the high virulence of this parasite. Caullerya mesnili reduces host lifespan, the number of clutches, and the total number of offspring. This high selection pressure placed on hosts supports the importance of C. mesnili as a model parasite for the study of host-parasite biology in permanent lakes.

Journal ArticleDOI
TL;DR: The presence of these meiosis‐specific genes provides evidence for meiosis, and by implication sex, within this important group of protists.
Abstract: The choanoflagellates are a widespread group of heterotrophic aquatic nanoflagellates, which have recently been confirmed as the sister-group to Metazoa. Asexual reproduction is the only mode of cell division that has been observed within the group; at present the range of reproductive modes, as well as the ploidy level, within choanoflagellates are unknown. The recent discovery of long terminal repeat retrotransposons within the genome of Monosiga brevicollis suggests that this species also has sexual stages in its life cycle because asexual organisms cannot tolerate retrotransposons due to the rapid accumulation of deleterious mutations caused by their transposition. We screened the M. brevicollis genome for known eukaryotic meiotic genes, using a recently established "meiosis detection toolkit" of 19 genes. Eighteen of these genes were identified, none of which appears to be a pseudogene. Four of the genes were also identified in expressed sequence tag data from the distantly related Monosiga ovata. The presence of these meiosis-specific genes provides evidence for meiosis, and by implication sex, within this important group of protists.

Journal ArticleDOI
TL;DR: It is concluded, based on both morphological and molecular evidence, that Cochlodinium is only distantly related to Gymnod inium.
Abstract: The external and internal ultrastructure of the harmful unarmored dinoflagellate Cochlodinium polykrikoides Margalef has been examined with special reference to the apical groove and three-dimensional structure of the flagellar apparatus. The apical groove is U-shaped and connected to the anterior sulcal extension on the dorsal side of the epicone. The eyespot is located dorsally and composed of two layers of globules situated within the chloroplast. A narrow invagination of the plasma membrane is associated with the eyespot. The nuclear envelope has normal nuclear pores similar to other eukaryotes but different from the Gymnodinium group with diagnostic nuclear chambers. The longitudinal and transverse basal bodies are separated by approximately 0.5-1.0 microm and interconnected directly by a striated basal body connective and indirectly by microtubular and fibrous structures. Characteristic features of the flagellar apparatus are as follows: (1) a nuclear extension projects to the R1 (longitudinal microtubular root) and is connected to the root by thin fibrous material; (2) fibrillar structures are associated with the longitudinal and transverse flagellar canal; and (3) a striated ventral connective extends toward the posterior end of the cell along the longitudinal flagellar canal. We conclude, based on both morphological and molecular evidence, that Cochlodinium is only distantly related to Gymnodinium.

Journal ArticleDOI
TL;DR: Dinospores of T. acutus are small transparent cells having a sharply pointed episome, conspicuous eyespot, posteriorly positioned nucleus with condensed chromosomes, and rigid form that may be supported by delicate thecal plates, and failure to differentiate into a gonocyte and a trophocyte at the first sporogenic division.
Abstract: The dinoflagellate Tintinnophagus acutus n. g., n. sp., an ectoparasite of the ciliate Tintinnopsis cylindrica Daday, superficially resembles Duboscquodinium collini Grasse, a parasite of Eutintinnus fraknoii Daday. Dinospores of T. acutus are small transparent cells having a sharply pointed episome, conspicuous eyespot, posteriorly positioned nucleus with condensed chromosomes, and rigid form that may be supported by delicate thecal plates. Dinospores attach to the host via a feeding tube, losing their flagella, sulcus, and girdle to become spherical or ovoid cells. The trophont of T. acutus feeds on the host for several days, increasing dramatically in size before undergoing sporogenesis. Successive generations of daughter sporocytes are encompassed in an outer membrane or cyst wall, a feature not evident in trophonts. Tintinnophagus acutus differs from D. collini in host species, absence of a second membrane surrounding pre-sporogenic stages, and failure to differentiate into a gonocyte and a trophocyte at the first sporogenic division. Phylogenetic analyses based on small subunit (SSU) ribosomal DNA (rDNA) sequences placed T. acutus and D. collini in the class Dinophyceae, with T. acutus aligned loosely with Pfiesteria piscicida and related species, including Amyloodinium ocellatum, a parasite of fish, and Paulsenella vonstoschii, a parasite of diatoms. Dubosquodinium collini nested in a clade composed of several Scrippsiella species and Peridinium polonicum. Tree construction using longer rDNA sequences (i.e. SSU through partial large subunit) strengthened the placement of T. acutus and D. collini within the Dinophyceae.

