scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Morphology in 2009"


Journal ArticleDOI
TL;DR: It is found that felids and canids differ in forelimb scaling, which emphasizes the dual use of forelimbs for locomotion and prey capture in felids.
Abstract: The forelimbs, along with the crania, are an essential part of the prey-killing apparatus in cats. Linear morphometrics of the forelimbs were used to determine the morphological differences between felids that specialize on large prey, small prey, or mixed prey. We also compared the scaling of felid forelimbs to those of canids to test whether prey capture strategies affect forelimb scaling. Results suggest that large prey specialists have relatively robust forelimbs when compared with smaller prey specialists. This includes relatively more robust humeri and radii, relatively larger distal ends of the humerus, and relatively larger articular areas of the humerus and radius. Large prey specialists also had relatively longer olecranon processes of the ulna and wider proximal paws. These characters are all important for subduing large prey while the cat positions itself for the killing bite. Small prey specialists have relatively longer distal limb elements for swift prey capture, and mixed prey specialists had intermediate values with relatively more robust metacarpals. Arboreal felids also had more robust limbs. They had relatively longer proximal phalanges for better grip while climbing, and a relatively short brachial index (radius to humerus ratio). Additionally, we found that felids and canids differ in forelimb scaling, which emphasizes the dual use of forelimbs for locomotion and prey capture in felids. This morphometric technique worked well to separate prey-size preference in felids, but did not work as well to separate locomotor groups, as scansorial and terrestrial felids were not clearly distinguished. J. Morphol. 2009. © 2009 Wiley-Liss, Inc.

126 citations


Journal ArticleDOI
TL;DR: The phylogenetic comparison to determine the systematic position of Paedocypris among cyprinids reveals that it shares not only a number of unique absences, but also highly unusual progressive characters with Sundadanio and Danionella, two other Asian miniature cypr inids, and hypothesize that the three genera form a monophyletic group.
Abstract: Species of the cyprinid genus Paedocypris are among the smallest and most developmentally truncated fishes and vertebrates. Our analysis of their skeletal structure reveals a puzzling combination of extreme developmental truncation and an increased morphological complexity in sexually dimorphic characters. The skeleton of Paedocypris is characterized by reduction and loss and resembles in many aspects that of a larval/early juvenile stage of its close relatives. We found 61 characters that have been affected by developmental truncation. A comparison with the skeletal development of a close relative, the zebrafish Danio rerio, demonstrates that the majority of the absent bones or skeletal structures in Paedocypris are those that appear late in the ossification trajectory of the zebrafish. Thus, their absence in Paedocypris seems to be due to the simple developmental truncation of terminal stages in the ossification sequence. Our study of the sexually dimorphic structures in Paedocypris demonstrates that predominantly the male exhibits the more complex state. In relation to the female, male Paedocypris uniquely possess a cleithrum with a pointed posterior process that covers the scapula laterally, and a more medially situated posterior flange that contacts the dorsal area of the coracoid; a massive and heavily ossified uppermost pectoral radial tightly bound to the scapula; thickened and enlarged three uppermost pectoral-fin rays; a large triangular, dorsolaterally directed process on the outer arm of the massive os suspensorium; and a enlarged and shovel-like anterodorsally directed basipterygium; and a hypertrophied first pelvic-fin ray with additional anterior flanges that support keratinized pads of skin. Female Paedocypris show only one structure that is better developed than in males: the first proximal-middle radial and the anteriormost fin ray of the dorsal fin are more massive and more heavily ossified. Although the function and biological role of these dimorphisms is still unknown, we hypothesize that they are related to a special reproductive behavior. Paedocypris is a prime example for the recent claim that miniaturization among cyprinids is associated with evolutionary novelty only in developmentally truncated miniatures and not in proportioned dwarfs. Paedocypris offers a strong challenge to Schindleria as the most extreme example of developmental truncation known among fishes. We highlight the difficulties that developmentally truncated taxa frequently pose to the resolution of their phylogenetic position and propose an approach to overcome this problem. Our phylogenetic comparison to determine the systematic position of Paedocypris among cyprinids reveals that it shares not only a number of unique absences, but also highly unusual progressive characters with Sundadanio and Danionella, two other Asian miniature cyprinids. We hypothesize that the three genera form a monophyletic group. We further found that Paedocypris and Danionella share a number of uniquely derived characters pointing to a sister group relationship of the two.

94 citations


Journal ArticleDOI
TL;DR: It is demonstrated that differences between the SEFdorsal or SEFventral and the SEFatrium are significantly related to the percentage of grass in the natural diet, with the more a species is adapted to grass, the more distinct this difference is.
Abstract: Browsing and grazing ruminants are thought to differ in the degree their rumen contents are stratified-which may be due to different characteristics of their respective forages, to particular adaptations of the animals, or both. However, this stratification is difficult to measure in live animals. The papillation of the rumen has been suggested as an anatomical proxy for stratification-with even papillation indicating homogenous contents, and uneven papillation (with few and small dorsal and ventral papillae, and prominent papillae in the atrium ruminis) stratified contents. Using the surface enlargement factor (SEF, indicating how basal mucosa surface is increased by papillae) of over 55 ruminant species, we demonstrate that differences between the SEF(dorsal) or SEF(ventral) and the SEF(atrium) are significantly related to the percentage of grass in the natural diet. The more a species is adapted to grass, the more distinct this difference, with extreme grazers having unpapillated dorsal and ventral mucosa. The relative SEF(dorsal) as anatomical proxy for stratification, and the difference in particle and fluid retention in the rumen as physiological proxy for stratification, are highly correlated in species (n = 9) for which both kind of data are available. The results support the concept that the stratification of rumen contents varies among ruminants, with more homogenous contents in the more browsing and more stratified contents in the more grazing species.

