scispace - formally typeset
Search or ask a question

Showing papers in "Molecules in 2010"


Journal ArticleDOI
TL;DR: The anticancer effects of phenolics in-vitro and in- vivo animal models are viewed, including recent human intervention studies, and possible mechanisms of action involving antioxidant and pro-oxidant activity as well as interference with cellular functions are discussed.
Abstract: Phenolics are broadly distributed in the plant kingdom and are the most abundant secondary metabolites of plants. Plant polyphenols have drawn increasing attention due to their potent antioxidant properties and their marked effects in the prevention of various oxidative stress associated diseases such as cancer. In the last few years, the identification and development of phenolic compounds or extracts from different plants has become a major area of health- and medical-related research. This review provides an updated and comprehensive overview on phenolic extraction, purification, analysis and quantification as well as their antioxidant properties. Furthermore, the anticancer effects of phenolics in-vitro and in-vivo animal models are viewed, including recent human intervention studies. Finally, possible mechanisms of action involving antioxidant and pro-oxidant activity as well as interference with cellular functions are discussed.

3,213 citations


Journal ArticleDOI
TL;DR: The significance of phenolic compounds as a source of beneficial compounds for human health and the influence of environmental conditions and processing mechanisms on the phenolic composition of Brassica vegetables are reviewed.
Abstract: Phenolic compounds are a large group of phytochemicals widespread in the plant kingdom. Depending on their structure they can be classified into simple phenols, phenolic acids, hydroxycinnamic acid derivatives and flavonoids. Phenolic compounds have received considerable attention for being potentially protective factors against cancer and heart diseases, in part because of their potent antioxidative properties and their ubiquity in a wide range of commonly consumed foods of plant origin. The Brassicaceae family includes a wide range of horticultural crops, some of them with economic significance and extensively used in the diet throughout the world. The phenolic composition of Brassica vegetables has been recently investigated and, nowadays, the profile of different Brassica species is well established. Here, we review the significance of phenolic compounds as a source of beneficial compounds for human health and the influence of environmental conditions and processing mechanisms on the phenolic composition of Brassica vegetables.

804 citations


Journal ArticleDOI
TL;DR: A survey of the methods generally used for the evaluation of antioxidant activity and some of the mechanisms involved in the anti-inflammatory activities of essential oils are reported.
Abstract: Essential oils are complex mixtures isolated from aromatic plants which may possess antioxidant and anti-inflammatory activities of interest in thye food and cosmetic industries as well as in the human health field. In this work, a review was done on the most recent publications concerning their antioxidant and anti-inflammatory activities. At the same time a survey of the methods generally used for the evaluation of antioxidant activity and some of the mechanisms involved in the anti-inflammatory activities of essential oils are also reported.

663 citations


Journal ArticleDOI
Zhao-Hui Li1, Qiang Wang, Xiao Ruan, Cun-De Pan, De-An Jiang 
TL;DR: The main purpose of this review is to highlight the allelopacthic potential of phenolic compounds to provide methods to solve various ecology problems, especially in regard to the sustainable development of agriculture, forestry, nature resources and environment conservation.
Abstract: Phenolic compounds arise from the shikimic and acetic acid (polyketide) metabolic pathways in plants. They are but one category of the many secondary metabolites implicated in plant allelopathy. Phenolic allelochemicals have been observed in both natural and managed ecosystems, where they cause a number of ecological and economic problems, such as declines in crop yield due to soil sickness, regeneration failure of natural forests, and replanting problems in orchards. Phenolic allelochemical structures and modes of action are diverse and may offer potential lead compounds for the development of future herbicides or pesticides. This article reviews allelopathic effects, analysis methods, and allelopathic mechanisms underlying the activity of plant phenolic compounds. Additionally, the currently debated topic in plant allelopathy of whether catechin and 8-hydroxyquinoline play an important role in Centaurea maculata and Centaurea diffusa invasion success is discussed. Overall, the main purpose of this review is to highlight the allelopacthic potential of phenolic compounds to provide us with methods to solve various ecology problems, especially in regard to the sustainable development of agriculture, forestry, nature resources and environment conservation.

579 citations


Journal ArticleDOI
TL;DR: The chemical composition and antibacterial activity of essential oils from 10 commonly consumed herbs: Citrus aurantium, C. limon, Lavandula angustifolia, Matricaria chamomilla, Mentha piperita, M. spicata, Ocimum basilicum, Origanum vulgare, Thymus vulgaris and Salvia officinalis have been determined.
Abstract: The chemical composition and antibacterial activity of essential oils from 10 commonly consumed herbs: Citrus aurantium, C. limon, Lavandula angustifolia, Matricaria chamomilla, Mentha piperita, M. spicata, Ocimum basilicum, Origanum vulgare, Thymus vulgaris and Salvia officinalis have been determined. The antibacterial activity of these oils and their main components; i.e. camphor, carvacrol, 1,8-cineole, linalool, linalyl acetate, limonene, menthol, a-pinene, b-pinene, and thymol were assayed against the human pathogenic bacteria Bacillus subtilis, Enterobacter cloacae, Escherichia coli O157:H7, Micrococcus flavus, Proteus mirabilis, Pseudomonas aeruginosa, Salmonella enteritidis, S. epidermidis, S. typhimurium, and Staphylococcus aureus. The highest and broadest activity was shown by O. vulgare oil. Carvacrol had the highest antibacterial activity among the tested components.

