scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Fungi in 2020"


Journal ArticleDOI
TL;DR: The epidemiology of mucormycosis is evolving as new immunomodulating agents are used in the treatment of cancer and autoimmune diseases, and as the modern diagnostic tools lead to the identification of previously uncommon genera/species such as Apophysomyces or Saksenaea complex.
Abstract: Mucormycosis is an angioinvasive fungal infection, due to fungi of the order Mucorales. Its incidence cannot be measured exactly, since there are few population-based studies, but multiple studies have shown that it is increasing. The prevalence of mucormycosis in India is about 80 times the prevalence in developed countries, being approximately 0.14 cases per 1000 population. Diabetes mellitus is the main underlying disease globally, especially in low and middle-income countries. In developed countries the most common underlying diseases are hematological malignancies and transplantation. Τhe epidemiology of mucormycosis is evolving as new immunomodulating agents are used in the treatment of cancer and autoimmune diseases, and as the modern diagnostic tools lead to the identification of previously uncommon genera/species such as Apophysomyces or Saksenaea complex. In addition, new risk factors are reported from Asia, including post-pulmonary tuberculosis and chronic kidney disease. New emerging species include Rhizopus homothallicus, Thamnostylum lucknowense, Mucor irregularis and Saksenaea erythrospora. Diagnosis of mucormycosis remains challenging. Clinical approach to diagnosis has a low sensitivity and specificity, it helps however in raising suspicion and prompting the initiation of laboratory testing. Histopathology, direct examination and culture remain essential tools, although the molecular methods are improving. The internal transcribed spacer (ITS) region is the most widely sequenced DNA region for fungi and it is recommended as a first-line method for species identification of Mucorales. New molecular platforms are being investigated and new fungal genetic targets are being explored. Molecular-based methods have gained acceptance for confirmation of the infection when applied on tissues. Methods on the detection of Mucorales DNA in blood have shown promising results for earlier and rapid diagnosis and could be used as screening tests in high-risk patients, but have to be validated in clinical studies. More, much needed, rapid methods that do not require invasive procedures, such as serology-based point-of-care, or metabolomics-based breath tests, are being developed and hopefully will be evaluated in the near future.

337 citations


Journal ArticleDOI
TL;DR: The treatment of CAPA is complicated by drug–drug interactions associated with broad spectrum azoles, renal tropism and damage caused by SARS-CoV-2, which may challenge the use of liposomal amphotericin B, as well as the emergence of azole-resistance.
Abstract: Like severe influenza, coronavirus disease-19 (COVID-19) resulting in acute respiratory distress syndrome (ARDS) has emerged as an important disease that predisposes patients to secondary pulmonary aspergillosis, with 35 cases of COVID-19 associated pulmonary aspergillosis (CAPA) published until June 2020. The release of danger-associated molecular patterns during severe COVID-19 results in both pulmonary epithelial damage and inflammatory disease, which are predisposing risk factors for pulmonary aspergillosis. Moreover, collateral effects of host recognition pathways required for the activation of antiviral immunity may, paradoxically, contribute to a highly permissive inflammatory environment that favors fungal pathogenesis. Diagnosis of CAPA remains challenging, mainly because bronchoalveolar lavage fluid galactomannan testing and culture, which represent the most sensitive diagnostic tests for aspergillosis in the ICU, are hindered by the fact that bronchoscopies are rarely performed in COVID-19 patients due to the risk of disease transmission. Similarly, autopsies are rarely performed, which may result in an underestimation of the prevalence of CAPA. Finally, the treatment of CAPA is complicated by drug–drug interactions associated with broad spectrum azoles, renal tropism and damage caused by SARS-CoV-2, which may challenge the use of liposomal amphotericin B, as well as the emergence of azole-resistance. This clinical reality creates an urgency for new antifungal drugs currently in advanced clinical development with more promising pharmacokinetic and pharmacodynamic profiles.

274 citations


Journal ArticleDOI
TL;DR: Given the continuing rise in development of resistance to the limited number of traditional antifungal agents, novel therapeutic strategies are directed toward identifying bioactive compounds that target pathogenic mechanisms to prevent C. albicans transition from harmless commensal to pathogen.
Abstract: Oral candidiasis, commonly referred to as “thrush,” is an opportunistic fungal infection that commonly affects the oral mucosa. The main causative agent, Candida albicans, is a highly versatile commensal organism that is well adapted to its human host; however, changes in the host microenvironment can promote the transition from one of commensalism to pathogen. This transition is heavily reliant on an impressive repertoire of virulence factors, most notably cell surface adhesins, proteolytic enzymes, morphologic switching, and the development of drug resistance. In the oral cavity, the co-adhesion of C. albicans with bacteria is crucial for its persistence, and a wide range of synergistic interactions with various oral species were described to enhance colonization in the host. As a frequent colonizer of the oral mucosa, the host immune response in the oral cavity is oriented toward a more tolerogenic state and, therefore, local innate immune defenses play a central role in maintaining Candida in its commensal state. Specifically, in addition to preventing Candida adherence to epithelial cells, saliva is enriched with anti-candidal peptides, considered to be part of the host innate immunity. The T helper 17 (Th17)-type adaptive immune response is mainly involved in mucosal host defenses, controlling initial growth of Candida and inhibiting subsequent tissue invasion. Animal models, most notably the mouse model of oropharyngeal candidiasis and the rat model of denture stomatitis, are instrumental in our understanding of Candida virulence factors and the factors leading to host susceptibility to infections. Given the continuing rise in development of resistance to the limited number of traditional antifungal agents, novel therapeutic strategies are directed toward identifying bioactive compounds that target pathogenic mechanisms to prevent C. albicans transition from harmless commensal to pathogen.

