scispace - formally typeset
Search or ask a question

Showing papers in "Phytopathology in 2011"


Journal ArticleDOI
TL;DR: Both theoretical and experimental studies suggest that, in combined use of BCAs, antagonistic interactions among BCAs are more likely to occur than synergistic interactions.
Abstract: Effective use of biological control agents (BCAs) is a potentially important component of sustainable agriculture. Recently, there has been an increasing interest among researchers in using combinations of BCAs to exploit potential synergistic effects among them. The methodology for investigating such synergistic effects was reviewed first and published results were then assessed for available evidence for synergy. Correct formulation of hypotheses based on the theoretical definition of independence (Bliss independence or Loewe additivity) and the subsequent and statistical testing for the independence–synergistic–antagonistic interactions have rarely been carried out thus far in studies on biocontrol of plant diseases. Thus, caution must be taken when interpreting reported “synergistic” effects without assessing the original publications. Recent theoretical modeling work suggested that disease suppression from combined use of two BCAs was, in general, very similar to that achieved by the more ef...

204 citations


Journal ArticleDOI
TL;DR: Results suggest that the volatiles of C. intermedia C410 are promising biofumigants for control of Botrytis fruit rot of strawberry.
Abstract: A study was conducted to identify volatile organic compounds or volatiles produced by Candida intermedia strain C410 using gas chromatography–mass spectrometry, and to determine efficacy of the volatiles of C. intermedia in suppression of conidial germination and mycelial growth of Botrytis cinerea and control of Botrytis fruit rot of strawberry. Results showed that, among 49 volatiles (esters, alcohols, alkenes, alkanes, alkynes, organic acids, ketones, and aldehydes) identified from C. intermedia cultures on yeast extract peptone dextrose agar, two compounds, 1,3,5,7-cyclooctatetraene and 3-methyl-1-butanol, were the most abundant. Synthetic chemicals of 1,3,5,7-cyclooctatetraene; 3-methyl-1-butanol; 2-nonanone; pentanoic acid, 4-methyl-, ethyl ester; 3-methyl-1-butanol, acetate; acetic acid, pentyl ester; and hexanoic acid, ethyl ester were highly inhibitory to conidial germination and mycelial growth of B. cinerea. Inhibition of conidial germination and mycelial growth of B. cinerea by volati...

183 citations


Journal ArticleDOI
TL;DR: Biomass and mycotoxin data exhibited good correlations between Fusarium spp.
Abstract: Quantitative real-time polymerase chain reaction differentiating 10 Fusarium spp. and Microdochium nivale or M. majus was applied to a total of 396 grain samples of wheat, barley, triticale, oat, and rye sampled across Denmark from 2003 to 2007, along with selected samples of wheat and barley from 1957 to 2000, to determine incidence and abundance of individual Fusarium spp. The mycotoxins deoxynivalenol (DON), nivalenol, zearalenone, T-2, and HT-2 were quantified using liquid chromatography-double mass spectrometry. Major differences in the Fusarium species complex among the five cereals as well as great yearly variation were seen. Fusarium graminearum, F. culmorum, and F. avenaceum were dominant in wheat, with DON as the dominant mycotoxin. F. langsethiae, F. culmorum, and F. avenaceum were dominant in barley and oat, leading to relatively high levels of the mycotoxins T-2 and HT-2. F. graminearum, F. culmorum, and F. avenaceum dominated in triticale and rye. The nontoxigenic M. nivale/majus were present in significant amounts in all cereal species. Wheat and barley samples from 1957 to 1996 exhibited no or very low amounts of F. graminearum, indicating a recent increase of this pathogen. Biomass and mycotoxin data exhibited good correlations between Fusarium spp. and their corresponding mycotoxins under field conditions.

165 citations


Journal ArticleDOI
TL;DR: A "pathoprofile" concept was developed to characterize the strain clusters, which displayed six virulence patterns on the whole set of Core-TEP host accessions, neither pathotypes nor pathoprofiles were phylotype specific.
Abstract: Bacterial wilt, caused by strains belonging to the Ralstonia solanacearum species complex, inflicts severe economic losses in many crops worldwide. Host resistance remains the most effective control strategy against this disease. However, wilt resistance is often overcome due to the considerable variation among pathogen strains. To help breeders circumvent this problem, we assembled a worldwide collection of 30 accessions of tomato, eggplant and pepper (Core-TEP), most of which are commonly used as sources of resistance to R. solanacearum or for mapping quantitative trait loci. The Core-TEP lines were challenged with a core collection of 12 pathogen strains (Core-Rs2) representing the phylogenetic diversity of R. solanacearum. We observed six interaction phenotypes, from highly susceptible to highly resistant. Intermediate phenotypes resulted from the plants' ability to tolerate latent infections (i.e., bacterial colonization of vascular elements with limited or no wilting). The Core-Rs2 strains partitioned into three pathotypes on pepper accessions, five on tomato, and six on eggplant. A "pathoprofile" concept was developed to characterize the strain clusters, which displayed six virulence patterns on the whole set of Core-TEP host accessions. Neither pathotypes nor pathoprofiles were phylotype specific. Pathoprofiles with high aggressiveness were mainly found in strains from phylotypes I, IIB, and III. One pathoprofile included a strain that overcame almost all resistance sources.

