scispace - formally typeset
Search or ask a question

Showing papers in "Mass Spectrometry Reviews in 2011"


Journal ArticleDOI
TL;DR: This review gives a detailed description on when matrix effects (ME) might be expected, and how they can be evaluated, and the main strategies to overcome these phenomena are described in detail.
Abstract: Matrix-dependent signal suppression or enhancement represents a major drawback in quantitative analysis with liquid chromatography coupled to atmospheric pressure ionization mass spectrometry (LC-API-MS). Because matrix effects (ME) might exert a detrimental impact on important method parameters (limit of detection, limit of quantification, linearity, accuracy, and precision), they have to be tested and evaluated during validation procedure. This review gives a detailed description on when these phenomena might be expected, and how they can be evaluated. The major sources of ME are discussed and illustrated with examples from bioanalytical, pharmaceutical, environmental, and food analysis. Because there is no universal solution for ME, the main strategies to overcome these phenomena are described in detail. Special emphasis is devoted to the sample-preparation procedures as well as to the recent improvements on chromatographic and mass spectrometric conditions. An overview of the main calibration techniques to compensate for ME is also presented. All these solutions can be used alone or in combination to retrieve the performance of the LC-MS for a particular matrix-analyte combination.

631 citations


Journal ArticleDOI
TL;DR: The development of selected ion flow tube mass spectrometry, SIFT-MS, is described from its inception as the modified very large SIFT instruments to the smaller but bulky transportable instruments and finally to the current smallest Profile 3 instruments that have been located in various places, including hospitals and schools to obtain on-line breath analyses.
Abstract: The development of selected ion flow tube mass spectrometry, SIFT-MS, is described from its inception as the modified very large SIFT instruments used to demonstrate the feasibility of SIFT-MS as an analytical technique, towards the smaller but bulky transportable instruments and finally to the current smallest Profile 3 instruments that have been located in various places, including hospitals and schools to obtain on-line breath analyses. The essential physics and engineering principles are discussed, which must be appreciated to design and construct a SIFT-MS instrument. The versatility and sensitivity of the Profile 3 instrument is illustrated by typical mass spectra obtained using the three precursor ions H(3)O(+), NO(+) and O(2)(+)·, and the need to account for differential ionic diffusion and mass discrimination in the analytical algorithms is emphasized to obtain accurate trace gas analyses. The performance of the Profile 3 instrument is illustrated by the results of several pilot studies, including (i) on-line real time quantification of several breath metabolites for cohorts of healthy adults and children, which have provided representative concentration/population distributions, and the comparative analyses of breath exhaled via the mouth and nose that identify systemic and orally-generated compounds, (ii) the enhancement of breath metabolites by drug ingestion, (iii) the identification of HCN as a marker of Pseudomonas colonization of the airways and (iv) emission of volatile compounds from urine, especially ketone bodies, and from skin. Some very recent developments are discussed, including the quantification of carbon dioxide in breath and the combination of SIFT-MS with GC and ATD, and their significance. Finally, prospects for future SIFT-MS developments are alluded to.

298 citations


Journal ArticleDOI
TL;DR: Electrospray and matrix assisted laser desorption ionization generate abundant molecular ion species from all known lipids that have long chain fatty acyl groups esterified or amidated to many different polar headgroup features, and the mechanisms of formation of many of these lipid product ions have been studied in detail.
Abstract: Electrospray and matrix assisted laser desorption ionization generate abundant molecular ion species from all known lipids that have long chain fatty acyl groups esterified or amidated to many different polar headgroup features. Molecular ion species include both positive ions from proton addition [M+H](+) and negative ions from proton abstraction [M-H](-) as well as positive ions from alkali metal attachment and negative ions from acetate or chloride attachment. Collisional activation of both MALDI and ESI behave very similarly in that generated molecular species yield product ions that reveal many structural features of the fatty acyl lipids that can be detected in tandem mass spectrometric experiments. For many lipid species, collision induced dissociation of the positive [M+H](+) reveals information about the polar headgroup, while collision induced dissociation of the negative [M-H](-) provides information about the fatty acyl chain. The mechanisms of formation of many of these lipid product ions have been studied in detail and many established pathways are reviewed here. Specific examples of mass spectrometric behavior of several molecular species are presented, including fatty acids, triacylglycerol, phosphatidic acid, phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, phosphatidylglycerol, ceramide, and sphingomeylin.

205 citations


Journal ArticleDOI
TL;DR: In the present review, the utility of the different analytical strategies and technologies used for MS-based metabolomics with a particular focus on LC-MS are described and compared.
Abstract: Metabonomics and metabolomics represent one of the three major platforms in systems biology. To perform metabolomics it is necessary to generate comprehensive "global" metabolite profiles from complex samples, for example, biological fluids or tissue extracts. Analytical technologies based on mass spectrometry (MS), and in particular on liquid chromatography-MS (LC-MS), have become a major tool providing a significant source of global metabolite profiling data. In the present review we describe and compare the utility of the different analytical strategies and technologies used for MS-based metabolomics with a particular focus on LC-MS. Both the advantages offered by the technology and also the challenges and limitations that need to be addressed for the successful application of LC-MS in metabolite analysis are described. Data treatment and approaches resulting in the detection and identification of biomarkers are considered. Special emphasis is given to validation issues, instrument stability, and QA/quality control (QC) procedures.