174 citations


Journal ArticleDOI
TL;DR: Despite the marked immune dysregulation in COVID-19, no prominent defects have been reported in immune cells that are critically required for immunity to Candida, which suggests that relevant clinical factors, including prolonged ICU stays, central venous catheters, and broad-spectrum antibiotic use, may be key factors causing COVIDs patients to develop IYIs.
Abstract: The recent global pandemic of COVID-19 has predisposed a relatively high number of patients to acute respiratory distress syndrome (ARDS), which carries a risk of developing super-infections. Candida species are major constituents of the human mycobiome and the main cause of invasive fungal infections, with a high mortality rate. Invasive yeast infections (IYIs) are increasingly recognized as s complication of severe COVID-19. Despite the marked immune dysregulation in COVID-19, no prominent defects have been reported in immune cells that are critically required for immunity to Candida. This suggests that relevant clinical factors, including prolonged ICU stays, central venous catheters, and broad-spectrum antibiotic use, may be key factors causing COVID-19 patients to develop IYIs. Although data on the comparative performance of diagnostic tools are often lacking in COVID-19 patients, a combination of serological and molecular techniques may present a promising option for the identification of IYIs. Clinical awareness and screening are needed, as IYIs are difficult to diagnose, particularly in the setting of severe COVID-19. Echinocandins and azoles are the primary antifungal used to treat IYIs, yet the therapeutic failures exerted by multidrug-resistant Candida spp. such as C. auris and C. glabrata call for the development of new antifungal drugs with novel mechanisms of action.

159 citations


Journal ArticleDOI
TL;DR: The current state of the understanding of the epidemiology, host response, fungal pathogenicity mechanisms, impact of the microbiome, and novel approaches to treatment of this most prevalent human candidal infection are covered.
Abstract: Candida albicans, along with other closely related Candida species, are the primary causative agents of vulvovaginal candidiasis (VVC)—a multifactorial infectious disease of the lower female reproductive tract resulting in pathologic inflammation. Unlike other forms of candidiasis, VVC is a disease of immunocompetent and otherwise healthy women, most predominant during their child-bearing years. While VVC is non-lethal, its high global incidence and profound negative impact on quality-of-life necessitates further understanding of the host and fungal factors that drive disease pathogenesis. In this review, we cover the current state of our understanding of the epidemiology, host response, fungal pathogenicity mechanisms, impact of the microbiome, and novel approaches to treatment of this most prevalent human candidal infection. We also offer insight into the latest advancements in the VVC field and identify important questions that still remain.

140 citations


Journal ArticleDOI
TL;DR: Antifungal agents currently in various stages of clinical development, including novel first-in-class agents such as ibrexafungerp, an oral glucan synthase inhibitor with activity against various resistant fungal isolates, and olorofim, a pyrimidine synthesis inhibitor with a broad spectrum of activity and oral formulation, are reviewed.
Abstract: Invasive fungal infections are associated with significant morbidity and mortality, and their management is restricted to a variety of agents from five established classes of antifungal medication. In practice, existing antifungal agents are often constrained by dose-limiting toxicities, drug interactions, and the routes of administration. An increasing prevalence of invasive fungal infections along with rising rates of resistance and the practical limitations of existing agents has created a demand for the development of new antifungals, particularly those with novel mechanisms of action. This article reviews antifungal agents currently in various stages of clinical development. New additions to existing antifungal classes will be discussed, including SUBA-itraconazole, a highly bioavailable azole, and amphotericin B cochleate, an oral amphotericin formulation, as well as rezafungin, a long-acting echinocandin capable of once-weekly administration. Additionally, novel first-in-class agents such as ibrexafungerp, an oral glucan synthase inhibitor with activity against various resistant fungal isolates, and olorofim, a pyrimidine synthesis inhibitor with a broad spectrum of activity and oral formulation, will be reviewed. Various other innovative antifungal agents and classes, including MGCD290, tetrazoles, and fosmanogepix, will also be examined.