523 citations


Journal ArticleDOI
TL;DR: Recent evidence explaining bioactivation and potential molecular targets in the chemotherapy of malaria and cancer is discussed and artemisinins have also shown potent and broad anticancer properties in cell lines and animal models and are becoming established as anti-schistosomal agents.
Abstract: Despite international efforts to ‘roll back malaria’ the 2008 World Malaria Report revealed the disease still affects approximately 3 billion people in 109 countries; 45 within the WHO African region. The latest report however does provide some ‘cautious optimism’; more than one third of malarious countries have documented greater than 50% reductions in malaria cases in 2008 compared to 2000. The goal of the Member States at the World Health Assembly and ‘Roll Back Malaria’ (RBM) partnership is to reduce the numbers of malaria cases and deaths recorded in 2000 by 50% or more by the end of 2010. Although malaria is preventable it is most prevalent in poorer countries where prevention is difficult and prophylaxis is generally not an option. The burden of disease has increased by the emergence of multi drug resistant (MDR) parasites which threatens the use of established and cost effective antimalarial agents. After a major change in treatment policies, artemisinins are now the frontline treatment to aid rapid clearance of parasitaemia and quick resolution of symptoms. Since artemisinin and its derivatives are eliminated rapidly, artemisinin combination therapies (ACT’s) are now recommended to delay resistance mechanisms. In spite of these precautionary measures reduced susceptibility of parasites to the artemisinin-based component of ACT’s has developed at the Thai-Cambodian border, a historical ‘hot spot’ for MDR parasite evolution and emergence. This development raises serious concerns for the future of the artemsinins and this is not helped by controversy related to the mode of action. Although a number of potential targets have been proposed the actual mechanism of action remains ambiguous. Interestingly, artemisinins have also shown potent and broad anticancer properties in cell lines and animal models and are becoming established as anti-schistosomal agents. In this review we will discuss the recent evidence explaining bioactivation and potential molecular targets in the chemotherapy of malaria and cancer.

521 citations


Journal ArticleDOI
TL;DR: The medicinal potential of the leaves and young rhizome of Halia Bara is validated and the positive relationship between total phenolics content and antioxidant activities in Zingiber officinale is validated.
Abstract: Ginger (Zingiber officinale Roscoe) is a well known and widely used herb, especially in Asia, which contains several interesting bioactive constituents and possesses health promoting properties. In this study, the antioxidant activities of methanol extracts from the leaves, stems and rhizomes of two Zingiber officinale varieties (Halia Bentong and Halia Bara) were assessed in an effort to compare and validate the medicinal potential of the subterranean part of the young ginger. The antioxidant activity and phenolic contents of the leaves as determined by the 1,1-diphenyl-2-picryl-hydrazyl (DPPH) assay and the total amounts of phenolics and flavonoids were higher than those of the rhizomes and stems. On the other hand, the ferric reducing/antioxidant potential (FRAP) activity of the rhizomes was higher than that of the leaves. At low concentration the values of the leaves' inhibition activity in both varieties were significantly higher than or comparable to those of the young rhizomes. Halia Bara had higher antioxidant activities as well as total contents of phenolic and flavonoid in comparison with Halia Bentong. This study validated the medicinal potential of the leaves and young rhizome of Zingiber officinale (Halia Bara) and the positive relationship between total phenolics content and antioxidant activities in Zingiber officinale.

503 citations


Journal ArticleDOI
TL;DR: An overview of the principle applications of ILs in separation technology is present and the prospects of the ILs as the extraction solvent in sample preparations are discussed.
Abstract: Ionic liquids (ILs) have been applied in different areas of separation, such as ionic liquid supported membranes, as mobile phase additives and surface-bonded stationary phases in chromatography separations and as the extraction solvent in sample preparations, because they can be composed from various cations and anions that change the properties and phase behavior of liquids Although the applications of ILs in separations are still in their early stages, the academic interest in ILs is increasing An overview of the principle applications of ILs in separation technology is present in this work Furthermore, the prospects of the ILs in separation techniques are discussed

481 citations


Journal ArticleDOI
TL;DR: Alternative techniques, which have been replacing conventional ones, include: supercritical fluid extraction (SFE), pressurized liquid extraction (PLE), microwave-assisted extraction (MAE) and ultrasound- assisted extraction (UAE).
Abstract: This paper reviews the phenolic-compound-extraction systems used to analyse fruit and vegetable samples over the last 10 years. Phenolic compounds are naturally occurring antioxidants, usually found in fruits and vegetables. Sample preparation for analytical studies is necessary to determine the polyphenolic composition in these matrices. The most widely used extraction system is liquid-liquid extraction (LLE), which is an inexpensive method since it involves the use of organic solvents, but it requires long extraction times, giving rise to possible extract degradation. Likewise, solid-phase extraction (SPE) can be used in liquid samples. Modern techniques, which have been replacing conventional ones, include: supercritical fluid extraction (SFE), pressurized liquid extraction (PLE), microwave-assisted extraction (MAE) and ultrasound-assisted extraction (UAE). These alternative techniques reduce considerably the use of solvents and accelerate the extraction process.