Journal ArticleDOI
TL;DR: A population of F. ehrenbergii from the coastal waters of Incheon, Korea, was isolated and its infraciliature was revealed using the protargol staining method, showing the number of CM and somatic kineties can be used as key characteristics for identification of Favella species.
Abstract: The identification of Favella ehrenbergii, a marine planktonic ciliate, has largely been based on its lorica features. This approach is potentially problematic given the polymorphic lorica during this organism's life cycle. We isolated a population of F. ehrenbergii from the coastal waters of Incheon, Korea, and revealed its infraciliature using the protargol staining method. Phylogenetic analysis based on small subunit rRNA gene sequences was also performed. Results showed that this population possessed 16 collar membranelles (CM) and about 100 somatic kineties. These features are highly conserved, even in later dividers. As such, the number of CM and somatic kineties can be used as key characteristics for identification of Favella species.

Journal ArticleDOI
TL;DR: The results support the recognition of two major clades within Peritrichia, and suggest that these two clades should be formally recognized as orders, and propose the names Vorticellida and Operculariida to designate them.
Abstract: We have generated 18S rRNA sequences for peritrichs collected in Brazil, including four Opercularia species, two different populations of Epistylis plicatilis (one epibiont and another free-living), and one additional Epistylis species. Our Opercularia species clustered with the previously available Opercularia microdiscum, corroborating the monophyly of this genus. The Epistylis sampled here clustered with previously sequenced species of this genus. The two populations of E. plicatilis collected in Brazil clustered closely together despite their different ecological contexts, whereas both were very divergent from the sample assigned to the same species previously sampled in China. If affirmed by additional morphological corroboration of species assignment, this observation would indicate that samples from different continents morphologically allocated in the same species may in fact belong to distant evolutionary lineages. More broadly, our results support the recognition of two major clades within Peritrichia. Given the robustness of their support, we suggest that these two clades should be formally recognized as orders, and propose the names Vorticellida and Operculariida to designate them. Furthermore, Epistylis species occurred in both orders, tending to occupy basal positions. This suggests that characters used to define this genus may be plesiomorphic for Peritrichia, so that Epistylis may in fact represent an assemblage of basal species retaining ancestral features.

Journal ArticleDOI
TL;DR: In this article, the authors examined trichomonas vaginalis ultrathin sections using transmission electron microscopy and compared the size and area of the cell and hydrogenosomes.
Abstract: Trichomonas vaginalis is the most common sexually transmitted protozoan in the world and its resistance to metronidazole is increasing. The purpose of this study was to demonstrate that clinical metronidazole resistance in T. vaginalis does not occur via the same mechanism as laboratory-induced metronidazole resistance--that is, via hydrogenosome down sizing. Ultrathin sections of this parasite were examined using transmission electron microscopy and the size and area of the cell and hydrogenosomes were compared between drug-resistant laboratory lines and clinically resistant isolates. Clinical metronidazole-resistant T. vaginalis had similar-sized hydrogenosomes as a metronidazole-sensitive isolate. Inducing metronidazole resistance in both of these isolates caused down sizing of hydrogenosomes. Inducing toyocamycin resistance did not cause any ultrastructural changes to the cell or to the hydrogenosome. No correlation between hydrogenosome number and the drug-resistant status of T. vaginalis isolates and lines was observed. This report demonstrates that clinical metronidazole resistance is not associated with down-sized hydrogenosomes, thus indicating that an alternative resistance mechanism is used by T. vaginalis.

Journal ArticleDOI
TL;DR: The ability of this insect pathogen to cause disease in immune‐compromised mammalian hosts is illustrated by a biopsy proven case of microsporidial infection of the false vocal cords in a 69‐yr‐old male with a history of chronic lymphocytic leukemia.
Abstract: We describe a biopsy proven case of microsporidial infection of the false vocal cords in a 69-yr-old male with a history of chronic lymphocytic leukemia. The patient had hoarseness for several weeks before his admission to the hospital for shortness of breath. He had received chemotherapy with fludarabine 6 wk before this hospital admission. A biopsy of vocal cord nodules demonstrated an organism that was identified as Anncaliia algerae by electron microscopy. Molecular analysis of the small subunit RNA gene amplified by polymerase chain reaction further confirmed the identification of this organism as A. algerae. This case illustrates the ability of this insect pathogen to cause disease in immune-compromised mammalian hosts.