86 citations


Journal ArticleDOI
TL;DR: Investigation of the development of the whole skeleton of the soft‐shelled turtle Pelodiscus sinensis and an analysis of the sequence of skeletal ossification in cryptodirans reveals heterochronies, some of which reflect the hypothesized phylogeny considered taxa.
Abstract: We investigated the development of the whole skeleton of the soft-shelled turtle Pelodiscus sinensis, with particular emphasis on the pattern and sequence of ossification. Ossification starts at late Tokita-Kuratani stage (TK) 18 with the maxilla, followed by the dentary and prefrontal. The quadrate is the first endoskeletal ossification and appears at TK stage 22. All adult skull elements have started ossification by TK stage 25. Plastral bones are the first postcranial bones to ossify, whereas the nuchal is the first carapacial bone to ossify, appearing as two unstained anlagen. Extensive examination of ossification sequences among autopodial elements reveals much intraspecific variation. Patterns of ossification of cranial dermal elements are more variable than those of endochondral elements, and dermal elements ossify before endochondral ones. Differences in ossification sequences with Apalone spinifera include: in Pelodiscus sinensis the jugal develops relatively early and before the frontal, whereas it appears later in A. spinifera; the frontal appears shortly before the parietal in A. spinifera whereas in P. sinensis the parietal appears several stages before the frontal. Chelydrids exhibit an early development of the postorbital bone and the palatal elements as compared to trionychids. Integration of the onset of ossification data into an analysis of the sequence of skeletal ossification in cryptodirans using the event-pairing and Parsimov methods reveals heterochronies, some of which reflect the hypothesized phylogeny considered taxa. A functional interpretation of heterochronies is speculative. In the chondrocranium there is no contact between the nasal capsules and planum supraseptale via the sphenethmoid commissurae. The pattern of chondrification of forelimb and hind limb elements is consistent with a primary axis and digital arch. There is no evidence of anterior condensations distal to the radius and tibia. A pattern of quasi- simultaneity is seen in the chondrogenesis of the forelimb and the hind limb.

80 citations


Journal ArticleDOI
TL;DR: Results from qualitative and quantitative analyses demonstrate remarkable diversity in several aspects of knee and hip joint skeletal form that are supportive of function‐based hypotheses, and consistent with studies on nontenrecoid eutherian postcranial adaptation.
Abstract: The tenrecs of Central Africa and Madagascar provide an excellent model for exploring adaptive radiation and functional aspects of mammalian hindlimb form. The pelvic girdle, femur, and crus of 13 tenrecoid species, and four species from the families Solenodontidae, Macroscelididae, and Erinaceidae, were examined and measured. Results from qualitative and quantitative analyses demonstrate remarkable diversity in several aspects of knee and hip joint skeletal form that are supportive of function-based hypotheses, and consistent with studies on nontenrecoid eutherian postcranial adaptation. Locomotor specialists within Tenrecoidea exhibit suites of characteristics that are widespread among eutherians with similar locomotor behaviors. Furthermore, several characters that are constrained at the subfamily level were identified. Such characters are more indicative of postural behavior than locomotor behavior. J. Morphol., 2009. © 2008 Wiley-Liss, Inc.

79 citations


Journal ArticleDOI
TL;DR: The branching of the gill filaments documented for the swordfish in this study appears to increase its gill surface area above that of other billfishes and may allow it to penetrate oxygen‐poor waters at depth.
Abstract: This comparative study of the gill morpho- metrics in scombrids (tunas, bonitos, and mackerels) and billfishes (marlins, swordfish) examines features of gill design related to high rates of gas transfer and the high-pressure branchial flow associated with fast, con- tinuous swimming. Tunas have the largest relative gill surface areas of any fish group, and although the gill areas of non-tuna scombrids and billfishes are smaller than those of tunas, they are also disproportionally larger than those of most other teleosts. The morpho- metric features contributing to the large gill surface areas of these high-energy demand teleosts include: 1) a relative increase in the number and length of gill fila- ments that have, 2) a high lamellar frequency (i.e., the number of lamellae per length of filament), and 3) lamel- lae that are long and low in profile (height), which allows a greater number of filaments to be tightly packed into the branchial cavity. Augmentation of gill area through these morphometric changes represents a departure from the general mechanism of area enhance- ment utilized by most teleosts, which lengthen filaments and increase the size of the lamellae. The gill design of scombrids and billfishes reflects the combined require- ments for ram ventilation and elevated energetic demands. The high lamellar frequencies and long lamel- lae increase branchial resistance to water flow which slows and streamlines the ram ventilatory stream. In general, scombrid and billfish gill surface areas correlate with metabolic requirements and this character may serve to predict the energetic demands of fish species for which direct measurement is not possible. The branch- ing of the gill filaments documented for the swordfish in this study appears to increase its gill surface area above that of other billfishes and may allow it to penetrate oxygen-poor waters at depth. J. Morphol. 271:36-49, 2010. 2009 Wiley-Liss, Inc.

78 citations


Journal ArticleDOI
TL;DR: The results demonstrate that a variety of auditory structures show significant correlations with certain aspects of hearing (particularly low‐frequency sensitivity), and these relationships agree with expectations from auditory theory, but some traditional ideas were not supported.
Abstract: Primates show distinctions in hearing sensitivity and auditory morphology that generally follow phylogenetic patterns. However, few previous studies have attempted to investigate how differences in primate hearing are directly related to differences in ear morphology. This research helps fill this void by exploring the form-to-function relationships of the auditory system in a phylogenetically broad sample of non-human primates. Numerous structures from the outer, middle, and inner ears were measured in taxa with known hearing capabilities. The structures investigated include the overall size and shape of the pinna, the areas of the tympanic membrane and stapedial footplate, the masses and lever arm lengths of the ossicles, the volumes of the middle ear cavities, and the length of the cochlea. The results demonstrate that a variety of auditory structures show significant correlations with certain aspects of hearing (particularly low-frequency sensitivity). Although the majority of these relationships agree with expectations from auditory theory, some traditional (and possibly outdated) ideas were not supported. For example, the common misconception that higher middle ear transformer ratios (e.g., impedance transformer ratio) result in increased hearing sensitivity was not supported. Although simple correlations between form and function do not necessarily imply causality, the relationships defined in this study not only increase our understanding of auditory patterns in extant taxa but also lay the foundation to begin investigating the hearing in fossil primates.