162 citations


Journal ArticleDOI
TL;DR: This is the first report of NIV-type populations of F. asiaticum in the United States and they were found in high proportion among isolates from small-grain-growing regions of Louisiana.
Abstract: U.S. populations of the Fusarium graminearum clade cause head blight on wheat and barley and usually contaminate grain with the trichothecene mycotoxin deoxynivalenol (DON). Recently, however, individual nivalenol (NIV)-type isolates from the United States were described that belonged to either the newly described species F. gerlachii or the genetically distinct Gulf Coast population of F. graminearum sensu stricto (s.s.). Here, we describe the discovery of NIV-type F. graminearum s.s. populations that were found in high proportion (79%) among isolates from small-grain-growing regions of Louisiana. We genotyped 237 isolates from Louisiana with newly developed polymerase chain reaction (PCR) restriction fragment length polymorphism markers and multiplex PCR primers that distinguish among the three trichothecene types: the two DON types (15ADON and 3ADON) and NIV. These isolates were compared with 297 isolates from 11 other U.S. states, predominantly from the Midwest. Using Bayesian-model-based clustering, we discovered a southern Louisiana population of F. graminearum s.s. that was genetically distinct from the previously recognized pathogen population in the Midwest (MW15ADON population). Population membership was correlated with trichothecene type. Most isolates from the southern Louisiana population were of the NIV type, while the majority of the isolates from the Midwest were of the 15ADON type. A smaller proportion of isolates from Louisiana belonged to the previously described Gulf Coast population that was mostly of the 3ADON type. The NIV type was also identified in collections from Arkansas (12%), North Carolina (40%), and Missouri (2%), with the collections from Arkansas and North Carolina being small and unrepresentative. F. asiaticum was detected from the two southern Louisiana parishes Acadia and Alexandria. All identified 41 F. asiaticum isolates were of the NIV type. Greenhouse tests indicated that U.S. NIV types accumulated four times less trichothecene toxin than DON types on inoculated wheat. This is the first report of NIV-type populations of F. graminearum s. s. and F. asiaticum in the United States.

150 citations


Journal ArticleDOI
TL;DR: This study clearly establishes that B. cinerea and B. pseudocinerea constitute a complex of two cryptic species living in sympatry on several hosts, including grapevine and blackberry, which probably makes a negligible contribution to gray mold epidemics on grapevine.
Abstract: Botrytis cinerea is a major crop pathogen infesting >220 hosts worldwide. A cryptic species has been identified in some French populations but the new species, B. pseudocinerea, has not been fully delimited and established. The aim of this study was to distinguish between the two species, using phylogenetic, biological, morphological, and ecological criteria. Multiple gene genealogies confirmed that the two species belonged to different, well-supported phylogenetic clades. None of the morphological criteria tested (spore size, germination rate, or mycelial growth) was able to discriminate between these two species. Sexual crosses between individuals from the same species and different species were carried out. Only crosses between individuals from the same species were successful. Moreover, population genetics analysis revealed a high level of diversity within each species and a lack of gene flow between them. Finally, a population survey over time showed that B. cinerea was the predominant species but that B. pseudocinerea was more abundant in spring, on floral debris. This observation could not be explained by temperature adaptation in tests carried out in vitro or by aggressiveness on tomato or bean leaves. This study clearly establishes that B. cinerea and B. pseudocinerea constitute a complex of two cryptic species living in sympatry on several hosts, including grapevine and blackberry. We propose several biological or molecular tools for unambiguous differentiation between the two species. B. pseudocinerea probably makes a negligible contribution to gray mold epidemics on grapevine. This new species has been deposited in the MycoBank international database.

132 citations


Journal ArticleDOI
TL;DR: Overall, soil water, soil quality, and soilborne diseases were all important factors affecting productivity, and cropping systems addressing these constraints improved production.
Abstract: Four different potato cropping systems, designed to address specific management goals of soil conservation, soil improvement, disease suppression, and a status quo standard rotation control, were evaluated for their effects on soilborne diseases of potato and soil microbial community characteristics. The status quo system (SQ) consisted of barley underseeded with red clover followed by potato (2-year). The soil-conserving system (SC) featured an additional year of forage grass and reduced tillage (3-year, barley/timothy-timothy-potato). The soil-improving system (SI) added yearly compost amendments to the SC rotation, and the disease-suppressive system (DS) featured diverse crops with known disease-suppressive capability (3-year, mustard/rapeseed-sudangrass/rye-potato). Each system was also compared with a continuous potato control (PP) and evaluated under both irrigated and nonirrigated conditions. Data collected over three potato seasons following full rotation cycles demonstrated that all rotations reduced stem canker (10 to 50%) relative to PP. The SQ, SC, and DS systems reduced black scurf (18 to 58%) relative to PP; SI reduced scurf under nonirrigated but not irrigated conditions; and scurf was lower in DS than all other systems. The SQ, SC, and DS systems also reduced common scab (15 to 45%), and scab was lower in DS than all other systems. Irrigation increased black scurf and common scab but also resulted in higher yields for most rotations. SI produced the highest yields under nonirrigated conditions, and DS produced high yields and low disease under both irrigation regimes. Each cropping system resulted in distinctive changes in soil microbial community characteristics as represented by microbial populations, substrate utilization, and fatty acid methyl-ester (FAME) profiles. SI tended to increase soil moisture, microbial populations, and activity, as well result in higher proportions of monounsaturated FAMEs and the FAME biomarker for mycorrhizae (16:1 ω6c) relative to most other rotations. DS resulted in moderate microbial populations and activity but higher substrate richness and diversity in substrate utilization profiles. DS also resulted in relatively higher proportions of FAME biomarkers for fungi (18:2 ω6c), actinomycetes, and gram-positive bacteria than most other systems, whereas PP resulted in the lowest microbial populations and activity; substrate richness and diversity; proportions of monounsaturated and polyunsaturated FAME classes; and fungal, mycorrhizae, and actinomycete FAME biomarkers of all cropping systems. Overall, soil water, soil quality, and soilborne diseases were all important factors affecting productivity, and cropping systems addressing these constraints improved production. Cropping system approaches will need to balance these factors to achieve sustainable production and disease management.