Journal ArticleDOI
TL;DR: Phylogenetic trees based on the SSU rRNA gene sequence for both organisms indicate that Epiphyllum is a distinct genus and occupies a basal position in the Pleurostomatida clade, which has a close relationship with Litonotus and Spiroloxophyllum.
Abstract: The morphology, infraciliature, and small subunit (SSU) rRNA gene sequences of two new pleurostomatid ciliates, Epiphyllum shenzhenense n. sp. and Loxophyllum spirellum n. sp., isolated from a mangrove wetland near Shenzhen, South China, were investigated. Epiphyllum shenzhenense n. sp. is morphologically characterized by leaf-shaped cell about 150 x 35 microm in vivo, usually with four contractile vacuoles, 20-29 right kineties and 10-26 left kineties, ca. four macronuclear nodules, and two types of extrusomes (i.e. short spindle-shaped and long bar-shaped). As a new species, L. spirellum n. sp. is distinguished from its congeners by its posterior dorsal margin twisted onto the left side, the distribution of extrusomes (evenly arranged along the oral slit, the posterior end, and clustered to 7-13 warts on dorsal margin), the subterminally positioned contractile vacuole, the number of kineties (8-10 on right side, 4-5 on left side), and its genetic distance from congeners. Phylogenetic trees based on the SSU rRNA gene sequence for both organisms were constructed, which indicate that Epiphyllum is a distinct genus and occupies a basal position in the Pleurostomatida clade; L. spirellum n. sp. falls well into the Loxophyllum clade, which has a close relationship with Litonotus and Spiroloxophyllum.

Journal ArticleDOI
TL;DR: Bayesian and maximum likelihood analyses based on large subunit rDNA placed Sphaerodinium as a sister taxon to a group of woloszynskioids and relatively far from Peridinium and its allies.
Abstract: Sphaerodinium cracoviense was collected near Cracow, Poland, and analysed by light microscopy, scanning electron microscopy, and serial-section transmission electron microscopy. Thecae showed a peridinioid type of plate arrangement with unusual numbers in the anterior intercalary and postcingular plate series: 4 and 6, respectively. The apical pore of S. cracoviense differed from the typical arrangement seen in many thecate forms and included a furrow with knob-like protuberances reminiscent of the apical area of some woloszynskioids. The flagellar apparatus included the three microtubular roots that extend to the left of the basal bodies and a striated root connective between the transverse striated root and the longitudinal microtubular root. Both the single-stranded root that associates with the right side of the longitudinal basal body in peridinioids and gonyaulacoids, and the layered connective typical of peridinioids were absent. The eyespot was formed by a layer of vesicle-contained crystal-like units underlain by layers of variably fused globules not bounded by membranes, and represents a novel type. The pusular system included a long canal with a dilated inner portion with radiating tubules. Bayesian and maximum likelihood analyses based on large subunit rDNA placed Sphaerodinium as a sister taxon to a group of woloszynskioids and relatively far from Peridinium and its allies.

Journal ArticleDOI
TL;DR: The genetic variation among 128 isolates of Monilinia fructicola from China was analyzed using Inter-Simple Sequence Repeat (ISSR) markers and compared with those of samples from California, USA and New Zealand as mentioned in this paper.
Abstract: The genetic variation among 128 isolates of Monilinia fructicola (Fungi, Ascomycota, Helotiales) from China was analyzed using Inter-Simple Sequence Repeat (ISSR) markers and compared with those of samples from California, USA and New Zealand. A total of 72 reproducible DNA fragments were scored, of which 87.5% (63/72) were polymorphic. The Nei's gene diversity and Shannon's diversity indices of three Chinese regional populations were very similar to that from California. However, several differences were observed among geographic populations of M. fructicola from both within China and between China and California. The analysis of molecular variance (AMOVA) of isolates from different geographic locations suggested that most of the observed genetic variation was found within populations. Results of this study are inconsistent with the hypothesis that the Chinese populations of M. fructicola were derived from a single or few recent migrants from other countries. Instead, our results suggest that M. fructicola has been in China long before its first official recording in 2003.