469 citations


Journal ArticleDOI
TL;DR: It is discussed the possibility that artemisinin and its semi-synthetic analogs might become more effective to treat parasitic diseases and cancer if simultaneously delivered with flavonoids.
Abstract: Artemisia annua is currently the only commercial source of the sesquiterpene lactone artemisinin.Since artemisinin was discovered as the active component of A. annua in early 1970s, hundreds of papers have focused on the anti-parasitic effects of artemisinin and its semi-synthetic analogs dihydroartemisinin, artemether, arteether, and artesunate. Artemisinin per se has not been used in mainstream clinical practice due to its poor bioavailability when compared to its analogs. In the past decade, the work with artemisinin-based compounds has expanded to their anti-cancer properties. Although artemisinin is a major bioactive component present in the traditional Chinese herbal preparations (tea), leaf flavonoids, also present in the tea, have shown a variety of biological activities and may synergize the effects of artemisinin against malaria and cancer. However, only a few studies have focused on the potential synergistic effects between flavonoids and artemisinin. The resurgent idea that multi-component drug therapy might be better than monotherapy is illustrated by the recent resolution of the World Health Organization to support artemisinin-based combination therapies (ACT), instead of the previously used monotherapy with artemisinins. In this critical review we will discuss the possibility that artemisinin and its semi-synthetic analogs might become more effective to treat parasitic diseases (such as malaria) and cancer if simultaneously delivered with flavonoids. The flavonoids present in A. annua leaves have been linked to suppression of CYP450 enzymes responsible for altering the absorption and metabolism of artemisinin in the body, but also have been linked to a beneficial immunomodulatory activity in subjects afflicted with parasitic and chronic diseases.

450 citations


Journal ArticleDOI
TL;DR: The present paper summarizes both the basic information and the most recent advances in the study of the anthocyanin biosynthesis in red grapes, emphasizing their gene structure, the transcriptional factors and the diverse exterior regulation factors.
Abstract: Anthocyanins, synthesized via the flavonoid pathway, are a class of crucial phenolic compounds which are fundamentally responsible for the red color of grapes and wines. As the most important natural colorants in grapes and their products, anthocyanins are also widely studied for their numerous beneficial effects on human health. In recent years, the biosynthetic pathway of anthocyanins in grapes has been thoroughly investigated. Their intracellular transportation and accumulation have also been further clarified. Additionally, the genetic mechanism regulating their biosynthesis and the phytohormone influences on them are better understood. Furthermore, due to their importance in the quality of wine grapes, the effects of the environmental factors and viticulture practices on anthocyanin accumulation are being investigated increasingly. The present paper summarizes both the basic information and the most recent advances in the study of the anthocyanin biosynthesis in red grapes, emphasizing their gene structure, the transcriptional factors and the diverse exterior regulation factors.

Journal ArticleDOI
TL;DR: The literature pertaining to these various classes of nutraceutical antioxidants are reviewed and their potential therapeutic value in neurodegenerative diseases is discussed.
Abstract: A variety of antioxidant compounds derived from natural products (nutraceuticals) have demonstrated neuroprotective activity in either in vitro or in vivo models of neuronal cell death or neurodegeneration, respectively. These natural antioxidants fall into several distinct groups based on their chemical structures: (1) flavonoid polyphenols like epigallocatechin 3-gallate (EGCG) from green tea and quercetin from apples; (2) non-flavonoid polyphenols such as curcumin from tumeric and resveratrol from grapes; (3) phenolic acids or phenolic diterpenes such as rosmarinic acid or carnosic acid, respectively, both from rosemary; and (4) organosulfur compounds including the isothiocyanate, L-sulforaphane, from broccoli and the thiosulfonate allicin, from garlic. All of these compounds are generally considered to be antioxidants. They may be classified this way either because they directly scavenge free radicals or they indirectly increase endogenous cellular antioxidant defenses, for example, via activation of the nuclear factor erythroid-derived 2-related factor 2 (Nrf2) transcription factor pathway. Alternative mechanisms of action have also been suggested for the neuroprotective effects of these compounds such as modulation of signal transduction cascades or effects on gene expression. Here, we review the literature pertaining to these various classes of nutraceutical antioxidants and discuss their potential therapeutic value in neurodegenerative diseases.