76 citations


Journal ArticleDOI
TL;DR: It is found that, although mechanical advantage reaches maturity in hyenas at 22 months, adult skull size is not achieved until 29 months of age, and skull shape does not reach maturity until 35 months, indicating that skull development in Crocuta is indeed protracted relative to that in most other carnivores.
Abstract: Weaning represents a challenging transition for young mammals, one particularly difficult for species coping with extreme conditions during feeding. Spotted hyenas (Crocuta crocuta) experience such extreme conditions imposed by intense feeding competition during which the ability to consume large quantities of food quickly is highly advantageous. As adult spotted hyenas have massive skulls specialized for durophagy and can feed very rapidly, young individuals are likely at a competitive disadvantage until that specialized morphology is completely developed. Here we document developmental changes in skull size, shape, and mechanical advantage of the jaws. Sampling an ontogenetic series of Crocuta skulls from individuals ranging in age from 2 months to 18 years, we use linear measurements and geometric morphometrics to test hypotheses suggesting that size, limited mechanical advantage of the jaws, and/or limited attachment sites for jaw muscles might constrain the feeding performance of juveniles. We also examine skull development in relation to key life history events, including weaning and reproductive maturity, to inquire whether ontogeny of the feeding apparatus is slower or more protracted in this species than in carnivores not specialized for durophagy. We find that, although mechanical advantage reaches maturity in hyenas at 22 months, adult skull size is not achieved until 29 months of age, and skull shape does not reach maturity until 35 months. The latter is nearly 2 years after mean weaning age, and more than 1 year after reproductive maturity. Thus, skull development in Crocuta is indeed protracted relative to that in most other carnivores. Based on the skull features that continue to change and to provide additional muscle attachment area, protracted development may be largely due to development of the massive musculature required by durophagy. These findings may ultimately shed light on the adaptive significance of the unusual "role-reversed" pattern of female dominance over males in this species.

70 citations


Journal ArticleDOI
TL;DR: The results suggest that increases in gape differentially influence the length‐tension properties of the jaw muscles in the two species, and highlight the importance of considering the effect of muscle stretch on force production in comparative studies of bite force.
Abstract: Compared with the deer mouse, Peromyscus maniculatus, the grasshopper mouse, Onychomys leucogaster, exhibits modifications in its jaw-muscle architecture that promote wide gapes and large bite forces at wide gapes to prey upon large vertebrate prey. In this study, we determine whether jaw-muscle anatomy predicts gape and biting performance in O. leucogaster, and we also assess the influence of gape on bite force in the two species. Although O. leucogaster has an absolutely longer jaw, which facilitates larger gapes, maximum passive gape is similar in both species, averaging ∼12.5 mm. Thus, when scaled to jaw length, O. leucogaster has a smaller maximum passive gape. These results suggest that predatory behaviors of O. leucogaster may not require remarkably large gapes. On the other hand, both absolute and relative bite forces exerted by O. leucogaster are significantly larger than those of P. maniculatus. The largest bite forces in both species occur at 5.0 mm of gape at the incisors, or 40% of maximum gape. Although bite force in both species decreases at larger gapes, O. leucogaster does maintain a larger percentage of maximum bite force at gapes larger than 40% of maximum passive gape. Therefore, although structural modifications in the masticatory apparatus of O. leucogaster may constrain gape, they may help to maintain bite force at large gapes. These results suggest that increases in gape differentially influence the length-tension properties of the jaw muscles in the two species. Finally, these results highlight the importance of considering the effect of muscle stretch on force production in comparative studies of bite force. As a first approximation, it appears that gapes of 40–50% of maximum gape in rodents optimizes bite force production at the incisors. J. Morphol., 2009. © 2009 Wiley-Liss, Inc.

66 citations


Journal ArticleDOI
TL;DR: Furculae occur in nearly all major clades of theropods, as shown by new theropod specimens from the Early Cretaceous of China and a close inspection of previously collected specimens.
Abstract: The furcula is a structure formed by the midline fusion of the clavicles. This is the element which is unique to theropods and is important for understanding the link between birds and other theropods. New specimens from basal theropods suggest that the furcula appeared very early in theropod history. We review furcula development, function, and morphology, as well as the anatomical terminology applied to it. Furcular morphology is highly variable in crown-group avians but is rather conserved among nonavian theropods. Here we review, or describe for the first time, the furculae in many nonavian theropods. Furculae occur in nearly all major clades of theropods, as shown by new theropod specimens from the Early Cretaceous of China and a close inspection of previously collected specimens. Informative phylogenetic characters pertaining to the furcula occur throughout Theropoda, though care should betake to consider taphonomic effects when describing furcular morphology.

64 citations


Journal ArticleDOI
TL;DR: A detailed description and illustration of the skull of Liotyphlops albirostris in comparison to the skulls of Typhlophis squamosus, LeptotyphLops dulcis, and Typhlops jamaicensis, based on high‐resolution X‐ray computed tomography (HRXCT).
Abstract: This article presents a detailed description and illustration of the skull of Liotyphlops albirostris in comparison to the skulls of Typhlophis squamosus, Leptotyphlops dulcis, and Typhlops jamaicensis, based on high-resolution X-ray computed tomography (HRXCT). The skull of T. squamosus is illustrated and discussed in detail for the first time. A number of uniquely shared derived characters is identified that support the monophyly of the clade Anomalepididae. Anomalepidids retain some features that are plesiomorphic relative to other scolecophidians, such as the presence of a supratemporal (except in Anomalepis) and ectopterygoid. The homology of the element located posteroventral to the eyeball in anomalepidids and variably referred to as a jugal or postorbital (or a fusion of both in Anomalepis) remains unknown. Scolecophidians exhibit a highly derived skull morphology adapted to head-first burrowing. Both anomalepidids and typhlopids evolved a condition known as an "outer shell design," but did so in different ways. Leptotyphlopids combine elements of both the anomalepidid and typhlopid snout morphologies.

Journal ArticleDOI
TL;DR: It is shown here that otolith morphology and statistical analyses of otolith variables can contribute to the detection of genetic differentiation in Aphanius, and that isolated A. dispar populations may be capable of evolving into new species within short periods of time.
Abstract: Aphanius Nardo is a large genus of teleost fishes in the Old World, with 19 described species. Several of these species have only recently been recognized and additional species can be expected from isolated populations in remote areas. We show here that otolith morphology and statistical analyses of otolith variables can contribute to the detection of genetic differentiation in Aphanius. We studied samples of eight Aphanius dispar populations from the southeastern part of the Arabian Peninsula. Two populations originate from freshwater habitats far inland and probably have been isolated since the late Holocene some 4,000 years ago, three populations come from freshwater habitats with occasional connections to the sea, one population originates from a coastal site, and two were artificially introduced populations. The coastal population is interpreted as possessing the basic otolith type of A. dispar. The basic otolith type also occurs in fishes from the freshwater habitat which is located closest to the coast. Otoliths from the two other freshwater populations with occasional connections to the coast differ slightly from the basic type. However, the two populations from the long-term isolated freshwater habitats far inland show distinct morphological changes. Our results are consistent with the hypotheses that i) otolith morphology is primarily genetically determined and is little influenced by physical parameters of the habitat, and ii) isolated A. dispar populations may be capable of evolving into new species within short periods of time.