Journal ArticleDOI
TL;DR: It is found that unicellular ciliates Tetrahymena thermophila (Tt) and Paramecium tetraurelia (Pt) possess many more Rab genes in their genome than the 64 HsRab genes in the human genome, suggesting the conservation of ciliate‐specific Rab.
Abstract: Small GTPase Rab (products of ras genes from rat brain) is a widely conserved molecular switch among eukaryotes and regulates membrane trafficking pathways. It is generally considered that the number of Rab encoded in the genome correlates with multicellularity; however, we found that unicellular ciliates Tetrahymena thermophila (Tt) and Paramecium tetraurelia (Pt) possess many more Rab genes in their genome than the 64 HsRab genes in the human genome. We succeeded in isolating 86 cDNA clones of 88 TtRab genes in the Tetrahymena genome. By comparing the amino acid sequence of Rab in humans and the budding yeast Saccharomyces cerevisiae, 42 TtRab belonged to subfamilies functionally characterized and designated as conventional Rab, while the remaining 44 TtRab were considered to be species-specific. To examine the diversity of Rab in ciliates, we searched for Rab genes in the genome database of P. tetraurelia. Overall, 229 PtRab genes were found and categorized as 157 conventional and 72 species-specific PtRab, respectively. Among them, nine PtRab genes showed high homology to seven TtRab, suggesting the conservation of ciliate-specific Rab. These data suggested that the range of Rab is markedly amplified and diversified in ciliates, which may support the elaborate cellular structures and vigorous phagocytosis of those organisms.

Journal ArticleDOI
TL;DR: The polyphyletic and redundant genus Hyperamoeba is abandoned, and the implications for the ecology and evolution of Myxogastria, whose amoeboflagellates are more widespread than previous inventories supposed, being now found in freshwater and even marine environments.
Abstract: The genus Hyperamoeba Alexeieff, 1923 was established to accommodate an aerobic amoeba exhibiting three life stages-amoeba, flagellate, and cyst. As more species/strains were isolated, it became increasingly evident from small subunit (SSU) gene phylogenies and ultrastructure that Hyperamoeba is polyphyletic and its species occupy different positions within the class Myxogastria. To pinpoint Hyperamoeba strains within other myxogastrid genera we aligned numerous myxogastrid sequences: whole small subunit ribosomal (SSU or 18S rRNA) gene for 50 dark-spored (i.e. Stemonitida and Physarida) Myxogastria (including a new "Hyperamoeba"/Didymium sequence) and a approximately 400-bp SSU fragment for 147 isolates assigned to 10 genera of the order Physarida. Phylogenetic analyses show unambiguously that the type species Hyperamoeba flagellata is a Physarum (Physarum flagellatum comb. nov.) as it nests among other Physarum species as robust sister to Physarum didermoides. Our trees also allow the following allocations: five Hyperamoeba strains to the genus Stemonitis; Hyperamoeba dachnaya, Pseudodidymium cryptomastigophorum, and three other Hyperamoeba strains to the genus Didymium; and two further Hyperamoeba strains to the family Physaridae. We therefore abandon the polyphyletic and redundant genus Hyperamoeba. We discuss the implications for the ecology and evolution of Myxogastria, whose amoeboflagellates are more widespread than previous inventories supposed, being now found in freshwater and even marine environments.

Journal ArticleDOI
TL;DR: The underlying genetic diversity in C. polypinum is greater than what its morphology suggests, indicating that morphology and genetics are not congruent in this organism.
Abstract: Protist diversity is currently a much debated issue in eukaryotic microbiology. Recent evidence suggests that morphological and genetic diversity might be decoupled in some groups of protists, including ciliates, and that these organisms might be much more diverse than their morphology implies. We sought to assess the genetic and morphological diversity of Carchesium polypinum, a widely distributed peritrich ciliate. The mitochondrial marker cytochrome c oxidase subunit I and the nuclear small subunit ribosomal RNA were used to examine genetic diversity. For the morphological assessment, live microscopy and Protargol staining were used. The mitochondrial marker revealed six robust, deeply diverging, and strongly supported clades, while the nuclear gene was congruent for three of these clades. There were no major differences among individuals from the different clades in any of the morphological features examined. Thus, the underlying genetic diversity in C. polypinum is greater than what its morphology suggests, indicating that morphology and genetics are not congruent in this organism. Furthermore, because the clades identified by the mitochondrial marker are so genetically diverse and are confirmed by a conserved nuclear marker in at least three cases, we propose that C. polypinum be designated as a "cryptic species complex." Our results provide another example where species diversity can be underestimated in microbial eukaryotes when using only morphological criteria to estimate species richness.