106 citations


Journal ArticleDOI
TL;DR: This review provides a short description of the history and clinical use of polyenes, and focusses on the ongoing debate concerning their mode of action, the diversity of resistance mechanisms discovered to date and the most recent trends in polyene resistance development.
Abstract: Although polyenes were the first broad spectrum antifungal drugs on the market, after 70 years they are still the gold standard to treat a variety of fungal infections. Polyenes such as amphotericin B have a controversial image. They are the antifungal drug class with the broadest spectrum, resistance development is still relatively rare and fungicidal properties are extensive. Yet, they come with a significant host toxicity that limits their use. Relatively recently, the mode of action of polyenes has been revised, new mechanisms of drug resistance were discovered and emergent polyene resistant species such as Candida auris entered the picture. This review provides a short description of the history and clinical use of polyenes, and focusses on the ongoing debate concerning their mode of action, the diversity of resistance mechanisms discovered to date and the most recent trends in polyene resistance development.

95 citations


Journal ArticleDOI
TL;DR: The main genetic divergencies between S. boulardii and S. cerevisiae are reviewed as a strategy to uncover the ability to adapt to the host physiological conditions by the probiotic.
Abstract: Saccharomyces boulardii is a probiotic yeast often used for the treatment of GI tract disorders such as diarrhea symptoms. It is genetically close to the model yeast Saccharomyces cerevisiae and its classification as a distinct species or a S. cerevisiae variant has long been discussed. Here, we review the main genetic divergencies between S. boulardii and S. cerevisiae as a strategy to uncover the ability to adapt to the host physiological conditions by the probiotic. S. boulardii does possess discernible phenotypic traits and physiological properties that underlie its success as probiotic, such as optimal growth temperature, resistance to the gastric environment and viability at low pH. Its probiotic activity has been elucidated as a conjunction of multiple pathways, ranging from improvement of gut barrier function, pathogen competitive exclusion, production of antimicrobial peptides, immune modulation, and trophic effects. This review summarizes the participation of S. boulardii in these mechanisms and the multifactorial nature by which this yeast modulates the host microbiome and intestinal function.

91 citations


Journal ArticleDOI
TL;DR: A patient with putative CAPA due to Aspergillus fumigatus is presented with identification of a triazole-resistant isolate during therapy, and the challenges faced in the management of these cases are underline.
Abstract: COVID-19-associated pulmonary aspergillosis (CAPA) is a recently described disease entity affecting patients with severe pulmonary abnormalities treated in intensive care units. Delays in diagnosis contribute to a delayed start of antifungal therapy. In addition, the emergence of resistance to triazole antifungal agents puts emphasis on early surveillance for azole-resistant Aspergillus species. We present a patient with putative CAPA due to Aspergillus fumigatus with identification of a triazole-resistant isolate during therapy. We underline the challenges faced in the management of these cases, the importance of early diagnosis and need for surveillance given the emergence of triazole resistance.

87 citations


Journal ArticleDOI
TL;DR: Favorable drug-drug interaction, tolerability, and wide tissue distribution profiles are observed making fosmanogepix an attractive option for the treatment of invasive fungal infections.
Abstract: Fosmanogepix is a first-in-class antifungal currently in Phase 2 clinical trials for the treatment of invasive fungal infections caused by Candida, Aspergillus and rare molds. Fosmanogepix is the N-phosphonooxymethylene prodrug of manogepix, an inhibitor of the fungal enzyme Gwt1. Manogepix demonstrates broad spectrum in vitro activity against yeasts and molds, including difficult to treat pathogens. Because of its novel mechanism of action, manogepix retains potency against many resistant strains including echinocandin-resistant Candida and azole-resistant Aspergillus. Manogepix is also active against pathogens that demonstrate intrinsic resistance to other drug classes, such as Scedosporium, Lomentospora prolificans, and Fusarium with variable activity against Mucorales. Fosmanogepix demonstrates significant in vivo efficacy in mouse and rabbit disseminated infection models due to C. albicans, C. glabrata, C. auris, C. tropicalis, Coccidioides immitis, and F. solani as well as pulmonary infection models of A. fumigatus, A. flavus, S. prolificans, S. apiospermum and Rhizopus arrhizus. Clinical trials demonstrated high oral bioavailability (>90%), enabling switching between fosmanogepix intravenous and oral formulations without compromising blood levels. Favorable drug-drug interaction, tolerability, and wide tissue distribution profiles are observed making fosmanogepix an attractive option for the treatment of invasive fungal infections. This systematic review summarizes the findings of published data on fosmanogepix.