Journal ArticleDOI
TL;DR: The critical role of Nrf2 has been demonstrated by various animal studies showing that mice with a targeted disruption of the nrf2 gene are prone to develop lesions in response to environmental toxicants/carcinogens, drugs, and inflammatory insults and the potential pleiotropic effects of NRF2 activation of indirect antioxidants.
Abstract: Oxidative stress causes damage to multiple cellular components such as DNA, proteins, and lipids, and is implicated in various human diseases including cancer, neurodegeneration, inflammatory diseases, and aging. In response to oxidative attack, cells have developed an antioxidant defense system to maintain cellular redox homeostasis and to protect cells from damage. The thiol-containing small molecules (e.g. glutathione), reactive oxygen species-inactivating enzymes (e.g. glutathione peroxidase), and phase 2 detoxifying enzymes (e.g. NAD(P)H: quinine oxidoreductase 1 and glutathione-S-transferases) are members of this antioxidant system. NF-E2-related factor 2 (Nrf2) is a CNC-bZIP transcription factor which regulates the basal and inducible expression of a wide array of antioxidant genes. Following dissociation from the cytosolic protein Keap1, a scaffolding protein which binds Nrf2 and Cul3 ubiquitin ligase for proteasome degradation, Nrf2 rapidly accumulates in the nucleus and transactivates the antioxidant response element in the promoter region of many antioxidant genes. The critical role of Nrf2 has been demonstrated by various animal studies showing that mice with a targeted disruption of the nrf2 gene are prone to develop lesions in response to environmental toxicants/carcinogens, drugs, and inflammatory insults. In this review, we discuss the role of the Nrf2 system, with particular focus on Nrf2-controlled target genes and the potential pleiotropic effects of Nrf2 activation of indirect antioxidants.

Journal ArticleDOI
TL;DR: Among the wide diversity of naturally occurring phenolic acids, at least 30 hydroxy- and polyhydroxybenzoic acids have been reported in the last 10 years to have biological activities and potential as new leads for the development of pharmaceutical and agricultural products to improve human health and nutrition.
Abstract: Among the wide diversity of naturally occurring phenolic acids, at least 30 hydroxy- and polyhydroxybenzoic acids have been reported in the last 10 years to have biological activities The chemical structures, natural occurrence throughout the plant, algal, bacterial, fungal and animal kingdoms, and recently described bioactivities of these phenolic and polyphenolic acids are reviewed to illustrate their wide distribution, biological and ecological importance, and potential as new leads for the development of pharmaceutical and agricultural products to improve human health and nutrition

Journal ArticleDOI
TL;DR: Among metal chlorides, chromium chloride was found to be exceptionally effective for the conversion of cellulose to levulinic acid, affording an optimum yield of 67 mol % after a reaction time of 180 min, at 200 °C, with a catalyst dosage of 0.02 M and substrate concentration of 50 wt %.
Abstract: The catalytic performance of various metal chlorides in the conversion of cellulose to levulinic acid in liquid water at high temperatures was investigated. The effects of reaction parameters on the yield of levulinic acid were also explored. The results showed that alkali and alkaline earth metal chlorides were not effective in conversion of cellulose, while transition metal chlorides, especially CrCl 3 , FeCl 3 and CuCl 2 and a group IIIA metal chloride (AlCl 3 ), exhibited high catalytic activity. The catalytic performance was correlated with the acidity of the reaction system due to the addition of the metal chlorides, but more dependent on the type of metal chloride. Among those metal chlorides, chromium chloride was found to be exceptionally effective for the conversion of cellulose to levulinic acid, affording an optimum yield of 67 mol % after a reaction time of 180 min, at 200 °C, with a catalyst dosage of 0.02 M and substrate concentration of 50 wt %. Chromium metal, most of which was present in its oxide form in the solid sample and only a small part in solution as Cr