Journal ArticleDOI
TL;DR: Monitoring the presence of Acanthamoeba in hospital units, as well as evaluating the pathogenicity of the isolates, can be an approach to alert the health professionals to improve the disinfection procedures and minimize the risks of treating this problematic disease caused by this protozoan.
Abstract: Occurrence of Acanthamoeba in the hospital environment may represent a health risk for patients, since these organisms can cause severe opportunistic illness, such as keratitis, and also can harbor pathogenic agents. We analyzed the dust from some environments of a public hospital in Curitiba, Parana State, Brazil. Two distinct populations of Acanthamoeba were isolated in five locations and morphologically classified as group I and group II according to Pussard and Pons. Isolates were identified as Acanthamoeba by PCR using primers to amplify a region of 18S rDNA, which showed variation in the product length among the isolates. A cloned culture of group II showed greater growth at 37 degrees C and in media with 0.1, 0.5, and 1.0 M mannitol, which are the physiological characteristics of pathogenic Acanthamoeba. Monitoring the presence of Acanthamoeba in hospital units, as well as evaluating the pathogenicity of the isolates, can be an approach to alert the health professionals to improve the disinfection procedures and minimize the risks of treating this problematic disease caused by this protozoan.

Journal ArticleDOI
TL;DR: The morphological and morphogenetic similarities of loxocephalids to hymenostomes may be plesiomorphies, and the conflicting mix of scuticociliate andhymenostome characteristics seen in loxOcephalids may result from differing rates of character evolution.
Abstract: The marine scuticociliate Paratetrahymena parawassi n. sp. is described on the basis of morphology, especially infraciliature, and the sequence of its small subunit (SSU) rRNA gene to become the second known member of its genus. Paratetrahymena and other ciliates in the order Loxocephalida possess a mixture of morphological and morphogenetic features characteristic of the subclasses Hymenostomatia and Scuticociliatia. Accordingly, we used SSU rRNA sequences to analyze the phylogeny of Paratetrahymena and three other loxocephalid genera. Paratetrahymena and Cardiostomatella vermiformis formed a moderately well-supported clade that diverged at a deep level from all other scuticociliates, supporting separation of loxocephalids from other scuticociliates as a suprafamilial taxon. Sathrophilus holtae was a sister taxon to Paratetrahymena and Cardiostomatella in a poorly supported, unresolved relationship; nevertheless, association of all three genera into a single clade was supported by an approximately unbiased (AU) test. Any association of these genera singly or as a group with the Hymenostomatia was rejected decisively by AU tests and by a complete absence in the loxocephalids of the unique nucleotide identities that distinguish hymenostomes. Therefore, the morphological and morphogenetic similarities of loxocephalids to hymenostomes may be plesiomorphies, and the conflicting mix of scuticociliate and hymenostome characteristics seen in loxocephalids may result from differing rates of character evolution. Dexiotrichides pangi and Urocentrum, which is currently classified as a peniculid, formed a small clade that associated with hymenostomes and peritrichs. Monophyly of the Loxocephalida with Dexiotrichides and/or Urocentrum included was not rejected by AU; however, inclusion of Urocentrum in the Peniculia was rejected by AU tests. A hypothesis is offered to explain the lack of resolution of loxocephalid ciliates and Urocentrum in phylogenetic trees, namely that their phylogenetic positions are influenced by a combination of heterogeneous data and long-branch attraction caused by poor representation of taxa in analyses. The well-known genus Cyclidium, a member of the order Pleuronematida, was revealed to be polyphyletic as a byproduct of our analyses of loxocephalids. In particular, Cyclidium porcatum appears to fall outside the clade containing typical members of the subclass Scuticociliatia and thus invites investigation as a possible member of the order Loxocephalida.

Journal ArticleDOI
TL;DR: Troglocorys cava n.
Abstract: Troglocorys cava n. g., n. sp. is described from the feces of wild eastern chimpanzee, Pan troglodytes schweinfurthii, in Uganda. This new species has a spherical body with a frontal lobe, a long vestibulum, a cytoproct located at the posterior dorsal side of the body, an ovoid macronucleus, a contractile vacuole near the cytoproct, and a large concavity on the left surface of the body. Buccal ciliature is non-retractable and consists of three ciliary zones: an adoral zone surrounding the vestibular opening, a dorso-adoral zone extending transversely at the basis of the frontal lobe, and a vestibular zone longitudinally extending in a gently spiral curve to line the surface of the vestibulum. Two non-retractable somatic ciliary zones comprise arches over the body surface: a short dorsal ciliary arch extending transversely at the basis of the frontal lobe and a wide C-shaped left ciliary arch in the left concavity. Because of the presence of three ciliary zones in the non-retractable buccal ciliature, the present genus might be a member of the family Blepharocorythidae, but the large left concavity and the C-shaped left ciliary arch are unique, such structures have never been described from other blepharocorythids.