179 citations


Journal ArticleDOI
TL;DR: This article reviews the fragmentation pathways of synthetic polymer ions that have been energized to decompose via collisionally activated dissociation (CAD), the most widely used activation method in polymer analysis.
Abstract: Tandem mass spectrometry (MS/MS) is increasingly applied to synthetic polymers to characterize chain-end or in-chain substituents, distinguish isobaric and isomeric species, and determine macromolecular connectivities and architectures. For confident structural assignments, the fragmentation mechanisms of polymer ions must be understood, as they provide guidelines on how to deduce the desired information from the fragments observed in MS/MS spectra. This article reviews the fragmentation pathways of synthetic polymer ions that have been energized to decompose via collisionally activated dissociation (CAD), the most widely used activation method in polymer analysis. The compounds discussed encompass polystyrenes, poly(2-vinyl pyridine), polyacrylates, poly(vinyl acetate), aliphatic polyester copolymers, polyethers, and poly(dimethylsiloxane). For a number of these polymers, several substitution patterns and architectures are considered, and questions regarding the ionization agent and internal energy of the dissociating precursor ions are also addressed. Competing and consecutive dissociations are evaluated in terms of the structural insight they provide about the macromolecular structure. The fragmentation pathways of the diverse array of polymer ions examined fall into three categories, viz. (1) charge-directed fragmentations, (2) charge-remote rearrangements, and (3) charge-remote fragmentations via radical intermediates. Charge-remote processes predominate. Depending on the ionizing agent and the functional groups in the polymer, the incipient fragments arising by pathways (1)-(3) may form ion-molecule complexes that survive long enough to permit inter-fragment hydrogen atom, proton, or hydride transfers.

178 citations


Journal ArticleDOI
TL;DR: This review focuses on the analytical strategies based upon MS that allow elucidation of the structure of biomolecular constituents and determination of their isotopic values to identify the nature of animal fat components preserved in highly complex and degraded archeological matrices.
Abstract: Mass spectrometry (MS) is an essential tool in the field of biomolecular archeology to characterize amorphous organic residues preserved in ancient ceramic vessels. Animal fats of various nature and origin, namely subcutaneous fats of cattle, sheep, goats, pigs, horses, and also of dairy products, are those most commonly identified in organic residues in archeological pottery. Fats and oils of marine origin have also been revealed. Since the first applications of MS coupled with gas chromatography (GC) in archeology at the end of 1980s, several developments have occurred, including isotopic determinations by GC coupled to isotope ratio MS and identification of triacylglycerols (TAGs) structure by soft ionization techniques (ESI and APCI). The combination of these methods provides invaluable insights into the strategies of exploitation of animal products in prehistory. In this review, I focus on the analytical strategies based upon MS that allow elucidation of the structure of biomolecular constituents and determination of their isotopic values to identify the nature of animal fat components preserved in highly complex and degraded archeological matrices.

141 citations


Journal ArticleDOI
TL;DR: The review shows that the application of polyatomic primary ions with their low damage cross-sections offers hope of a new approach to molecular SIMS imaging by accessing voxels rather than pixels to thereby increase the dynamic signal range in 2D imaging and to extend the analysis to depth profiling and 3D imaging.
Abstract: In principle mass spectral imaging has enormous potential for discovery applications in biology. The chemical specificity of mass spectrometry combined with spatial analysis capabilities of liquid metal cluster beams and the high yields of polyatomic ion beams should present unprecedented ability to spatially locate molecular chemistry in the 100 nm range. However, although metal cluster ion beams have greatly increased yields in the m/z range up to 1000, they still have to be operated under the static limit and even in most favorable cases maximum yields for molecular species from 1 µm pixels are frequently below 20 counts. However, some very impressive molecular imaging analysis has been accomplished under these conditions. Nevertheless although molecular ions of lipids have been detected and correlation with biology is obtained, signal levels are such that lateral resolution must be sacrificed to provide a sufficient signal to image. To obtain useful spatial resolution detection below 1 µm is almost impossible. Too few ions are generated! The review shows that the application of polyatomic primary ions with their low damage cross-sections offers hope of a new approach to molecular SIMS imaging by accessing voxels rather than pixels to thereby increase the dynamic signal range in 2D imaging and to extend the analysis to depth profiling and 3D imaging. Recent data on cells and tissue analysis suggest that there is, in consequence, the prospect that a wider chemistry might be accessible within a sub-micron area and as a function of depth. However, these advances are compromised by the pulsed nature of current ToF-SIMS instruments. The duty cycle is very low and results in excessive analysis times, and maximum mass resolution is incompatible with maximum spatial resolution. New instrumental directions are described that enable a dc primary beam to be used that promises to be able to take full advantage of all the capabilities of the polyatomic ion beam. Some new data are presented that suggest that the aspirations for these new instruments will be realized. However, although prospects are good, the review highlights the continuing challenges presented by the low ionization efficiency and the complications that arise from matrix effects.