Journal ArticleDOI
TL;DR: These findings strongly support the hypothesis that many of the highly oxygenated sesquiterpenoids from this species arise by oxidation reactions involving allylic hydroperoxides, which seem to be such a defining feature of the chemistry of A. annua.
Abstract: The Chinese medicinal plant Artemisia annua L. (Qinghao) is the only known source of the sesquiterpene artemisinin (Qinghaosu), which is used in the treatment of malaria. Artemisinin is a highly oxygenated sesquiterpene, containing a unique 1,2,4-trioxane ring structure, which is responsible for the antimalarial activity of this natural product. The phytochemistry of A. annua is dominated by both sesquiterpenoids and flavonoids, as is the case for many other plants in the Asteraceae family. However, A. annua is distinguished from the other members of the family both by the very large number of natural products which have been characterised to date (almost six hundred in total, including around fifty amorphane and cadinane sesquiterpenes), and by the highly oxygenated nature of many of the terpenoidal secondary metabolites. In addition, this species also contains an unusually large number of terpene allylic hydroperoxides and endoperoxides. This observation forms the basis of a proposal that the biogenesis of many of the highly oxygenated terpene metabolites from A. annua – including artemisinin itself – may proceed by spontaneous oxidation reactions of terpene precursors, which involve these highly reactive allyllic hydroperoxides as intermediates. Although several studies of the biosynthesis of artemisinin have been reported in the literature from the 1980s and early 1990s, the collective results from these studies were rather confusing because they implied that an unfeasibly large number of different sesquiterpenes could all function as direct precursors to artemisinin (and some of the experiments also appeared to contradict one another). As a result, the complete biosynthetic pathway to artemisinin could not be stated conclusively at the time. Fortunately, studies which have been published in the last decade are now providing a clearer picture of the biosynthetic pathways in A. annua. By synthesising some of the sesquiterpene natural products which have been proposed as biogenetic precursors to artemisinin in such a way that they incorporate a stable isotopic label, and then feeding these precursors to intact A. annua plants, it has now been possible to demonstrate that dihydroartemisinic acid is a late-stage precursor to artemisinin and that the closely related secondary metabolite, artemisinic acid, is not (this approach differs from all the previous studies, which used radio-isotopically labelled precursors that were fed to a plant homogenate or a cell-free preparation). Quite remarkably, feeding experiments with labeled dihydroartemisinic acid and artemisinic acid have resulted in incorporation of label into roughly half of all the amorphane and cadinane sesquiterpenes which were already known from phytochemical studies of A. annua. These findings strongly support the hypothesis that many of the highly oxygenated sesquiterpenoids from this species arise by oxidation reactions involving allylic hydroperoxides, which seem to be such a defining feature of the chemistry of A. annua. In the particular case of artemisinin, these in vivo results are also supported by in vitro studies, demonstrating explicitly that the biosynthesis of artemisinin proceeds via the tertiary allylic hydroperoxide, which is derived from oxidation of dihydroartemisinic acid. There is some evidence that the autoxidation of dihydroartemisinic acid to this tertiary allylic hydroperoxide is a non-enzymatic process within the plant, requiring only the presence of light; and, furthermore, that the series of spontaneous rearrangement reactions which then convert this allylic hydroperoxide to the 1,2,4-trioxane ring of artemisinin are also non-enzymatic in nature.

Journal ArticleDOI
TL;DR: AC-SO3H exhibited comparable and even much higher catalytic activities than the commercial catalysts in the esterification of aliphatic acids with longer carbon chains such as hexanoic acids and decanoic acid, which may be due to the large specific surface area and mesoporous structures of the activated carbon.
Abstract: Sulfonated (SO(3)H-bearing) activated carbon (AC-SO(3)H) was synthesized by an aryl diazonium salt reduction process. The obtained material had a SO(3)H density of 0.64 mmol·g-1 and a specific surface area of 602 m2·g-1. The catalytic properties of AC-SO(3)H were compared with that of two commercial solid acid catalysts, Nafion NR50 and Amberlyst-15. In a 10-h esterification reaction of acetic acid with ethanol, the acid conversion with AC-SO(3)H (78%) was lower than that of Amberlyst-15 (86%), which could be attributed to the fact that the SO(3)H density of the sulfonated carbon was lower than that of Amberlyst-15 (4.60 mmol·g-1). However, AC-SO(3)H exhibited comparable and even much higher catalytic activities than the commercial catalysts in the esterification of aliphatic acids with longer carbon chains such as hexanoic acid and decanoic acid, which may be due to the large specific surface area and mesoporous structures of the activated carbon. The disadvantage of AC-SO(3)H is the leaching of SO(3)H group during the reactions.

Journal ArticleDOI
TL;DR: A new and interesting way for the processing of polysaccharide nanocrystals-based nanocomposites is their transformation into a co-continuous material through long chain surface chemical modification.
Abstract: Aqueous suspensions of polysaccharide (cellulose, chitin or starch) nanocrystals can be prepared by acid hydrolysis of biomass. The main problem with their practical use is related to the homogeneous dispersion of these nanoparticles within a polymeric matrix. Water is the preferred processing medium. A new and interesting way for the processing of polysaccharide nanocrystals-based nanocomposites is their transformation into a co-continuous material through long chain surface chemical modification. It involves the surface chemical modification of the nanoparticles based on the use of grafting agents bearing a reactive end group and a long compatibilizing tail.

Journal ArticleDOI
TL;DR: Thyme, cinnamon, rose, and lavender essential oils exhibited the best antibacterial activities towards P. acnes and in vitro toxicology against three human cancer cell lines and the cytotoxicity of 10 essential oils on human prostate carcinoma cell (PC-3) was significantly stronger than on human lung carcinoma (A549) and human breast cancer (MCF-7) cell lines.
Abstract: Ten essential oils, namely, mint (Mentha spicata L., Lamiaceae), ginger (Zingiber officinale Rosc., Zingiberaceae), lemon (Citrus limon Burm.f., Rutaceae), grapefruit (Citrus paradisi Macf., Rutaceae), jasmine (Jasminum grandiflora L., Oleaceae), lavender (Mill., Lamiaceae), chamomile (Matricaria chamomilla L., Compositae), thyme (Thymus vulgaris L., Lamiaceae), rose (Rosa damascena Mill., Rosaceae) and cinnamon (Cinnamomum zeylanicum N. Lauraceae) were tested for their antibacterial activities towards Propionibacterium acnes and in vitro toxicology against three human cancer cell lines. Thyme, cinnamon and rose essential oils exhibited the best antibacterial activities towards P. acnes, with inhibition diameters of 40 +/- 1.2 mm, 33.5 +/- 1.5 mm and 16.5 +/- 0.7 mm, and minimal inhibitory concentrations of 0.016% (v/v), 0.016% (v/v) and 0.031% (v/v), respectively. Time-kill dynamic procedures showed that thyme, cinnamon, rose, and lavender essential oils exhibited the strongest bactericidal activities at a concentration of 0.25% (v/v), and P. acnes was completely killed after 5 min. The thyme essential oil exhibited the strongest cytotoxicity towards three human cancer cells. Its inhibition concentration 50% (IC(50)) values on PC-3, A549 and MCF-7 tumor cell lines were 0.010% (v/v), 0.011% (v/v) and 0.030% (v/v), respectively. The cytotoxicity of 10 essential oils on human prostate carcinoma cell (PC-3) was significantly stronger than on human lung carcinoma (A549) and human breast cancer (MCF-7) cell lines.