Journal ArticleDOI
TL;DR: The complete absence of serotonin‐ir neurons in the ventral nervous system, which is a unique condition in arthropods and herein interpreted as a derived character, is reported.
Abstract: Mystacocarida is a species-poor group of minute crustaceans with unclear phylogenetic affinities. Previous studies have highlighted the putative "primitiveness" of several mystacocarid features, including the architecture of the nervous system. Recent studies on arthropod neuroarchitecture have provided a wealth of characters valuable for phylogenetic reconstructions. To permit and facilitate comparison with these data, we used immunohistochemical labeling (against acetylated alpha-tubulin, serotonin and FMRFamide) on the mystacocarid Derocheilocaris remanei, analyzing it with confocal laser-scanning microscopy and 3D reconstruction. The mystacocarid brain is fairly elongated, exhibiting a complicated stereotypic arrangement of neurite bundles. However, none of the applied markers provided evidence of structured neuropils such as a central body or olfactory glomeruli. A completely fused subesophageal ganglion is not present, all segmental soma clusters of the respective neuromeres still being delimitable. The distinct mandibular commissure comprises neurite bundles from more anterior regions, leading us to propose that it may have fused with an ancestral posterior tritocerebral commissure. The postcephalic ventral nervous system displays a typical ladder-like structure with separated ganglia which bears some resemblance to larval stages in other crustaceans. Ganglia and commissures are also present in the first three limbless "abdominal" segments, which casts doubt on the notion of a clear-cut distinction between thorax and abdomen. An unpaired longitudinal median neurite bundle is present and discussed as a potential tetraconate autapomorphy. Additionally, a paired latero-longitudinal neurite bundle extends along the trunk. It is connected to the intersegmental nerves and most likely fulfils neurohemal functions. We report the complete absence of serotonin-ir neurons in the ventral nervous system, which is a unique condition in arthropods and herein interpreted as a derived character.

Journal ArticleDOI
TL;DR: The study of the development of the skeleton during larval development up to the end of metamorphosis revealed heterochronic differences in skeletal development compared with that of most anurans; these involve the complete differentiation of skull bones and the extensive ossification of the postcranial skeleton before completion of meetingamorphosis.
Abstract: The aquatic frog Pseudis platensis has a giant tadpole, long developmental time, and dissociated metamorphic events that include later offset of larval so- matic morphologies Moreover, when the tadpole meta- morphoses, the young frog is nearly the size of an adult, suggesting that this species has low rates of postmeta- morphic growth Herein, we study the development of the skeleton during larval development up to the end of metamorphosis, which is denoted by the complete lost of the tail in P platensis Our study revealed heterochronic differences in skeletal development compared with that of most anurans; these involve the complete differentia- tion of skull bones and the extensive ossification of the postcranial skeleton before completion of metamorpho- sis The skull of metamorphosing P platensis has an ossified sphenethmoid and a fully formed plectral appa- ratus, thus differing with regard to the pattern observed in most anurans in which both developmental events take place during the postmetamorphic life Despite the fact that the iliosacral articulation and the urostyle are present at the end of metamorphosis as in most anu- rans, ossification/calcification of carpus, tarsus, and limb epihyses during metamorphosis of P platensis suggests that the postcranial skeleton lacks postmetamorphic growth This study also includes a discussion of the pat- tern of development of the plectral apparatus, which allows us to propose a new hypothesis regarding pars externa plectri homology J Morphol 270:205-220, 2009 2008 Wiley-Liss, Inc

Journal ArticleDOI
TL;DR: The relationship of body shape morphology with habitat use, trophic level, and systematics in the majority of known Sparidae species was quantitatively described and the phylogenetic relationship among the different subfamilies was quantified based on the analysis of shape in relation to Trophic ecology.
Abstract: In many fish species, morphological similarity can be considered as a proxy for similarities in habitat use. The Sparidae family includes species that are recognized for common morphological features such as structure and positioning of the fins and specialized dentition. The aim of this study was to quantitatively describe the relationship of body shape morphology with habitat use, trophic level, and systematics in the majority of known Sparidae species (N = 92). This ecomorphological comparison was performed with a geometric morphometric approach considering as variables the Trophic Index (TROPH), the habitat (i.e., classified as demersal, benthopelagic and reef associated) and the phylogenetic relationship of species at the subfamily level. The analysis by the TROPH variable showed a positive relation with shape because the morphological features of all the species are strongly correlated with their trophic behavior (e.g., herbivore species have a smaller mouth gap that make them able to feed upon sessile resources). The morphological analysis according to the Habitat variable was used to classify species according to a feeding-habitat niche in terms of portion of the water column and seabed space where species mostly perform their behavioral activities. We described three kinds of morphological designs in relation to a benthopelagic, demersal and reef-associated habit. The six subfamily groups were morphologically well distinguishable and the cladogram relative to Mahalanobis' morphological distances was compared with those proposed by other authors. We also quantified the phylogenetic relationship among the different subfamilies based on the analysis of shape in relation to trophic ecology, confirming the observations of the authors.