138 citations


Journal ArticleDOI
TL;DR: The two closely related ion spectrometric methods used in explosive analyses include mass spectrometry (MS) and ion mobility spectrometers (IMS), and the four requirements-speed, selectivity, sensitivity, and sampling-are fulfilled with both of these methods.
Abstract: In recent years, explosive materials have been widely employed for various military applications and civilian conflicts; their use for hostile purposes has increased considerably. The detection of different kind of explosive agents has become crucially important for protection of human lives, infrastructures, and properties. Moreover, both the environmental aspects such as the risk of soil and water contamination and health risks related to the release of explosive particles need to be taken into account. For these reasons, there is a growing need to develop analyzing methods which are faster and more sensitive for detecting explosives. The detection techniques of the explosive materials should ideally serve fast real-time analysis in high accuracy and resolution from a minimal quantity of explosive without involving complicated sample preparation. The performance of the in-field analysis of extremely hazardous material has to be user-friendly and safe for operators. The two closely related ion spectrometric methods used in explosive analyses include mass spectrometry (MS) and ion mobility spectrometry (IMS). The four requirements—speed, selectivity, sensitivity, and sampling—are fulfilled with both of these methods. © 2011 Wiley Periodicals, Inc., Mass Spec Rev 30:940–973, 2011

137 citations


Journal ArticleDOI
TL;DR: This review focuses on the biomedical application of MALDI-MS for the analysis of small molecules and discusses its favorable properties and its challenges as well as strategies to improve the performance of the technique.
Abstract: Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is an emerging analytical tool for the analysis of molecules with molar masses below 1,000 Da; that is, small molecules. This technique offers rapid analysis, high sensitivity, low sample consumption, a relative high tolerance towards salts and buffers, and the possibility to store sample on the target plate. The successful application of the technique is, however, hampered by low molecular weight (LMW) matrix-derived interference signals and by poor reproducibility of signal intensities during quantitative analyses. In this review, we focus on the biomedical application of MALDI-MS for the analysis of small molecules and discuss its favorable properties and its challenges as well as strategies to improve the performance of the technique. Furthermore, practical aspects and applications are presented.

132 citations


Journal ArticleDOI
TL;DR: This review presents an overview of derivatization-based LC-MS strategy over the past 10 years and covers both the general principles and applications in the fields of pharmaceutical and biomedical analysis, biomarker and metabolomic research, environmental analysis, and food-safety evaluation.
Abstract: The integration of liquid chromatography-mass spectrometry (LC-MS) with derivatization is a relatively new and unique strategy that could add value and could enhance the capabilities of LC-MS-based technologies. The derivatization process could be carried out in various analytical steps, for example, sampling, storage, sample preparation, HPLC separation, and MS detection. This review presents an overview of derivatization-based LC-MS strategy over the past 10 years and covers both the general principles and applications in the fields of pharmaceutical and biomedical analysis, biomarker and metabolomic research, environmental analysis, and food-safety evaluation. The underlying mechanisms and theories for derivative reagent selection are summarized and highlighted to guide future studies.

132 citations


Journal ArticleDOI
TL;DR: In this review mass spectrometric rearrangements of both derivatized and underivatized (native) oligosaccharide structures are discussed and it is suggested that awareness of the occurrence of glycan rearrangement is important for avoiding misinterpretation of tandem mass spectra.
Abstract: Mass spectrometric rearrangement reactions have been reported for a large variety of compounds such as peptides, lipids, and carbohydrates. In the case of carbohydrates this phenomenon has been described as internal residue loss. Resulting fragment ions may be misinterpreted as fragments arising from conventional glycosidic bond cleavages, which may result in incorrect structural assignment. Therefore, awareness of the occurrence of glycan rearrangements is important for avoiding misinterpretation of tandem mass spectra. In this review mass spectrometric rearrangements of both derivatized and underivatized (native) oligosaccharide structures are discussed. Similar phenomena have been reported for glycopeptides, labeled glycan structures and other biomolecules containing a carbohydrate part. Rearrangements in oligosaccharides and glycoconjugates have been observed with different types of mass spectrometers. Most of the observed carbohydrate rearrangement reactions appear to be linked to the presence of a proton. Hence, tandem mass spectrometric analysis of alkali adducts or deprotonated ions often prevents rearrangement reactions, while they may happen with high efficacy with protonated glycoconjugates.