77 citations


Journal ArticleDOI
TL;DR: The biology, potential mechanisms of action and key therapeutic targets being investigated in clinical trials of β-glucans are described and the key challenges to successful translation of this intriguing potential therapeutic are identified.
Abstract: β-glucans are complex polysaccharides that are found in several plants and foods, including mushrooms. β-glucans display an array of potentially therapeutic properties. β-glucans have metabolic and gastro-intestinal effects, modulating the gut microbiome, altering lipid and glucose metabolism, reducing cholesterol, leading to their investigation as potential therapies for metabolic syndrome, obesity and diet regulation, gastrointestinal conditions such as irritable bowel, and to reduce cardiovascular and diabetes risk. β-glucans also have immune-modulating effects, leading to their investigation as adjuvant agents for cancers (solid and haematological malignancies), for immune-mediated conditions (e.g., allergic rhinitis, respiratory infections), and to enhance wound healing. The therapeutic potential of β-glucans is evidenced by the fact that two glucan isolates were licensed as drugs in Japan as immune-adjuvant therapy for cancer in 1980. Significant challenges exist to further clinical testing and translation of β-glucans. The diverse range of conditions for which β-glucans are in clinical testing underlines the incomplete understanding of the diverse mechanisms of action of β-glucans, a key knowledge gap. Furthermore, important differences appear to exist in the effects of apparently similar β-glucan preparations, which may be due to differences in sources and extraction procedures, another poorly understood issue. This review will describe the biology, potential mechanisms of action and key therapeutic targets being investigated in clinical trials of β-glucans and identify and discuss the key challenges to successful translation of this intriguing potential therapeutic.

Journal ArticleDOI
TL;DR: The burden of antifungal resistance for selected non-albicans Candida and clinically important Aspergillus species together with their phylogenetic placement on the tree of life is summarized.
Abstract: Human fungal pathogens are attributable to a significant economic burden and mortality worldwide Antifungal treatments, although limited in number, play a pivotal role in decreasing mortality and morbidities posed by invasive fungal infections (IFIs) However, the recent emergence of multidrug-resistant Candida auris and Candida glabrata and acquiring invasive infections due to azole-resistant C parapsilosis, C tropicalis, and Aspergillus spp in azole-naive patients pose a serious health threat considering the limited number of systemic antifungals available to treat IFIs Although advancing for major fungal pathogens, the understanding of fungal attributes contributing to antifungal resistance is just emerging for several clinically important MDR fungal pathogens Further complicating the matter are the distinct differences in antifungal resistance mechanisms among various fungal species in which one or more mechanisms may contribute to the resistance phenotype In this review, we attempt to summarize the burden of antifungal resistance for selected non-albicansCandida and clinically important Aspergillus species together with their phylogenetic placement on the tree of life Moreover, we highlight the different molecular mechanisms between antifungal tolerance and resistance, and comprehensively discuss the molecular mechanisms of antifungal resistance in a species level

Journal ArticleDOI
TL;DR: In this review, the application of antagonistic yeasts for postharvest decay control is summarized, including the antagonistic yeast species and sources, antagonistic mechanisms, commercial applications, and efficacy improvement.
Abstract: Fruit plays an important role in human diet. Whereas, fungal pathogens cause huge losses of fruit during storage and transportation, abuse of chemical fungicides leads to serious environmental pollution and endangers human health. Antagonistic yeasts (also known as biocontrol yeasts) are promising substitutes for chemical fungicides in the control of postharvest decay owing to their widespread distribution, antagonistic ability, environmentally friendly nature, and safety for humans. Over the past few decades, the biocontrol mechanisms of antagonistic yeasts have been extensively studied, such as nutrition and space competition, mycoparasitism, and induction of host resistance. Moreover, combination of antagonistic yeasts with other agents or treatments were developed to improve the biocontrol efficacy. Several antagonistic yeasts are used commercially. In this review, the application of antagonistic yeasts for postharvest decay control is summarized, including the antagonistic yeast species and sources, antagonistic mechanisms, commercial applications, and efficacy improvement. Issues requiring further study are also discussed.

Journal ArticleDOI
TL;DR: Two cases of bloodstream infection by Saccharomyces in two patients hospitalised in the ICU, due to severe COVID-19, after Saccharomeces supplementation are reported.
Abstract: Co-infections have an unknown impact on the morbidity and mortality of the new clinical syndrome called coronavirus disease 2019 (COVID-19). The syndrome is caused by the new pandemic coronavirus SARS-CoV-2 and it is probably connected with severe traces in the elements of the immune system. Apart from possible Aspergillus infections, particularly in patients with acute respiratory distress syndrome (ARDS), other fungal infections could occur, probably more easily, due to the immunological dysregulation and the critical condition of these patients. Probiotic preparations of Saccharomyces are broadly used for the prevention of antibiotic-associated complications, especially in the intensive care units (ICU). On the other hand, Saccharomyces organisms are reported as agents of invasive infection in immunocompromised or critically ill patients. We report two cases of bloodstream infection by Saccharomyces in two patients hospitalised in the ICU, due to severe COVID-19, after Saccharomyces supplementation.