Journal ArticleDOI
TL;DR: The effect of environment and other factors (such as production, handling and storage) on the nutritional properties of cherries are described, with particular attention to polyphenol compounds.
Abstract: The dietary consumption of fruits and vegetables is associated with a lower incidence of degenerative diseases such as cardiovascular disease and certain types of cancers. Most recent interest has focused on the bioactive phenolic compounds found in vegetable products. Sweet and sour cherries contain several antioxidants and polyphenols that possess many biological activities, such as antioxidant, anticancer and anti-inflammation properties. The review describes the effect of environment and other factors (such as production, handling and storage) on the nutritional properties of cherries, with particular attention to polyphenol compounds. Moreover the health benefits of cherries and their polyphenols against human diseases such as heart disease, cancers, diabetes are reviewed.

Journal ArticleDOI
TL;DR: A critical evaluation of some common in vitro antioxidant capacity methods is provided and a discussion on the role and controversies surrounding non-enzymatic biomolecules, in particular phenolic compounds and non-phenolic compounds, in oxidative processes are discussed in an attempt of stemming the tidal wave that is threatening to swamp the concept of natural antioxidants.
Abstract: Research on the use, properties, characteristics and sources of antioxidants especially phenolic compounds, flavonoids, vitamins, synthetic chemicals and some micronutrients began in the late 18th century. Since then antioxidant research has received considerable attention and over a hundred thousand papers have been published on the subject. This has led to a rampant use of antioxidants in order to try to obtain and preserve optimal health. A number of nutraceuticals and food supplements are frequently fortified with synthetic or natural antioxidants. However, some research outcomes have led to the belief that antioxidants exist as mythical biomolecules. This review provides a critical evaluation of some common in vitro antioxidant capacity methods, and a discussion on the role and controversies surrounding non-enzymatic biomolecules, in particular phenolic compounds and non-phenolic compounds, in oxidative processes in an attempt of stemming the tidal wave that is threatening to swamp the concept of natural antioxidants.

Journal ArticleDOI
TL;DR: Saffron stigmas showed antioxidant activity and methanol appeared to be the best solvent to extract the active components, among which the presence of gallic acid and pyrogallol might contribute towards the stigma’s antioxidant properties.
Abstract: Saffron (Crocus sativus L.) belongs to the Iridaceae family. The stigma of saffron has been widely used as spice, medicinal plant, and food additive in the Mediterranean and Subtropical countries. Recently, attention has been paid to the identification of new sources of safe natural antioxidants for the food industry. The antioxidant activities of spices are mainly attributed to their phenolic and flavonoid compounds. Saffron is one of the spices believed to possess antioxidant properties, but information on its antioxidant activity and phenolic, flavonoids compound are rather limited, therefore this research was carried out to evaluate the antioxidant activity of saffron stigmas extracted with different solvents. The phenolic and flavonoid compounds of saffron were also examined using reversed phase (RP)-HPLC. Results showed that saffron stigma possess antioxidant activity. The free radical scavenging and ferric reducing power activities were higher for the methanolic extract of saffron stigma at a concentration of 300 μg/mL, with values of 68.2% and 78.9%, respectively, as compared to the corresponding boiling water and ethanolic extracts, but the activities were lower than those of antioxidant standards such as BHT and α-tocopherol. The obtained total phenolics value for methanolic saffron extract was 6.54 ± 0.02 mg gallic acid equivalent (GAE)/g dry weight (DW), and for total flavonoids, 5.88 ± 0.12 mg rutin equivalent/g DW, which were also higher than values obtained from the ethanolic and boiling water extracts. In addition, the RP-HPLC analyses indicated the presence of gallic acid and pyrogallol as two bioactive compounds. In summary, saffron stigmas showed antioxidant activity and methanol appeared to be the best solvent to extract the active components, among which the presence of gallic acid and pyrogallol might contribute towards the stigma's antioxidant properties. Hence, saffron stigma could be applied as a natural antioxidant source for industrial purposes.