Journal ArticleDOI
TL;DR: An overview of recent studies aimed at developing an improved understanding of the role of protein phosphorylation on normal biological function, and in the onset and progression of disease is provided.
Abstract: Protein phosphorylation is involved in nearly all essential biochemical pathways and the deregulation of phosphorylation events has been associated with the onset of numerous diseases. A multitude of tandem mass spectrometry (MS/MS) and multistage MS/MS (i.e., MS(n) ) strategies have been developed in recent years and have been applied toward comprehensive phosphoproteomic analysis, based on the interrogation of proteolytically derived phosphopeptides. However, the utility of each of these MS/MS and MS(n) approaches for phosphopeptide identification and characterization, including phosphorylation site localization, is critically dependant on the properties of the precursor ion (e.g., polarity and charge state), the specific ion activation method that is employed, and the underlying gas-phase ion chemistries, mechanisms and other factors that influence the gas-phase fragmentation behavior of phosphopeptide ions. This review therefore provides an overview of recent studies aimed at developing an improved understanding of these issues, and highlights the advantages and limitations of both established (e.g., CID) and newly maturing (e.g., ECD, ETD, photodissociation, etc.) yet complementary, ion activation techniques. This understanding is expected to facilitate the continued refinement of existing MS/MS strategies, and the development of novel MS/MS techniques for phosphopeptide analysis, with great promise in providing new insights into the role of protein phosphorylation on normal biological function, and in the onset and progression of disease. © 2011 Wiley Periodicals, Inc., Mass Spec Rev 30:600-625, 2011.

Journal ArticleDOI
TL;DR: A comprehensive review on plant organelle proteomics starting from the significance of organelle in cells, to organelle isolation, to protein identification and to biology and beyond is presented.
Abstract: Organelle proteomics describes the study of proteins present in organelle at a particular instance during the whole period of their life cycle in a cell. Organelles are specialized membrane bound structures within a cell that function by interacting with cytosolic and luminal soluble proteins making the protein composition of each organelle dynamic. Depending on organism, the total number of organelles within a cell varies, indicating their evolution with respect to protein number and function. For example, one of the striking differences between plant and animal cells is the plastids in plants. Organelles have their own proteins, and few organelles like mitochondria and chloroplast have their own genome to synthesize proteins for specific function and also require nuclear-encoded proteins. Enormous work has been performed on animal organelle proteomics. However, plant organelle proteomics has seen limited work mainly due to: (i) inter-plant and inter-tissue complexity, (ii) difficulties in isolation of subcellular compartments, and (iii) their enrichment and purity. Despite these concerns, the field of organelle proteomics is growing in plants, such as Arabidopsis, rice and maize. The available data are beginning to help better understand organelles and their distinct and/or overlapping functions in different plant tissues, organs or cell types, and more importantly, how protein components of organelles behave during development and with surrounding environments. Studies on organelles have provided a few good reviews, but none of them are comprehensive. Here, we present a comprehensive review on plant organelle proteomics starting from the significance of organelle in cells, to organelle isolation, to protein identification and to biology and beyond. To put together such a systematic, in-depth review and to translate acquired knowledge in a proper and adequate form, we join minds to provide discussion and viewpoints on the collaborative nature of organelles in cell, their proper function and evolution.

Journal ArticleDOI
TL;DR: The proper interpretation of tandem MS data can provide important structural information on different types of oligosaccharides including O- and N-linked, as well as explain the large number of linkage combinations and branching.
Abstract: Oligosaccharides play important roles in many biological processes. However, the structural elucidation of oligosaccharides remains a major challenge due to the complexities of their structures. Mass spectrometry provides a powerful method for determining oligosaccharide composition. Tandem mass spectrometry (MS) provides structural information with high sensitivity. Oligosaccharide structures differ from other polymers such as peptides because of the large number of linkage combinations and branching. This complexity makes the analysis of oligosaccharide unique from that of peptides. This tutorial addresses the issue of spectral interpretation of tandem MS under conditions of collision-induced dissociation (CID) and infrared multiphoton dissociation (IRMPD). The proper interpretation of tandem MS data can provide important structural information on different types of oligosaccharides including O- and N-linked.