Journal ArticleDOI
TL;DR: The current status of clinical studies on immunomodulatory activities of mushrooms and mushroom products are reviewed and the approaches that have been used in the development and application of bioactive compounds extracted from mushrooms are described.
Abstract: Mushrooms have been valued as food and health supplements by humans for centuries. They are rich in dietary fiber, essential amino acids, minerals, and many bioactive compounds, especially those related to human immune system functions. Mushrooms contain diverse immunoregulatory compounds such as terpenes and terpenoids, lectins, fungal immunomodulatory proteins (FIPs) and polysaccharides. The distributions of these compounds differ among mushroom species and their potent immune modulation activities vary depending on their core structures and fraction composition chemical modifications. Here we review the current status of clinical studies on immunomodulatory activities of mushrooms and mushroom products. The potential mechanisms for their activities both in vitro and in vivo were summarized. We describe the approaches that have been used in the development and application of bioactive compounds extracted from mushrooms. These developments have led to the commercialization of a large number of mushroom products. Finally, we discuss the problems in pharmacological applications of mushrooms and mushroom products and highlight a few areas that should be improved before immunomodulatory compounds from mushrooms can be widely used as therapeutic agents.

Journal ArticleDOI
TL;DR: In Germany, transmission of T. mentagrophytes Type VIII from the Indian subcontinent to Europe should be viewed as a significant public health issue.
Abstract: Chronic recalcitrant dermatophytoses, due to Trichophyton (T.) mentagrophytes Type VIII are on the rise in India and are noteworthy for their predominance. It would not be wrong to assume that travel and migration would be responsible for the spread of T. mentagrophytes Type VIII from India, with many strains resistant to terbinafine, to other parts of the world. From September 2016 until March 2020, a total of 29 strains of T. mentagrophytes Type VIII (India) were isolated. All patients were residents of Germany: 12 females, 15 males and the gender of the remaining two was not assignable. Patients originated from India (11), Pakistan (two), Bangladesh (one), Iraq (two), Bahrain (one), Libya (one) and other unspecified countries (10). At least two patients were German-born residents. Most samples (21) were collected in 2019 and 2020. All 29 T. mentagrophytes isolates were sequenced (internal transcribed spacer (ITS) and translation elongation factor 1-α gene (TEF1-α)). All were identified as genotype VIII (India) of T. mentagrophytes. In vitro resistance testing revealed 13/29 strains (45%) to be terbinafine-resistant with minimum inhibitory concentration (MIC) breakpoints ≥0.2 µg/mL. The remaining 16 strains (55%) were terbinafine-sensitive. Point mutation analysis revealed that 10/13 resistant strains exhibited Phe397Leu amino acid substitution of squalene epoxidase (SQLE), indicative for in vitro resistance to terbinafine. Two resistant strains showed combined Phe397Leu and Ala448Thr amino acid substitutions, and one strain a single Leu393Phe amino acid substitution. Out of 16 terbinafine-sensitive strains, in eight Ala448Thr, and in one Ala448Thr +, new Val444 Ile amino acid substitutions were detected. Resistance to both itraconazole and voriconazole was observed in three out of 13 analyzed strains. Treatment included topical ciclopirox olamine plus topical miconazole or sertaconazole. Oral itraconazole 200 mg twice daily for four to eight weeks was found to be adequate. Terbinafine-resistant T. mentagrophytes Type VIII are being increasingly isolated. In Germany, transmission of T. mentagrophytes Type VIII from the Indian subcontinent to Europe should be viewed as a significant public health issue.

Journal ArticleDOI
TL;DR: A review of 38 published CAPA cases highlights the diagnostic and therapeutic challenges posed by this novel fungal co-infection, and emphasizes the importance of antifungal susceptibility testing in order to ensure appropriate antIFungal therapy.
Abstract: Aspergillus co-infection in patients with severe coronavirus disease 2019 (COVID-19) pneumonia, leading to acute respiratory distress syndrome, has recently been reported. To date, 38 cases have been reported, with other cases most likely undiagnosed mainly due to a lack of clinical awareness and diagnostic screening. Importantly, there is currently no agreed case definition of COVID-19 associated invasive pulmonary aspergillosis (CAPA) that could aid in the early detection of this co-infection. Additionally, with the global emergence of triazole resistance, we emphasize the importance of antifungal susceptibility testing in order to ensure appropriate antifungal therapy. Herein is a review of 38 published CAPA cases, which highlights the diagnostic and therapeutic challenges posed by this novel fungal co-infection.

Journal ArticleDOI
TL;DR: The 53-day clinical course of a complicated type-2 diabetes patient diagnosed with COVID-19, who developed bloodstream infections initially due to methicillin-resistant Staphylococcus aureus, secondly due to multidrug-resistant Gram-negative bacteria, and lastly due to a possibly fatal Candida glabrata, died of septic shock shortly before the prospect of receiving potentially effective antifungal therapy.
Abstract: Coinfections with bacteria or fungi may be a frequent complication of COVID-19, but coinfections with Candida species in COVID-19 patients remain rare. We report the 53-day clinical course of a complicated type-2 diabetes patient diagnosed with COVID-19, who developed bloodstream infections initially due to methicillin-resistant Staphylococcus aureus, secondly due to multidrug-resistant Gram-negative bacteria, and lastly due to a possibly fatal Candida glabrata. The development of FKS-associated pan-echinocandin resistance in the C. glabrata isolated from the patient after 13 days of caspofungin treatment aggravated the situation. The patient died of septic shock shortly before the prospect of receiving potentially effective antifungal therapy. This case emphasizes the importance of early diagnosis and monitoring for antimicrobial drug-resistant coinfections to reduce their unfavorable outcomes in COVID-19 patients.