Journal ArticleDOI
TL;DR: Information on the effect of food processing on lycopene stability and availability was discussed for better understanding of its characteristics and the mechanism of action and interaction of lycopenes with other bioactive compounds are discussed.
Abstract: By-products derived from food processing are attractive source for their valuable bioactive components and color pigments. These by-products are useful for development as functional foods, nutraceuticals, food ingredients, additives, and also as cosmetic products. Lycopene is a bioactive red colored pigment naturally occurring in plants. Industrial by-products obtained from the plants are the good sources of lycopene. Interest in lycopene is increasing due to increasing evidence proving its preventive properties toward numerous diseases. In vitro, in vivo and ex vivo studies have demonstrated that lycopene-rich foods are inversely associated to diseases such as cancers, cardiovascular diseases, diabetes, and others. This paper also reviews the properties, absorption, transportation, and distribution of lycopene and its by-products in human body. The mechanism of action and interaction of lycopene with other bioactive compounds are also discussed, because these are the crucial features for beneficial role of lycopene. However, information on the effect of food processing on lycopene stability and availability was discussed for better understanding of its characteristics.

Journal ArticleDOI
TL;DR: This study suggests that the selection of certain combinations of EOs could help to reduce the amount of essential oils and consequently reduce any adverse sensory impact in food.
Abstract: Essential oils from leaves of Lippia multiflora, Mentha x piperita and Ocimum basilicum from Burkina Faso were analysed by GC-FID and GC-MS. Major components were p-cymene, thymol, β-caryophyllene, carvacrol and carvone for L. multiflora, menthol and iso-menthone for M. x piperita and, linalool and eugenol for O. basilicum. The essential oils and their major monoterpene alcohols were tested against nine bacterial strains using the disc diffusion and broth microdilution methods. The essential oils with high phenolic contents were the most effective antimicrobials. The checkerboard method was used to quantify the efficacy of paired combinations of essential oils and their major components. The best synergetic effects among essential oils and major components were obtained with combinations involving O. basilicum essential oil and eugenol, respectively. As phenolic components are characterized by a strong spicy aroma, this study suggests that the selection of certain combinations of EOs could help to reduce the amount of essential oils and consequently reduce any adverse sensory impact in food.

Journal ArticleDOI
TL;DR: The interactions of 3-carboxyphenoxathiin with BSA and HSA have been studied by fluorescence and circular dichroism spectroscopy, revealing a 1:1 interaction with a binding constant of about 105 M-1.
Abstract: The interactions of 3-carboxyphenoxathiin with Bovine Serum Albumin (BSA) and Human Serum Albumin (HSA) have been studied by fluorescence and circular dichroism spectroscopy. The binding of 3-carboxyphenoxathiin quenches the BSA and HSA fluorescence, revealing a 1:1 interaction with a binding constant of about 10(5) M(-1). In addition, according to the synchronous fluorescence spectra of BSA and HSA in presence of 3-carboxyphenoxathiin, the tryptophan residues of the proteins are most perturbed by the binding process. Finally, the distance between the acceptor, 3-carboxyphenoxathiin, and the donor, BSA or HSA, was estimated on the basis of the Forster resonance energy transfer (FRET). The fluorescence results are correlated with those obtained from the circular dichroism spectra, which reveal the change of the albumin conformation during the interaction process.

Journal ArticleDOI
TL;DR: After Mallory described in 1964 the use of iodine as catalyst for the photochemical cyclisation of stilbenes, this reaction has proven its effectiveness in the synthesis of phenanthrenes, other PAHs and phenacenes with a surprisingly large selection of substituents.
Abstract: After Mallory described in 1964 the use of iodine as catalyst for the photochemical cyclisation of stilbenes, this reaction has proven its effectiveness in the synthesis of phenanthrenes, other PAHs and phenacenes with a surprisingly large selection of substituents. The “early age” of the reaction was reviewed by Mallory in 1984in a huge chapter in the Organic Reactions series, but the development has continued. Alternative conditions accommodate more sensitive substituents, and isomers can be favoured by sacrificial substituents. Herein the further developments and applications of this reaction after 1984 are discussed and summarized. Keywords: Mallory-reaction; oxidative photocyclization; stilbene; iodine; photochemistry 1. Introduction The oxidative photocyclizations of stilbenes was discovered earlier during studies of the photochemical isomerization of stilbenes [1,2], but the reaction did not become feasible as a synthetic tool until Mallory discovered in 1964 that iodine could catalyze the reaction [3,4]. That allowed for more concentrated solutions and fewer side reactions. The reaction was thoroughly reviewed by Mallory in a large chapter in Organic Reactions in 1984 [5]. Other reviews [6–10] discuss various aspects and applications of the reaction. This review will focus on the reaction as a useful tool in synthesis, covering developments reported since 1984.