Journal ArticleDOI
TL;DR: The positive-ion MS-MS spectra of ∼570 compounds were interpreted by chemical and therapeutic class, thus involving a wide variety of drug compound classes, such benzodiazepines, beta-blockers, angiotensin-converting enzyme inhibitors, phenothiazines, dihydropyridine calcium channel blockers, diuretics, local anesthetics, vasodilators, as well as various subclasses of anti-diabetic, antidepressant, analgesic, and anti
Abstract: The identification of drugs and related compounds by LC-MS-MS is an important analytical challenge in several application areas, including clinical and forensic toxicology, doping control analysis, and environmental analysis. Although target-compound based analytical strategies are most frequently applied, at some point the information content of the MS-MS spectra becomes relevant. In this article, the positive-ion MS-MS spectra of a wide variety of drugs and related substances are discussed. Starting point was an MS-MS mass spectral library of toxicologically relevant compounds, available on the internet. The positive-ion MS-MS spectra of ∼570 compounds were interpreted by chemical and therapeutic class, thus involving a wide variety of drug compound classes, such benzodiazepines, beta-blockers, angiotensin-converting enzyme inhibitors, phenothiazines, dihydropyridine calcium channel blockers, diuretics, local anesthetics, vasodilators, as well as various subclasses of anti-diabetic, antidepressant, analgesic, and antihistaminic drugs. In addition, the scientific literature was searched for available MS-MS data of these compound classes and the interpretation thereof. The results of this elaborate study are presented in this article. For each individual compound class, the emphasis is on class-specific fragmentation, as discussing fragmentation of all individual compounds would take far too much space. The recognition of class-specific fragmentation may be quite informative in determining the compound class of a specific unknown, which may further help in the identification. In addition, knowledge on (class-specific) fragmentation may further help in the optimization of the selectivity in targeted analytical approaches of compounds of one particular class.

Journal ArticleDOI
TL;DR: The state-of-the-art in the employment of soft ionization techniques for CE-MS is presented and the principle of each ionization technique is outlined and the experimental set-ups of the CE- MS couplings are described.
Abstract: A major step forward in the development and application of capillary electrophoresis (CE) was its coupling to ESI-MS, first reported in 1987. More than two decades later, ESI has remained the principal ionization technique in CE-MS, but a number of other ionization techniques have also been implemented. In this review the state-of-the-art in the employment of soft ionization techniques for CE-MS is presented. First the fundamentals and general challenges of hyphenating conventional CE and microchip electrophoresis with MS are outlined. After elaborating on the characteristics and role of ESI, emphasis is put on alternative ionization techniques including sonic spray ionization (SSI), thermospray ionization (TSI), atmospheric pressure chemical ionization (APCI), atmospheric pressure photoionization (APPI), matrix-assisted laser desorption ionization (MALDI) and continuous-flow fast atom bombardment (CF-FAB). The principle of each ionization technique is outlined and the experimental set-ups of the CE-MS couplings are described. The strengths and limitations of each ionization technique with respect to CE-MS are discussed and the applicability of the various systems is illustrated by a number of typical examples.

Journal ArticleDOI
TL;DR: Direct matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) bacterial cell or lysate analysis appears to meet all the criteria required for a rapid and reliable analytical microorganism identification and taxonomical classification tool.
Abstract: Direct matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) bacterial cell or lysate analysis appears to meet all the criteria required for a rapid and reliable analytical microorganism identification and taxonomical classification tool. Few-minute analytical procedure providing information extending up to sub-species level underlines the potential of the MALDI-MS profiling in comparison with other methods employed in the field. However, the quality of MALDI-MS profiles and consequently the performance of the method are influenced by numerous factors, which involve particular steps of the sample preparation procedure. This review is aimed at advances in development and optimization of the MALDI-MS profiling methodology. Approaches improving the quality of the MALDI-MS profiles and universal feasibility of the method are discussed.

Journal ArticleDOI
TL;DR: It is believed that these re-evaluated values are by far the most accurate activation parameters available at present for a protonated peptide and can be considered as "consensus" values; results on other processes might be compared to this reference value.
Abstract: The present article reviews the mass spectrometric fragmentation processes and fragmentation energetics of leucine enkephalin, a commonly used peptide, which has been studied in detail and has often been used as a standard or reference compound to test novel instrumentation, new methodologies, or to tune instruments. The main purpose of the article is to facilitate its use as a reference material; therefore, all available mass spectrometry-related information on leucine enkephalin has been critically reviewed and summarized. The fragmentation mechanism of leucine enkephalin is typical for a small peptide; but is understood far better than that of most other compounds. Because ion ratios in the MS/MS spectra indicate the degree of excitation, leucine enkephalin is often used as a thermometer molecule in electrospray or matrix-assisted laser desorption ionization (ESI or MALDI). Other parameters described for leucine enkephalin include collisional cross-section and energy transfer; proton affinity and gas-phase basicity; radiative cooling rate; and vibrational frequencies. The lowest-energy fragmentation channel of leucine enkephalin is the MH+ → b4 process. All available data for this process have been re-evaluated. It was found that, although the published Ea values were significantly different, the corresponding Gibbs free energy change showed good agreement (1.32 ± 0.07 eV) in various studies. Temperature- and energy-dependent rate constants were re-evaluated with an Arrhenius plot. The plot showed good linear correlation among all data (R2 = 0.97), spanned over a 9 orders of magnitude range in the rate constants and yielded 1.14 eV activation energy and 1011.0 sec−1 pre-exponential factor. Accuracy (including random and systematic errors, with a 95% confidence interval) is ±0.05 eV and 10±0.5 sec−1, respectively. The activation entropy at 470 K that corresponds to this reaction is −38.1 ± 9.6 J mol−1 K−1. We believe that these re-evaluated values are by far the most accurate activation parameters available at present for a protonated peptide and can be considered as “consensus” values; results on other processes might be compared to this reference value. © 2010 Wiley Periodicals, Inc., Mass Spec Rev 30:298–320, 2011