Journal ArticleDOI
TL;DR: This review appraises the studies and applications of various fungal pigments in dyeing textile fabrics and is shedding light on the importance of toxicity testing, genetic manipulations of fungal Pigments, and their future perspectives under biotechnological approaches.
Abstract: Synthetic pigments/non-renewable coloring sources used normally in the textile industry release toxic substances into the environment, causing perilous ecological challenges. To be safer from such challenges of synthetic colorants, academia and industries have explored the use of natural colorants such as microbial pigments. Such explorations have created a fervent interest among textile stakeholders to undertake the dyeing of textile fabrics, especially with fungal pigments. The biodegradable and sustainable production of natural colorants from fungal sources stand as being comparatively advantageous to synthetic dyes. The prospective scope of fungal pigments has emerged in the opening of many new avenues in textile colorants for wide ranging applications. Applying the biotechnological processes, fungal pigments like carotenoids, melanins, flavins, phenazines, quinones, monascins, violacein, indigo, etc. could be extracted on an industrial scale. This review appraises the studies and applications of various fungal pigments in dyeing textile fabrics and is furthermore shedding light on the importance of toxicity testing, genetic manipulations of fungal pigments, and their future perspectives under biotechnological approaches.

Journal ArticleDOI
TL;DR: An update on the current understanding of how biofilm extracellular matrix contributes to pathogenicity, particularly through its roles in the promoting antifungal drug tolerance and immune evasion is provided.
Abstract: In healthcare settings, Candida spp. cause invasive disease with high mortality. The overwhelming majority of cases are associated with the use of critically-needed medical devices, such as vascular catheters. On the surface of these indwelling materials, Candida forms resilient, adherent biofilm communities. A hallmark characteristic of this process is the production of an extracellular matrix, which promotes fungal adhesion and provides protection from external threats. In this review, we highlight the medical relevance of device-associated Candida biofilms and draw attention to the process of Candida-biofilm-matrix production. We provide an update on the current understanding of how biofilm extracellular matrix contributes to pathogenicity, particularly through its roles in the promoting antifungal drug tolerance and immune evasion.

Journal ArticleDOI
TL;DR: Cat-transmitted sporotrichosis caused by Sporothrix brasiliensis has become a major public health concern and presents a distinct divergence from the traditional epidemiology of sporot richosis.
Abstract: Cat-transmitted sporotrichosis caused by Sporothrix brasiliensis has become a major public health concern and presents a distinct divergence from the traditional epidemiology of sporotrichosis. This emerging fungal pathogen spreads readily among cat populations, and human infections occur exclusively via zoonotic transmission. While sporotrichosis is an implantation mycosis that typically manifests as cutaneous lesions in humans and cats, severe extracutaneous manifestations are more common with S. brasiliensis than other Sporothrix species infections. Rapid diagnosis and appropriate treatment regimens are critical for successful clinical resolution of sporotrichosis in both cats and humans. Species-level identification of Sporothrix is possible with molecular diagnostics and necessary for tracking the geographic expansion of S. brasiliensis and better understanding its epidemiology. Combatting cat-transmitted sporotrichosis requires a One Health approach to successfully implement public health control measures.

Journal ArticleDOI
TL;DR: Olorofim is the first member of the orotomide class of antifungals to be evaluated clinically for the treatment of invasive mold infections and has activity against many molds and thermally dimorphic fungi, but lacks activity against yeasts and the Mucorales.
Abstract: The incidence of invasive fungal infections caused by molds and endemic fungi is increasing. There is also concern regarding increased rates of reduced susceptibility or frank resistance among Aspergillus and Coccidioides species, while Scedosporium species, Lomentospora prolificans, and Fusarium species are inherently less susceptible or intrinsically resistant to clinically available antifungals. Olorofim (formerly F901318) is the first member of the orotomide class of antifungals to be evaluated clinically for the treatment of invasive mold infections. This agent inhibits dihydroorotate dehydrogenase, a key enzyme in the biosynthesis of pyrimidines. Olorofim has activity against many molds and thermally dimorphic fungi, including species that are resistant to azoles and amphotericin B, but lacks activity against yeasts and the Mucorales. It is currently being developed for both oral and intravenous administration. Although published clinical outcome data have been limited to case reports to date, the results against invasive and refractory infections are promising. This review describes the mechanism of action of olorofim, its in vitro spectrum of activity, and what is currently known about its pharmacokinetic profile and clinical efficacy.