Journal ArticleDOI
TL;DR: The new species is characterized by having a very complicated life cycle that involves a large cyst‐like mega‐larva, two reduced larval instars and the Higgins‐larvae eating their maternal stage from within, an adult stage is missing.
Abstract: A new species of Loricifera, Urnaloricus gadi nov. gen. et nov. sp., is described from the Faroe Bank, located Southwest of the Faroe Islands, North Atlantic. The new species does not fit into any known families of Loricifera and therefore it is grouped into a new family Urnaloricidae nov. fam. The new species is characterized by having a very complicated life cycle that involves a large cyst-like mega-larva, two reduced larval instars and the Higgins-larvae eating their maternal stage from within. An adult stage is missing. This form of reproduction is called viviparous pedogenesis and normally is found only in nematodes and insects. In the life cycle of Urnaloricidae nov. fam., there are two types of free-living larval stages: a Higgins-larva and a mega-larva. The latter is found in two different forms, a pre- and a cyst-forming mega-larva. Additionally, there are two reduced life history stages, the reduced larval stage (probably a postlarva) and the ghost-larval stage inside the cyst-forming mega-larva. The external morphology of the two forms of mega-larvae is much reduced, e.g., the introvert has only a few rows of scalids when compared with the Higgins-larva. The pre mega-larva is free-living and can sometimes be covered with coccoliths. Internally, a large ovary with a few oocytes, a digestive system, and an internal armature with retracted scalids are present. The pre mega-larva presumably molts into a cyst-forming mega-larva and thereby the ovary is now seen inside the cyst-forming mega-larva. The cyst-forming mega-larva has the same structures as in the pre mega-larva though here the scalids are protruded and there is a gonopore. Inside the cyst-forming mega-larva the ovary produces more oocytes and begins to fill out the entire lumen. At this stage the cyst-forming mega-larva molts first to the presumed postlarval stage, and then this stage molts to a ghost-larva. Hence, the ovary now matures inside the ghost-larva, which is surrounded by both the cuticle of the reduced postlarval stage and the cuticle of the cyst-forming mega-larva. The oocytes mature into eggs, and then into embryos and finally into Higgins-larvae while reabsorbing all the tissue of their maternal stage, the ghost-larva. During this maturation the cuticle of the cyst-forming mega-larva starts to harden and become cyst-like. The fully developed Higgins-larvae emerge through the gonopore of the cyst-forming mega-larva by penetrating the thin cuticles of the ghost-larva and the postlarva. The embryos have holoblastic radial cleavage and later a fluid-filled blastocoel is formed. The eggshells are extremely elastic; hence, they can become very elongated as the embryos mature into Higgins-larvae. J. Morphol., 2009. © 2008 Wiley-Liss, Inc.

Journal ArticleDOI
TL;DR: The buccal cavity of an herbivorous fish, Cirrhinus mrigala, was investigated by scanning electron microscopy to determine its surface ultrastructure and it was found that gustation is well developed and the fish is highly responsive in the evaluation and the selection of the preferred palatable food items.
Abstract: The buccal cavity of an herbivorous fish, Cirrhinus mrigala, was investigated by scanning electron microscopy to determine its surface ultrastructure. The buccal cavity shows significant adaptive modifications in relation to food and feeding ecology of the fish. The buccal cavity of the fish is of modest size and limited capacity, which is considered an adaptation with respect to the small-sized food items primarily consumed by the fish that could be accommodated in a small space. Modification of surface epithelial cells, on the upper jaw, into characteristic structures—the unculi—is considered an adaptation to browse or scrap, to grasp food materials, e.g., algal felts, and to protect the epithelial surface against abrasions, likely to occur during their characteristic feeding behavior. Differentiation of the highly specialized lamellar organ on the anterior region of the palate could be an adaptation playing a significant role in the selection, retention, and sorting out of palatable food particles from the unpalatable items ingested by the fish. The filamentous epithelial projections and the lingulate epithelial projections on the palatal organ in the posterior region of the palate are considered to serve a critical function in final selection, handling, maneuvering, and propelling the food particles toward the esophagus. The abundance of different categories of taste buds in the buccal cavity suggests that gustation is well developed and the fish is highly responsive in the evaluation and the selection of the preferred palatable food items. The secretions of mucous cells in the buccal cavity are associated with multiple functions—particle entrapment, lubrication of the buccal epithelium and food particles to assist smooth passage of food, and to protect the epithelium from possible abrasion. These morphological characteristics ensure efficient working of the buccal cavity in the assessment of the quality and palatability of ingested food, their retention and transport toward the esophagus. Such an adaptation may be essential in conducting the function most basic to the survival of the individuals and species—feeding. J. Morphol. 2009. © 2009 Wiley-Liss, Inc.

Journal ArticleDOI
TL;DR: The quadrate's morphology is inconsistent with the currently accepted anseriform phylogeny that nests Presbyornis within the crown‐group as a close relative of the Anatidae and shares ancestral galloanserine characters with the Megapodiidae, the earliest branch of extant galliforms.
Abstract: Despite the notoriety, phylogenetic significance, and large number of available specimens of Presbyornis, its cranial anatomy has never been studied in detail, and its quadrate has been partly misinterpreted We studied five quadrates of Presbyornis that reveal features hitherto unknown in the anseriforms but otherwise present in galliforms As a result, we analyzed the variable quadrate characters among all extant galloanserine families and identified synapomorphies and other morphological variation among the major galloanserine clades In terms of quadrate morphology, Presbyornis is more plesiomorphic than any extant anseriform (including the Anhimidae) and shares ancestral galloanserine characters with the Megapodiidae, the earliest branch of extant galliforms The quadrate's morphology is inconsistent with the currently accepted anseriform phylogeny that nests Presbyornis within the crown-group as a close relative of the Anatidae The presbyornithid quadrates exhibit an unusual variation in the presence of a caudomedial pneumatic foramen, which we interpret as a result of a discontinuous change in the growth path of the pneumatic diverticulum Another episode of morphogenetic imbalance in the growth path of the pneumatic diverticulum may have accompanied the disappearance of the basiorbital pneumatic foramen (along with the pneumatization of the pterygoid) at the origin of the crown-group anseriforms This episode is marked by the striking individual variation in the presence and location of pneumatic foramina in the mandibular part of the quadrate in the Anhimidae