Journal ArticleDOI
TL;DR: A comprehensive review of the application of MALDI to the analysis of carbohydrates and glycoconjugates can be found in this article, where the authors provide a comprehensive overview of the literature.
Abstract: This review is the fourth update of the original review, published in 1999, on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2006. The review covers fundamental studies, fragmentation of carbohydrate ions, method developments, and applications of the technique to the analysis of different types of carbohydrate. Specific compound classes that are covered include carbohydrate polymers from plants, N- and O-linked glycans from glycoproteins, glycated proteins, glycolipids from bacteria, glycosides, and various other natural products. There is a short section on the use of MALDI-TOF mass spectrometry for the study of enzymes involved in glycan processing, a section on industrial processes, particularly the development of biopharmaceuticals and a section on the use of MALDI–MS to monitor products of chemical synthesis of carbohydrates. Large carbohydrate–protein complexes and glycodendrimers are highlighted in this final section. © 2010 Wiley Periodicals, Inc., Mass Spec Rev 30:1–100, 2011

Journal ArticleDOI
TL;DR: This review focuses on the MS-based analytical methodologies used to characterize genetically modified crops (also called transgenic crops), and includes "-omics" approaches and target-based approaches.
Abstract: The development of genetically modified crops has had a great impact on the agriculture and food industries. However, the development of any genetically modified organism (GMO) requires the application of analytical procedures to confirm the equivalence of the GMO compared to its isogenic non-transgenic counterpart. Moreover, the use of GMOs in foods and agriculture faces numerous criticisms from consumers and ecological organizations that have led some countries to regulate their production, growth, and commercialization. These regulations have brought about the need of new and more powerful analytical methods to face the complexity of this topic. In this regard, MS-based technologies are increasingly used for GMOs analysis to provide very useful information on GMO composition (e.g., metabolites, proteins). This review focuses on the MS-based analytical methodologies used to characterize genetically modified crops (also called transgenic crops). First, an overview on genetically modified crops development is provided, together with the main difficulties of their analysis. Next, the different MS-based analytical approaches applied to characterize GM crops are critically discussed, and include "-omics" approaches and target-based approaches. These methodologies allow the study of intended and unintended effects that result from the genetic transformation. This information is considered to be essential to corroborate (or not) the equivalence of the GM crop with its isogenic non-transgenic counterpart.

Journal ArticleDOI
TL;DR: This review will discuss mass spectrometry probing of the formation, binding affinity, and stoichiometry between G-quadruplexes and small molecules; stabilization and collision-dissociation behavior of G- quadruruplex DNA; the exploration of the equilibrium transfer between a G- quadruplex and duplex DNA; and the ESI-MS analysis of the conversion of intramolecular and intermolecular G- Quadruplees.
Abstract: G-quadruplexes are special secondary structures formed from G-rich sequences of DNA, and have proven to play important roles in a number of biological systems, including the regulation of gene transcription and translation. The highly distinctive nature of G-quadruplex structures and their functions suggest that G-quadruplexes can act as novel targets for drug development. As a highly sensitive analytical tool, mass spectrometry has been widely used for the analysis of G-quadruplex structures. Electrospray-ionization mass spectrometry, in particular, has found captivating applications to probe interactions between small molecules and G-quadruplex DNA. In this review, we will discuss: (1) mass spectrometry probing of the formation, binding affinity, and stoichiometry between G-quadruplexes and small molecules; (2) stabilization and collision-dissociation behavior of G-quadruplex DNA; (3) the exploration of the equilibrium transfer between a G-quadruplex and duplex DNA; and (4) the ESI-MS analysis of the conversion of intramolecular and intermolecular G-quadruplexes. Finally, we will also introduce the application of new techniques in the analysis of G-quadruplex conformation, such as ion-mobility and infrared multiphoton-dissociation mass spectrometry. We believe that, with the new technical developments, mass spectrometry will play an unparalleled role in the analysis of the G-quadruplex structures.

Journal ArticleDOI
TL;DR: Urinary exosomes, secreted from epithelial cells lining the urinary track, might reflect the cellular processes associated with the pathogenesis of diseases in their donor cells and help understand pathophysiology of relevant diseases.
Abstract: A number of highly abundant proteins in urine have been identified through proteomics approaches, and some have been considered as disease-biomarker candidates. These molecules might be clinically useful in diagnosis of various diseases. However, none has proven to be specifically indicative of perturbations of cellular processes in cells associated with urogenital diseases. Exosomes could be released into urine which flows through the kidney, ureter, bladder and urethra, with a process of filtration and reabsorption. Urinary exosomes have been recently suggested as alternative materials that offer new opportunities to identify useful biomarkers, because these exosomes secreted from epithelial cells lining the urinary track might reflect the cellular processes associated with the pathogenesis of diseases in their donor cells. Proteomic analysis of such urinary exosomes assists the search of urinary biomarkers reflecting pathogenesis of various diseases and also helps understanding the function of urinary exosomes in urinary systems. Thus, it has been recently suggested that urinary exosomes are one of the most valuable targets for biomarker development and to understand pathophysiology of relevant diseases.