Journal ArticleDOI
TL;DR: An appreciation of the fungal burden using PCR and Aspergillus serology was added to propose a modified AspICU algorithm, which seemed relevant, as it was in agreement with the outcome of patients, but will need validation in larger cohorts.
Abstract: (1) Background: The diagnosis of invasive aspergillosis (IA) in an intensive care unit (ICU) remains a challenge and the COVID-19 epidemic makes it even harder. Here, we evaluated Aspergillus PCR input to help classifying IA in SARS-CoV-2-infected patients. (2) Methods: 45 COVID-19 patients were prospectively monitored twice weekly for Aspergillus markers and anti-Aspergillus serology. We evaluated the concordance between (I) Aspergillus PCR and culture in respiratory samples, and (II) blood PCR and serum galactomannan. Patients were classified as putative/proven/colonized using AspICU algorithm and two other methods. (3) Results: The concordance of techniques applied on respiratory and blood samples was moderate (kappa = 0.58 and kappa = 0.63, respectively), with a higher sensitivity of PCR. According to AspICU, 9/45 patients were classified as putative IA. When incorporating PCR results, 15 were putative IA because they met all criteria, probably with a lack of specificity in the context of COVID-19. Using a modified AspICU algorithm, eight patients were classified as colonized and seven as putative IA. (4) Conclusion: An appreciation of the fungal burden using PCR and Aspergillus serology was added to propose a modified AspICU algorithm. This proof of concept seemed relevant, as it was in agreement with the outcome of patients, but will need validation in larger cohorts.

Journal ArticleDOI
TL;DR: This review provides a broad framework of interactions between fungi and nematode with an emphasis on those that impact crops and agriculture ecosystems, and describes the diversity and evolution of fungi that closely interact with nematodes.
Abstract: Fungi and nematodes are among the most abundant organisms in soil habitats. They provide essential ecosystem services and play crucial roles for maintaining the stability of food-webs and for facilitating nutrient cycling. As two of the very abundant groups of organisms, fungi and nematodes interact with each other in multiple ways. Here in this review, we provide a broad framework of interactions between fungi and nematodes with an emphasis on those that impact crops and agriculture ecosystems. We describe the diversity and evolution of fungi that closely interact with nematodes, including food fungi for nematodes as well as fungi that feed on nematodes. Among the nematophagous fungi, those that produce specialized nematode-trapping devices are especially interesting, and a great deal is known about their diversity, evolution, and molecular mechanisms of interactions with nematodes. Some of the fungi and nematodes are significant pathogens and pests to crops. We summarize the ecological and molecular mechanisms identified so far that impact, either directly or indirectly, the interactions among phytopathogenic fungi, phytopathogenic nematodes, and crop plants. The potential applications of our understanding to controlling phytophagous nematodes and soilborne fungal pathogens in agricultural fields are discussed.

Journal ArticleDOI
TL;DR: A mini-review aims to summarise some of the key attributes of this remarkable pathogenic yeast, with dynamic epidemiology, elevated resistance levels and an indication of conserved and unique pathogenic traits.
Abstract: Candida auris is an enigmatic yeast that continues to stimulate interest within the mycology community due its rapid and simultaneous emergence of distinct clades. In the last decade, almost 400 manuscripts have contributed to our understanding of this pathogenic yeast. With dynamic epidemiology, elevated resistance levels and an indication of conserved and unique pathogenic traits, it is unsurprising that it continues to cause clinical concern. This mini-review aims to summarise some of the key attributes of his remarkable pathogenic yeast.

Journal ArticleDOI
TL;DR: Current knowledge on the commensal lifestyle of Candida species is described, how they are able to adhere to and colonize host epithelial surfaces, compete with other members of the microbiota, and interact with the host immune response, as well as their transition into opportunistic pathogens by invading the gastrointestinal epithelium.
Abstract: Candida species are both opportunistic fungal pathogens and common members of the human mycobiome. Over the years, the main focus of the fungal field has been on understanding the pathogenic potential and disease manifestation of these organisms. Therefore, understanding of their commensal lifestyle, interactions with host epithelial barriers, and initial transition into pathogenesis is less developed. In this review, we will describe the current knowledge on the commensal lifestyle of these fungi, how they are able to adhere to and colonize host epithelial surfaces, compete with other members of the microbiota, and interact with the host immune response, as well as their transition into opportunistic pathogens by invading the gastrointestinal epithelium.