Journal ArticleDOI
TL;DR: The results of this work support the interpretation that the external skeleton of Bothriolepis canadensis is comprised exclusively of cellular dermal bone tissue, and highlight the importance of anatomical and ontogenetic context in the interpretation of fossil tissues.
Abstract: We used light microscopy and scanning electron microscopy to compile a complete histological description of the dermal skeleton of the antiarch placoderm, Bothriolepis canadensis. Placodermi is most often cited as the sister group of crown group Gnathostomata, but some recent authors propose that placoderms instead represent a paraphyly of forms leading to the crown. In either phylogenetic scenario, comparative analysis of placoderm and gnathostome histological data allows us to address the primitive condition of both the gnathostome skeleton and the jawed vertebrate skeleton. The results of this work support the interpretation that the external skeleton of Bothriolepis canadensis is comprised exclusively of cellular dermal bone tissue. The unique stratification of the antiarch thoracic skeleton that has led to controversial interpretations in the past is explained by the nature of the articulations between adjacent elements. Skeletal features long thought to be gnathostome innovations are instead discovered to arise along the gnathostome stem. These innovations include secondary osteons, the systematic reconstruction of the skeleton in response to growth, and unfused, overlapping joints that enable marginal growth while maximizing the area of the articulation surface. The extensive evidence for spheritic mineralization agrees with a model of the skeleton as one capable of a high growth rate and active remodeling. Dermal skeletal development in both placoderms and osteichthyans is primarily skeletogenetic with only a minor odontogenetic contribution in some taxa. This demonstrates the problem inherent with assuming a broad application for those hypotheses of dermal skeletal evolution that are based on a chondrichthyan model. Our results highlight the importance of anatomical and ontogenetic context in the interpretation of fossil tissues.

Journal ArticleDOI
TL;DR: A dominant role for the vertebrae, intervertebral joints, and the body will more accurately predict differences in body curvature during swimming rather than a single meristic such as total vertebral number alone is proposed.
Abstract: Given the diversity of vertebral morphologies among fishes, it is tempting to propose causal links between axial morphology and body curvature. We propose that shape and size of the vertebrae, intervertebral joints, and the body will more accurately predict differences in body curvature during swimming rather than a single meristic such as total vertebral number alone. We examined the correlation between morphological features and maximum body curvature seen during routine turns in five species of shark: Triakis semifasciata, Heterodontus francisci, Chiloscyllium plagiosum, Chiloscyllium punctatum, and Hemiscyllium ocellatum. We quantified overall body curvature using three different metrics. From a separate group of size-matched individuals, we measured 16 morphological features from precaudal vertebrae and the body. As predicted, a larger pool of morphological features yielded a more robust prediction of maximal body curvature than vertebral number alone. Stepwise linear regression showed that up to 11 features were significant predictors of the three measures of body curvature, yielding highly significant multiple regressions with r(2) values of 0.523, 0.537, and 0.584. The second moment of area of the centrum was always the best predictor, followed by either centrum length or transverse height. Ranking as the fifth most important variable in three different models, the body's total length, fineness ratio, and width were the most important non-vertebral morphologies. Without considering the effects of muscle activity, these correlations suggest a dominant role for the vertebral column in providing the passive mechanical properties of the body that control, in part, body curvature during swimming.

Journal ArticleDOI
TL;DR: This essay attempts a synthesis of sauropsid cardiovascular development based on the limited literature and identifies fertile regions for future studies of this diverse vertebrate lineage.
Abstract: Evolutionary morphologists and physiologists have long recognized the phylogenetic significance of the ectothermic sauropsids. Sauropids have been classically considered to bridge between early tetrapods, ectotherms, and the evolution of endotherms. This transition has been associated with many modifications in cardiovascular form and function, which have changed dramatically during the course of vertebrate evolution. Most cardiovascular studies have focused upon adults, leaving the development of this critical system largely unexplored. In this essay, we attempt a synthesis of sauropsid cardiovascular development based on the limited literature and indicate fertile regions for future studies. Early morphological cardiovascular development, i.e., the basic formation of the tube heart and the major pulmonary and systemic vessels, is similar across tetrapods. Subsequent cardiac chamber development, however, varies considerably between developing chelonians, squamates, crocodilians, and birds, reflected in the diversity of adult ventricular structure across these taxa. The details of how these differences in morphology develop, including the molecular regulation of cardiac and vascular growth and differentiation, are still poorly understood. In terms of the functional maturation of the cardiovascular system, reflected in physiological mechanisms for regulating heart rate and cardiac output, recent work has illustrated that changes during ontogeny in parameters such as heart rate and arterial blood pressure are somewhat species-dependent. However, there are commonalities, such as a β-adrenergic receptor tone on the embryonic heart appearing prior to 60% of development. Differential gross morphological responses to environmental stressors (oxygen, hydration, temperature) have been investigated interspecifically, revealing that cardiac development is relatively plastic, especially, with respect to change in heart growth. Collectively, the data assembled here reflects the current limited morphological and physiological understanding of cardiovascular development in sauropsids and identifies key areas for future studies of this diverse vertebrate lineage. J. Morphol., 2009. © 2009 Wiley-Liss, Inc.

Journal ArticleDOI
TL;DR: The stringent correlations between avian eyeball morphology and optical function render this system ideal for the analysis of form–function relationships and allow for an accurate estimate of optically significant eyeball soft‐tissue dimensions such as diameter, axial length, and LD in fossil species.
Abstract: Eyeball structures such as the lens diame- ter (LD) and axial length are generally assumed to be highly correlated with optically meaningful parameters. However, these optical constraints on eyeball macroanat- omy have never been tested explicitly. Tradeoffs between benefits of improved visual performance and cost of ad- aptation from an increase of tissue production predict that when eyeball size increases, optical parameters such as posterior nodal distance and maximum entrance pupil diameter should increase isometrically with eye- ball axial length and LD, respectively. Here I show quantitatively that the interspecific allometry of the avian eye largely follows this predicted isometry. Addi- tionally, I elaborate a method to estimate optically sig- nificant eyeball soft-tissue dimensions from scleral ring and orbit morphology based on analyses of interspecific allometry in Aves. The stringent correlations between avian eyeball morphology and optical function render this system ideal for the analysis of form-function rela- tionships and allow for an accurate estimate of optically significant eyeball soft-tissue dimensions such as diame- ter, axial length, and LD in fossil species. J. Morphol. 270:759-773, 2009. 2009 Wiley-Liss, Inc.