Journal ArticleDOI
TL;DR: Direct analysis in real time (DART), a relatively new ionization source for mass spectrometry, ionizes small-molecule components from different kinds of samples without any sample preparation and chromatographic separation.
Abstract: Direct analysis in real time (DART), a relatively new ionization source for mass spectrometry, ionizes small-molecule components from different kinds of samples without any sample preparation and chromatographic separation. The current paper reviews the published data available on the determination of drugs and drug-like compounds in different matrices with DART-MS, including identification and quantitation issues. Parameters that affect ionization efficiency and mass spectra composition are also discussed. © 2011 Wiley Periodicals, Inc., Mass Spec Rev 30:875–883, 2011

Journal ArticleDOI
TL;DR: In the present review, the mass-tagging methods directed to cysteine residues are comprehensively discussed, and the advantages and drawbacks of these strategies are addressed.
Abstract: Amino acid-tagging strategies are widespread in proteomics. Because of the central role of mass spectrometry (MS) as a detection technique in protein sciences, the term "mass tagging" was coined to describe the attachment of a label, which serves MS analysis and/or adds analytical value to the measurements. These so-called mass tags can be used for separation, enrichment, detection, and quantitation of peptides and proteins. In this context, cysteine is a frequent target for modifications because the thiol function can react specifically by nucleophilic substitution or addition. Furthermore, cysteines present natural modifications of biological importance and a low occurrence in the proteome that justify the development of strategies to specifically target them in peptides or proteins. In the present review, the mass-tagging methods directed to cysteine residues are comprehensively discussed, and the advantages and drawbacks of these strategies are addressed. Some concrete applications are given to underline the relevance of cysteine-tagging techniques for MS-based proteomics.

Journal ArticleDOI
TL;DR: Among various types of mass spectrometers available on the market, trap-based analyzers are suitable to study complex fragmentation pathways of organometallic ions and their adducts, whereas high-resolution and high-mass accuracy analyzers provide accurate masses applicable for the determination of the elemental composition of individual ions.
Abstract: The analysis of organometallic compounds with mass spectrometry has some special features in comparison with organic and bioorganic compounds. The first step is the choice of a suitable ionization technique, where the electrospray ionization is certainly the best possibility for most classes of organometallic compounds and metal complexes. Some ionization mechanisms of organometallic compounds are comparable to organic molecules, such as protonation/deprotonation, and adduct formation with sodium or potassium ions; however, in many cases, different mechanisms and their combinations complicate the spectra interpretation. Organometallics frequently undergo various types of adduct and polymerization reactions that result in significantly higher masses observed in the spectra in comparison to molecular weights of studied compounds. Metal elements typically have more natural isotopes than common organic elements, which cause characteristic wide distributions of isotopic peaks; for example, tin has ten natural isotopes. The isotopic pattern can be used for the identification of the type and number of metal elements in particular ions. The ionization and fragmentation behavior also depend on the type of metal atom; therefore, our discussion of mass spectra interpretation is divided according to the different type of organometallic compounds. Among various types of mass spectrometers available on the market, trap-based analyzers (linear or spherical ion-traps, Orbitrap) are suitable to study complex fragmentation pathways of organometallic ions and their adducts, whereas high-resolution and high-mass accuracy analyzers (time-of-flight-based analyzers, or Fourier transform-based analyzers-Orbitrap or ion cyclotron resonance mass spectrometers) provide accurate masses applicable for the determination of the elemental composition of individual ions.

Journal ArticleDOI
TL;DR: A comprehensive review of the use of mass spectrometers in the identification of microbial biomarkers can be found in this article, where a matrix-assisted laser desorption/ionization MS was used to identify pathogenic microbial cells.
Abstract: Mass spectrometry (MS) has become an important technique to identify microbial biomarkers. The rapid and accurate MS identification of microorganisms without any extensive pretreatment of samples is now possible. This review summarizes MS methods that are currently utilized in microbial analyses. Affinity methods are effective to clean, enrich, and investigate microorganisms from complex matrices. Functionalized magnetic nanoparticles might concentrate traces of target microorganisms from sample solutions. Therefore, nanoparticle-based techniques have a favorable detection limit. MS coupled with various chromatographic techniques, such as liquid chromatography and capillary electrophoresis, reduces the complexity of microbial biomarkers and yields reliable results. The direct analysis of whole pathogenic microbial cells with matrix-assisted laser desorption/ionization MS without sample separation reveals specific biomarkers for taxonomy, and has the advantages of simplicity, rapidity, and high-throughput measurements. The MS detection of polymerase chain reaction (PCR)-amplified microbial nucleic acids provides an alternative to biomarker analysis. This review will conclude with some current applications of MS in the identification of pathogens.