Journal ArticleDOI
TL;DR: Results indicate that these strains of Trichoderma had antimicrobial activities and they are potential natural sources of compounds with biological activity.
Abstract: Trichoderma spp. are known as biocontrol agents of fungal plant pathogens and have been recognized as a potential source of bioactive metabolites. The production of antimicrobial substances from strains T. atroviride (TS) and T. asperellum (IMI 393899) was investigated. The bioactivity of 10- and 30-day culture filtrate extracted with ethyl acetate was assessed against a set of pathogenic fungi and oomycetes. The 30-day extracts of both strains had significant cytotoxic effects against the tested pathogens, with values of minimum fungicidal concentration (MFC) ranging between 0.19 and 6.25 mg/mL. Dual culture assay (direct contact and nondirect contact) and the percentage inhibition of radial growth (PIRG) was calculated. The highest PIRG values were 76% and 81% (direct contact) with IMI 393899 and TS, respectively. Nondirect contact does not show inhibition on any of pathogens tested, indicating that the inhibition is not due to the secretion of volatile substances. Culture filtrates were analyzed by GC-MS and HPLC-Q-TOF-MS for the identification of volatile organic compounds (VOCs) and nonvolatile organic compounds (nVOCs), respectively. Seven classes of VOCs and 12 molecules of nVOCs were identified. These results indicate that these strains of Trichoderma had antimicrobial activities and they are potential natural sources of compounds with biological activity.

Journal ArticleDOI
TL;DR: The results showed that the maximum zone of inhibition was recorded from the co-culture of Trichoderma spp.
Abstract: The Plant Growth Promoting Fungi (PGPF) is used as a source of biofertilizers due to their production of secondary metabolites and beneficial effects on plants. The present work is focused on the co-cultivation of Trichoderma spp. (T. harzianum (PGT4), T. reesei (PGT5) and T. reesei (PGT13)) and the production of secondary metabolites from mono and co-culture and mycosynthesis of zinc oxide nanoparticles (ZnO NPs), which were characterized by a UV visible spectrophotometer, Powder X-ray Diffraction (PXRD), Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM) with Energy Dispersive Spectroscopy (EDAX) and Transmission Electron Microscope (TEM) and Selected Area (Electron) Diffraction (SAED) patterns. The fungal secondary metabolite crude was extracted from the mono and co-culture of Trichoderma spp. And were analyzed by GC-MS, which was further subjected for antibacterial activity against Xanthomonas oryzae pv. Oryzae, the causative organism for Bacterial Leaf Blight (BLB) in rice. Our results showed that the maximum zone of inhibition was recorded from the co-culture of Trichoderma spp. rather than mono cultures, which indicates that co-cultivation of beneficial fungi can stimulate the synthesis of novel secondary metabolites better than in monocultures. ZnO NPs were synthesized from fungal secondary metabolites of mono cultures of Trichoderma harzianum (PGT4), Trichoderma reesei (PGT5), Trichoderma reesei (PGT13) and co-culture (PGT4 + PGT5 + PGT13). These ZnO NPs were checked for antibacterial activity against Xoo, which was found to be of a dose-dependent manner. In summary, the biosynthesized ZnO NPs and secondary metabolites from co-culture of Trichoderma spp. are ecofriendly and can be used as an alternative for chemical fertilizers in agriculture.

Journal ArticleDOI
TL;DR: The proficient use of Zn-derived nanomaterials in the management of plant pathogenic diseases as nanopesticides and on-field sensor system demands that the associated eco- and biosafety concerns should be well discerned and effectively sorted beforehand.
Abstract: A facet of nanorenaissance in plant pathology hailed the research on the development and application of nanoformulations or nanoproducts for the effective management of phytopathogens deterring the growth and yield of plants and thus the overall crop productivity. Zinc nanomaterials represent a versatile class of nanoproducts and nanoenabled devices as these nanomaterials can be synthesized in quantum amounts through economically affordable processes/approaches. Further, these nanomaterials exhibit potential targeted antimicrobial properties and low to negligible phytotoxicity activities that well-qualify them to be applied directly or in a deviant manner to accomplish significant antibacterial, antimycotic, antiviral, and antitoxigenic activities against diverse phytopathogens causing plant diseases. The photo-catalytic, fluorescent, and electron generating aspects associated with zinc nanomaterials have been utilized for the development of sensor systems (optical and electrochemical biosensors), enabling quick, early, sensitive, and on-field assessment or quantification of the test phytopathogen. However, the proficient use of Zn-derived nanomaterials in the management of plant pathogenic diseases as nanopesticides and on-field sensor system demands that the associated eco- and biosafety concerns should be well discerned and effectively sorted beforehand. Current and possible utilization of zinc-based nanostructures in plant disease diagnosis and management and their safety in the agroecosystem is highlighted.

Journal ArticleDOI
TL;DR: There is a marked (10-fold) increase in frequency of candidemia in hospitalized patients with COVID-19 receiving corticosteroids in Brazil, and physicians should be aware of the potential risk for candidemia.
Abstract: Corticosteroids have potent anti-inflammatory and immunosuppressive effects. Recently, these medications have gained importance in the treatment of severe COVID-19. Here we present data demonstrating a marked (10-fold) increase in frequency of candidemia in hospitalized patients with COVID-19 receiving corticosteroids in Brazil. Overall mortality was 72.7%, despite antifungal therapy. Physicians should be aware of the potential risk for candidemia among severely ill COVID-19 patients receiving high-doses of corticosteroids.