Journal ArticleDOI
TL;DR: Two Lower Cretaceous testate amoebae that are clearly distinguishable from modern species are described that are preserved in highly fossiliferous amber pieces from the Upper Albian of Archingeay/Les Nouillers.
Abstract: Amber-preserved shells of testate amoebae often provide as many diagnostic features as the tests of modern taxa. Most of these well-preserved microfossils are morphologically assignable to modern species indicating either evolutionary stasis or convergent evolution. Here we describe two Lower Cretaceous testate amoebae that are clearly distinguishable from modern species. Centropyxis perforata n. sp. and Leptochlamys galippei n. sp. possessed perforate shells that were previously unknown in these genera. They are preserved in highly fossiliferous amber pieces from the Upper Albian (ca. 100 million years old) of Archingeay/Les Nouillers (Charente-Maritime, southwestern France). Syninclusions of soil and litter dwelling arthropods and microorganisms indicate a limnetic-terrestrial microhabitat at the floor of a coastal conifer forest.

Journal ArticleDOI
TL;DR: Comparisons carried out using transmission and scanning electron microscopy showed morphological similarities between the microorganisms from the two geographically distant reefs, and suggested that these microorganisms are stramenopile protists and in particular thraustochytrids.
Abstract: The surfaces of massive corals of the genus Favia from Eilat, Red Sea, and from Heron Island, Great Barrier Reef, are covered by a layer of eukaryotic microorganisms. These microorganisms are embedded in the coral mucus and tissue. In the Gulf of Eilat, the prevalence of corals covered by patches of eukaryotic microorganisms was positively correlated with a decrease in water temperatures (from 25-28 degrees C in the summer to 20-23 degrees C in winter). Comparisons carried out using transmission and scanning electron microscopy showed morphological similarities between the microorganisms from the two geographically distant reefs. The microorganisms found on and in the tissues were approximately 5-15 mu m in diameter, surrounded by scales in their cell wall, contained a nucleus, and included unique auto-florescent coccoid bodies of approximately 1 mu m. Such morphological characters suggested that these microorganisms are stramenopile protists and in particular thraustochytrids. Molecular analysis, carried out using specific primers for stramenopile 18S rRNA genes, revealed that 90% (111/123) of the clones in the gene libraries were from the Thraustochytriidae. The dominant genera in this family were Aplanochytrium sp., Thraustochytrium sp., and Labyrinthuloides sp. Ten stramenopile strains were isolated and cultured from the corals. Some strains showed >= 97% similarity to clones derived from libraries of mucus-associated microorganisms retrieved directly from these corals. Fatty acid characterization of one of the prevalent strains revealed a high percentage of polyunsaturated fatty acids, including omega-3. The possible association of these stramenopiles in the coral holobiont appeared to be a positive one.

Journal ArticleDOI
TL;DR: Hydrogen production was inhibited by 62% immediately after adding 150 μM KCN to the reaction vessel, and by 50% at 0.24‰μM CO, suggesting that an Fe‐only hydrogenase is responsible for H2 production, and metronidazole may be reduced by an enzyme of the H2 pathway, thus competing for electrons with H+.
Abstract: The diplomonad fish parasite Spironucleus vortens causes major problems in aquaculture of ornamental fish, resulting in severe economic losses in the fish farming industry. The strain of S. vortens studied here was isolated from an angelfish and grown in Keister's modified TY-I-S33 medium. A membrane-inlet mass spectrometer was employed to monitor, in a closed system, O2, CO2, and H2. When introduced into air-saturated buffer, S. vortens rapidly consumed O2 at the average rate of 62±4 nmol/min/107 cells and CO2 was produced at 75±11 nmol/min/107 cells. Hydrogen production began under microaerophilic conditions ([O2]=33.±15 μM) at a rate of 77±7 nmol/min/107 cells. Hydrogen production was inhibited by 62% immediately after adding 150 μM KCN to the reaction vessel, and by 50% at 0.24 μM CO, suggesting that an Fe-only hydrogenase is responsible for H2 production. Metronidazole (1 mM) inhibited H2 production by 50%, while CO2 production was not affected. This suggests that metronidazole may be reduced by an enzyme of the H2 pathway, thus competing for electrons with H+.