Journal ArticleDOI
TL;DR: Indoxyl sulfate is the most promising protein-bound uremic toxin as a biomarker of progress in chronic kidney disease and novel dialysis techniques or membranes should be developed to efficiently remove these protein- bound u Remic toxins for the prevention and management of uRemic complications.
Abstract: Mass spectrometry (MS) has been successfully applied for the identification and quantification of uremic toxins and uremia-associated modified proteins. This review focuses on the recent progress in the MS analysis of uremic toxins. Uremic toxins include low-molecular weight solutes, protein-bound low-molecular weight solutes, and middle molecules (peptides and proteins). Based on MS analysis of these uremic toxins, the pathogenesis of the uremic symptoms will be elucidated to prevent and manage the symptoms. Notably, protein-bound uremic toxins such as indoxyl sulfate, p-cresyl sulfate, and 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid have emerged as important targets of therapeutic removal. Hemodialysis even with a high-flux membrane cannot efficiently remove the protein-bound uremic toxins because of their high albumin-binding property. The accumulation of these protein-bound uremic toxins in the blood of dialysis patients might play an important role in the development of uremic complications such as cardiovascular disease. Indoxyl sulfate is the most promising protein-bound uremic toxin as a biomarker of progress in chronic kidney disease. Novel dialysis techniques or membranes should be developed to efficiently remove these protein-bound uremic toxins for the prevention and management of uremic complications.

Journal ArticleDOI
TL;DR: There is no doubt that the mass spectrometry of blood will be crucial to the discovery and analysis of proteins, enzyme activities, and post-translational processes that underlay the mechanisms of disease.
Abstract: It is difficult to convey the accelerating rate and growing importance of mass spectrometry applications to human blood proteins and peptides. Mass spectrometry can rapidly detect and identify the ionizable peptides from the proteins in a simple mixture and reveal many of their post-translational modifications. However, blood is a complex mixture that may contain many proteins first expressed in cells and tissues. The complete analysis of blood proteins is a daunting task that will rely on a wide range of disciplines from physics, chemistry, biochemistry, genetics, electromagnetic instrumentation, mathematics and computation. Therefore the comprehensive discovery and analysis of blood proteins will rank among the great technical challenges and require the cumulative sum of many of mankind's scientific achievements together. A variety of methods have been used to fractionate, analyze and identify proteins from blood, each yielding a small piece of the whole and throwing the great size of the task into sharp relief. The approaches attempted to date clearly indicate that enumerating the proteins and peptides of blood can be accomplished. There is no doubt that the mass spectrometry of blood will be crucial to the discovery and analysis of proteins, enzyme activities, and post-translational processes that underlay the mechanisms of disease. At present both discovery and quantification of proteins from blood are commonly reaching sensitivities of ∼1 ng/mL.

Journal ArticleDOI
TL;DR: The "lab-on-a-plate" is defined as a format for carrying out extensive sample treatment as well as bioassays directly on (MA)LDI target plates prior to the ionization of analytes in the ion source of a mass spectrometer.
Abstract: We review the literature that describes how (matrix-assisted) laser desorption/ionization (MA)LDI target plates can be used not only as sample supports, but beyond that: as functional parts of analytical protocols that incorporate detection by MALDI-MS or matrix-free LDI-MS. Numerous steps of analytical procedures can be performed directly on the (MA)LDI target plates prior to the ionization of analytes in the ion source of a mass spectrometer. These include homogenization, preconcentration, amplification, purification, extraction, digestion, derivatization, synthesis, separation, detection with complementary techniques, data storage, or other steps. Therefore, we consider it helpful to define the "lab-on-a-plate" as a format for carrying out extensive sample treatment as well as bioassays directly on (MA)LDI target plates. This review introduces the lab-on-plate approach and illustrates it with the aid of relevant examples from the scientific and patent literature.

Journal ArticleDOI
TL;DR: APCI and APPI techniques will be described, discussed, and selected examples will present the interest of these ionization sources (or interfaces for LC/MS) in the field of polymer analysis.
Abstract: Modern mass spectrometry of synthetic polymers involves soft ionization techniques. Whereas matrix-assisted laser desorption/ionization (MALDI) and electrospray (ESI) are employed routinely, atmospheric pressure chemical ionization (APCI) and more recently atmospheric pressure photoionization (APPI) are used to a lesser extent. However, these latter ionization methods coupled to liquid-phase separation techniques create new opportunities for the characterization of polymers, especially for low molecular weight compounds or for the polymers that are poorly ionizable by the usual methods. After a part devoted to the description of classical MS methods employed for polymer analysis (MALDI, ESI, and their use with chromatography), APCI and APPI techniques will be described, discussed, and selected examples will present the interest of these ionization sources (or interfaces for LC/MS) in the field of polymer analysis.