Journal ArticleDOI
TL;DR: A morphological framework for the use of muscular architecture in elucidating tardigrade phylogeny is established and it becomes obvious that eutardigrades possess very similar numbers and arrangement of muscles, yet differ in a number of significant details of their myoanatomy.
Abstract: The muscular architecture of Halobiotus crispae (Eutardigrada: Hypsibiidae) was examined by means of fluorescent-coupled phalloidin in combination with confocal laser scanning microscopy and computer-aided three-dimensional reconstruction, in addition to light microscopy (Nomarski), scanning electron microscopy, and transmission electron microscopy (TEM) The somatic musculature of H crispae is composed of structurally independent muscle fibers, which can be divided into a dorsal, ventral, dorsoventral, and a lateral musculature Moreover, a distinct leg musculature is found The number and arrangement of muscles differ in each leg Noticeably, the fourth leg contains much fewer muscles when compared with the other legs Buccopharyngeal musculature (myoepithelial muscles), intestinal musculature, and cloacal musculature comprise the animal's visceral musculature TEM of stylet and leg musculature revealed ultrastructural similarities between these two muscle groups Furthermore, microtubules are found in the epidermal cells of both leg and stylet muscle attachments This would indicate that the stylet and stylet glands are homologues to the claw and claw glands, respectively When comparing with previously published data on both heterotardigrade and eutardigrade species, it becomes obvious that eutardigrades possess very similar numbers and arrangement of muscles, yet differ in a number of significant details of their myoanatomy This study establishes a morphological framework for the use of muscular architecture in elucidating tardigrade phylogeny J Morphol 2009 © 2009 Wiley-Liss, Inc

Journal ArticleDOI
TL;DR: It is proposed that the suite of morphological characters described here enable a functional innovation, “picking,” which leads to novel trophic habits within this group toward increased reliance on picking individual prey from the water column/substrate or for scraping encrusting material from the substrate.
Abstract: Cyprinodontiforms are a diverse and speciose order that includes topminnows, pupfishes, swordtails, mosquitofishes, guppies, and mollies. Sister group to the Beloniformes and Atheriniformes, Cyprinodontiformes contains approximately twice the number of species of these other two orders combined. Recent studies suggest that this group is well suited to capturing prey by "picking" small items from the water surface, water column, and the substrate. Because picking places unusual performance demands on the feeding apparatus, this mode of prey capture may rely upon novel morphological modifications not found in more widespread ram- or suction-based feeding mechanisms. To assess this evolutionary hypothesis, we describe the trophic anatomy of 16 cyprinodontiform species, selected to broadly represent the order as well as capture intrageneric variation. The group appears to have undergone gradual morphological changes to become increasingly specialized for picking and scraping behaviors. We also identify a suite of functional characters related to the acquisition of a novel and previously undescribed mechanism of premaxillary protrusion and retraction, including: modification of the "premaxillomandibular" ligament (which connects each side of the premaxilla to the ipsilateral mandible, or lower jaw), a novel architecture of the ligaments and bony elements that unite the premaxillae, maxillae and palatine bones, and novel insertions of the adductor muscles onto the jaws. These morphological changes to both the upper and lower jaws suggest an evolutionary trend within this group toward increased reliance on picking individual prey from the water column/substrate or for scraping encrusting material from the substrate. We propose that the suite of morphological characters described here enable a functional innovation, "picking," which leads to novel trophic habits.

Journal ArticleDOI
TL;DR: It is suggested that the unique presence of certain visceral skeletal elements in chondrichthyans make oviparous chondRichthyans an ideal system for addressing questions of endoskeletal axial patterning during development.
Abstract: Chondrichthyan fishes possess visceral skeletons that differ considerably, morphologically, from those of their sister taxon, the osteichthyans. Here, we use histological techniques and whole-mount skeletal preparations to visualize and describe the sequence of visceral skeletal condensation and chondrogenesis in a chondrichthyan, the little skate (Leucoraja erinacea). We demonstrate that visceral skeletal condensation begins rostrally, with the mandibular arch, and progresses caudally with the hyoid arch and posterior branchial arches condensing soon after. We provide a detailed account of the condensation and chondrogenesis of all major components of the L. erinacea visceral skeleton and discuss these data in the context of what is known from classical descriptions of chondrichthyan visceral skeletal development. Significant differences exist between the hypobranchial and basibranchial skeleton of L. erinacea and other chondrichthyan species, and the possible evolutionary and developmental significance of this is considered. We discuss the homology of the chondrichthyan hyoid arch and, based on patterns of mesenchymal condensation, we propose a model of condensation splitting and diversification that may account for the morphological diversification of gnathostome branchial arch derivatives. Finally, we suggest that the unique presence of certain visceral skeletal elements in chondrichthyans make oviparous chondrichthyans an ideal system for addressing questions of endoskeletal axial patterning during development.

Journal ArticleDOI
TL;DR: Considerable morphological diversity of the odontophoral cartilage was found within Caenogastropoda, including the presence of thin cartilaginous appendages, asymmetrically overlapping cartilages, and reflexed cartilage margins.
Abstract: Odontophoral cartilages are located in the molluscan buccal mass and support the movement of the radula during feeding. The structural diversity of odontophoral cartilages is currently known only from limited taxa, but this information is important for interpreting phylogeny and for understanding the biomechanical operation of the buccal mass. Caenogastropods exhibit a wide variety of feeding strategies, but there is little comparative information on cartilage morphology within this group. The morphology of caenogastropod odontophoral cartilages is currently known only from dissection and histology, although preliminary results suggest that they may be structurally diverse. A comparative morphological survey of 18 caenogastropods and three noncaenogastropods has been conducted, sampling most major caenogastropod superfamilies. Three-dimensional models of the odontophoral cartilages were generated using X-ray microscopy (micro-CT) and reconstruction by image segmentation. Considerable morphological diversity of the odontophoral cartilages was found within Caenogastropoda, including the presence of thin cartilaginous appendages, asymmetrically overlapping cartilages, and reflexed cartilage margins. Many basal caenogastropod taxa possess previously unidentified cartilaginous support structures below the radula (subradular cartilages), which may be homologous to the dorsal cartilages of other gastropods. As subradular cartilages were absent in carnivorous caenogastropods, adaptation to trophic specialization is likely. However, incongruence with specific feeding strategies or body size suggests that the morphology of odontophoral cartilages is constrained by phylogeny, representing a new source of morphological characters to improve the phylogenetic resolution of this group. J. Morphol. 2009. © 2008 Wiley-Liss, Inc.