Journal ArticleDOI
TL;DR: How behavioral screening methods may enable one to find functional alterations in the vertebrate brain in the form of mutation or drug induced alteration of brain function is described.
Abstract: The zebrafish has been in the forefront of developmental biology for three decades and has become a favorite of geneticists. Due to the accumulated genetic knowledge and tools developed for the zebrafish it is gaining popularity in other disciplines, including neuroscience. The zebrafish offers a compromise between system complexity (it is a vertebrate similar in many ways to our own species) and practical simplicity (it is small, easy to keep, and prolific). Such features make zebrafish an excellent choice for high throughput mutation and drug screening. For the identification of mutation or drug induced alteration of brain function arguably the best methods are behavioral test paradigms. This review does not present experimental examples for the identification of particular genes or drugs. Instead it describes how behavioral screening methods may enable one to find functional alterations in the vertebrate brain. Furthermore, the review is not comprehensive. The behavioral test examples presented are biased according to the personal interests of the author. They will cover research areas including learning and memory, fear and anxiety, and social behavior. Nevertheless, the general principles will apply to other functional domains and should represent a snapshot of the rapidly evolving behavioral screening field with zebrafish.

Journal ArticleDOI
TL;DR: Fruits of Eucalyptus robusta, Eurya nitida, Melastoma sanguineum, Melaleuca leucadendron, Lagerstroemia indica, Caryota mitis, Lagestroemia speciosa and Gordonia axillaris possessed the highest antioxidant capacities and total phenolic contents among those tested, and could be potential rich sources of natural antioxidants and functional foods.
Abstract: In order to identify wild fruits possessing high nutraceutical potential, the antioxidant activities of 56 wild fruits from South China were systematically evaluated. The fat-soluble components were extracted with tetrahydrofuran, and the water-soluble ones were extracted with a 50:3.7:46.3 (v/v) methanol-acetic acid-water mixture. The antioxidant capacities of the extracts were evaluated using the ferric reducing antioxidant power (FRAP) and Trolox equivalent antioxidant capacity (TEAC) assays, and their total phenolic contents were measured by the Folin-Ciocalteu method. Most of these wild fruits were analyzed for the first time for their antioxidant activities. Generally, these fruits had high antioxidant capacities and total phenolic contents. A significant correlation between the FRAP value and the TEAC value suggested that antioxidant components in these wild fruits were capable of reducing oxidants and scavenging free radicals. A high correlation between antioxidant capacity and total phenolic content indicated that phenolic compounds could be the main contributors to the measured antioxidant activity. The results showed that fruits of Eucalyptus robusta, Eurya nitida, Melastoma sanguineum, Melaleuca leucadendron, Lagerstroemia indica, Caryota mitis, Lagerstroemia speciosa and Gordonia axillaris possessed the highest antioxidant capacities and total phenolic contents among those tested, and could be potential rich sources of natural antioxidants and functional foods. The results obtained are very helpful for the full utilization of these wild fruits.

Journal ArticleDOI
TL;DR: Supramolecular self-assembly, nano-mechanical properties of lignin-lignin, lign in-polysaccharide interactions and association-dissociation kinetics affect biomass deconstruction and thereby cost-effective biofuels production.
Abstract: Phenylpropanoid metabolism yields a mixture of monolignols that undergo chaotic, non-enzymatic reactions such as free radical polymerization and spontaneous self-assembly in order to form the polyphenolic lignin which is a barrier to cost-effective lignocellulosic biofuels. Post-synthesis lignin integration into the plant cell wall is unclear, including how the hydrophobic lignin incorporates into the wall in an initially hydrophilic milieu. Self-assembly, self-organization and aggregation give rise to a complex, 3D network of lignin that displays randomly branched topology and fractal properties. Attempts at isolating lignin, analogous to archaeology, are instantly destructive and non-representative of in planta. Lack of plant ligninases or enzymes that hydrolyze specific bonds in lignin-carbohydrate complexes (LCCs) also frustrate a better grasp of lignin. Supramolecular self-assembly, nano-mechanical properties of lignin-lignin, lignin-polysaccharide interactions and association-dissociation kinetics affect biomass deconstruction and thereby cost-effective biofuels production.

Journal ArticleDOI
TL;DR: The present work studied the potential biological activity of twenty-seven monoterpenes, including monoterpene hydrocarbons and oxygenated ones, against seed germination and subsequent primary radicle growth of Raphanus sativus L. (radish) and Lepidium sativum (garden cress), under laboratory conditions.
Abstract: Monoterpenes, the main constituents of essential oils, are known for their many biological activities. The present work studied the potential biological activity of twenty-seven monoterpenes, including monoterpene hydrocarbons and oxygenated ones, against seed germination and subsequent primary radicle growth of Raphanus sativus L. (radish) and Lepidium sativum L. (garden cress), under laboratory conditions. The compounds, belonging to different chemical classes, showed different potency in affecting both parameters evaluated. The assayed compounds demonstrated a good inhibitory activity in a dose-dependent way. In general, radish seed is more sensitive than garden cress and its germination appeares more inhibited by alcohols; at the highest concentration tested, the more active substances were geraniol, borneol, (±)-β-citronellol and α-terpineol. Geraniol and carvone inhibited, in a significant way, the germination of garden cress, at the highest concentration tested. Radicle elongation of two test species was inhibited mainly by alcohols and ketones. Carvone inhibited the radicle elongation of both seeds, at almost all concentrations assayed, while 1,8-cineole inhibited their radicle elongation at the lowest concentrations (10(-5) M, 10(-6) M).