Journal ArticleDOI
TL;DR: Seven elasmobranch species, a group known for their highly‐developed sense of smell, were examined for developmental changes in the number of olfactory lamellae, the size of the surface area of the sensory Olfactory epithelium and the mass of both the olf factory rosettes, and the o aroma bulbs.
Abstract: Seven elasmobranch species, a group known for their highly-developed sense of smell, were examined for developmental changes in the number of olfactory lamellae, the size of the surface area of the sensory olfactory epithelium and the mass of both the olfactory rosettes (primary input to the CNS), and the olfactory bulbs. Within each species, juveniles possessed miniature versions of the adult olfactory organs, visually not distinguishable from these and without any obvious structural differences (e.g., with respect to the number of lamellae and the extent of secondary folding) between differently sized individuals. The size of the olfactory organs was positively correlated with body length and body mass, although few species showed proportional size scaling. In Aetobatus narinari and Aptychotrema rostrata, olfactory structures increased in proportion to body size. With respect to the growth of the olfactory bulb, all species showed allometric but not proportional growth. Olfaction may be of particular importance to juveniles in general, which are often subjected to heavy predation rates and fierce inter/intraspecific competition. Accordingly, it would be advantageous to possess a fully functional olfactory system early on in development. Slow growth rates of olfactory structures could then be attributed to a greater reliance on other sensory systems with increasing age or simply be regarded as maintaining an already optimized olfactory system.

Journal ArticleDOI
TL;DR: A synthetic, comprehensive, morphological model for the regeneration of a generalized, adult contour feather is provided and a new developmental role for a tissue unique to feathers, the medullary pith of the rachis and barb rami, is described.
Abstract: Understanding of the regeneration of feathers, despite a 140 year tradition of study, has remained substantially incomplete. Moreover, accumulated errors and mis-statements in the literature have confounded the intrinsic difficulties in describing feather regeneration. Lack of allusion to Rudall's (Rudall [1947] Biochem Biophys Acta 1:549-562) seminal X-ray diffraction study that revealed two distinct keratins, beta- and alpha-, in a mature feather, is one of the several examples where lack of citation long inhibited progress in understanding. This article reviews and reevaluates the available literature and provides a synthetic, comprehensive, morphological model for the regeneration of a generalized, adult contour feather. Particular attention is paid to several features that have previously been largely ignored. Some of these, such as the beta-keratogenic sheath and the alpha-keratogenic, supra-umbilical, pulp caps, are missing from mature, functional feathers sensu stricto because they are lost through preening, but these structures nevertheless play a critical role in development. A new developmental role for a tissue unique to feathers, the medullary pith of the rachis and barb rami, and especially its importance in the genesis of the superior umbilical region (SUR) that forms the transition from the spathe (rachis and vanes) to the calamus, is described. It is postulated that feathers form through an intricate interplay between cyto- and histodifferentiative processes, determined by patterning signals that emanate from the dermal core, and a suite of interacting biomechanical forces. Precisely regulated patterns of loss of intercellular adhesivity appear to be the most fundamental aspect of feather morphogenesis and regeneration: rather than a hierarchically branched structure, it appears more appropriate to conceive of feathers as a sheet of mature keratinocytes that is "full of holes.

Journal ArticleDOI
TL;DR: The ultrastructure of spermatozoa and spermatophores of 19 palaeotropical freshwater crab species is investigated and a differentiation into two groups (Gecarcinucinae and Parathelphusinae) is not supported by the present sperMatological data.
Abstract: We investigated the ultrastructure of sper- matozoa and spermatophores of 19 palaeotropical fresh- water crab species (12 species of the Gecarcinucidae, 6 of the Potamidae (Potamiscinae), and 1 species of the Potamonautidae (Deckeniinae: Hydrothelphusini)). The investigated Potamiscinae have densely packed coeno- spermic spermatophores with the exception of Thai- phusa sirikit and Johora singaporensis that exhibit cleistospermia. In contrast, in the Gecarcinucidae the spermatozoa are loosely embedded in a mucous matrix. The gecarcinucid and potamiscine sperm differ, further- more, in acrosomal structure and size. The acrosome in the Gecarcinucidae is much smaller and spherical, while the larger acrosome in the Potamiscinae has the tend- ency to be depressed. In the Potamiscinae, an additional middle acrosomal zone evolved between the acrosome ray zone and the outer acrosomal zone. Within the Gecarcinucidae, a differentiation into two groups (Gecar- cinucinae and Parathelphusinae) is not supported by the present spermatological data. The sperm morphology of Hydrothelphusa aff. madagascariensis (Potamonautidae: Deckeniinae) differs from Potamonautes sidneyi (Pota- monautidae: Potamonautinae) in acrosomal size and shape, and in the absence of a periopercular rim. A closer relationship of Deckeniinae and Gecarcinucidae cannot be confirmed by spermatology. J. Morphol.

Journal ArticleDOI
TL;DR: Dental morphology and wear patterns suggest two types of power stroke: a slicing–crushing stroke associated dominantly with anterior tooth–food–tooth contact during in the early stage of mastication, and a grinding stroke with significant posterior tooth–to tooth contact and a dynamic transverse movement occurring later.
Abstract: Iharkutosuchus makadii is a basal eusuchian crocodylian with multicusped teeth discovered from the Upper Cretaceous of Hungary. Skull and dentition morphology indicates an active food processing for this crocodylian. First among crocodylians, a combination of different analyses, including cranial adductor muscle reconstruction, tooth wear pattern, and enamel microstructure studies, is applied here to support this hypothesis. Data provide unambiguous evidence for significant dental occlusion that was a result of a unique, transverse mandibular movement. Reconstruction of the jaw adductors demonstrates strong muscles responsible for slow but active jaw closure as the motor of transverse jaw movement; nevertheless muscles producing rapid jaw closure were reduced. Macrowear orientations show a dominantly transverse movement of the mandibles completed by a slight anteroposterior component. Along with quadrate morphology, macrowear further indicates that this motion was accomplished by alternate rotation of the mandibles about the quadrate condyles. Dental morphology and wear patterns suggest two types of power stroke: a slicing-crushing stroke associated dominantly with anterior tooth-food-tooth contact (with a low degree of transverse mandibular movement) during in the early stage of mastication, and a grinding stroke with significant posterior tooth-tooth contact and a dynamic transverse movement occurring later. The patterns of microwear show a diverse diet for Iharkutosuchus including both soft and hard items. This is also supported by the microstructure of the thick, wrinkled enamel built up mostly by poorly developed columnar units. Based on wear patterns, ontogenetic variation in feeding habits of Iharkutosuchus is also recognized.