110 citations


Journal ArticleDOI
TL;DR: Novel evidence of the involvement of Si in a more complex defense mechanism than simply the formation of a physical barrier to avoid or delay fungal penetration is brought in.
Abstract: This study investigated how a defect in the active uptake of silicon (Si) affects rice resistance to brown spot. Plants from a rice mutant (low silicon 1 [lsi1]) and its wild-type counterpart (cv. Oochikara), growing in hydroponic culture with (+Si; 2 mM) or without (-Si) Si, were inoculated with Bipolaris oryzae. Si concentration in leaf tissue of cv. Oochikara and the lsi1 mutant increased by 381 and 263%, respectively, for the +Si treatment compared with the -Si treatment. The incubation period was 6 h longer in the presence of Si. The area under brown spot progress curve for plants from cv. Oochikara and the lsi1 mutant was reduced 81 and 50%, respectively, in the presence of Si. The reduced number of brown epidermal cells on leaves from cv. Oochikara and the lsi1 mutant supplied with Si contributed to the lower lipid peroxidation and electrolyte leakage. The concentration of total soluble phenolics in cv. Oochikara supplied with Si (values of 4.2 to 15.4 μg g(-1) fresh weight) was greater compared with plants not supplied with Si (values of 1.9 to 11.5 μg g(-1) fresh weight). The concentration of lignin was also important to the resistance of cv. Oochikara and the lsi1 mutant. Polyphenoloxidase activity did not contribute to the resistance of cv. Oochikara and the lsi1 mutant to brown spot, regardless of Si supply. Peroxidase and chitinase activities were higher in cv. Oochikara and the lsi1 mutant supplied with Si. These results bring novel evidence of the involvement of Si in a more complex defense mechanism than simply the formation of a physical barrier to avoid or delay fungal penetration.

108 citations


Journal ArticleDOI
TL;DR: Novel approaches for characterizing the upper bound on the bias are discussed, in order to show the robustness of meta-analysis to possible violation of assumptions.
Abstract: Meta-analysis is the analysis of the results of multiple studies, which is typically performed in order to synthesize evidence from many possible sources in a formal probabilistic manner. In a simple sense, the outcome of each study becomes a single observation in the meta-analysis of all available studies. The methodology was developed originally in the social sciences by Smith, Glass, Rosenthal, Hunter, and Schmidt, based on earlier pioneering contributions in statistics by Fisher, Pearson, Yates, and Cochran, but this approach to research synthesis has now been embraced within many scientific disciplines. However, only a handful of articles have been published in plant pathology and related fields utilizing meta-analysis. After reviewing basic concepts and approaches, methods for estimating parameters and interpreting results are shown. The advantages of meta-analysis are presented in terms of prediction and risk analysis, and the high statistical power that can be achieved for detecting significant effects of treatments or significant relationships between variables. Based on power considerations, the fallacy of naive counting of P values in a narrative review is demonstrated. Although there are many advantages to meta-analysis, results can be biased if the analysis is based on a nonrepresentative sample of study outcomes. Therefore, novel approaches for characterizing the upper bound on the bias are discussed, in order to show the robustness of meta-analysis to possible violation of assumptions.

108 citations


Journal ArticleDOI
TL;DR: The first report of a DNA virus in grapevines is given a provisional name Grapevine vein clearing virus (GVCV), which was detected in six grapevine cultivars showing vein-clearing and vine decline syndrome in Missouri, Illinois, and Indiana, suggesting its wide distribution.
Abstract: A severe vein-clearing and vine decline syndrome has emerged on grapevines (Vitis vinifera) and hybrid grape cultivars in the Midwest region of the United States The typical symptoms are translucent vein-clearing on young leaves, short internodes and decline of vine vigor Known viral pathogens of grapevines were not closely associated with the syndrome To obtain a comprehensive profile of viruses in a diseased grapevine, small RNAs were enriched and two cDNA libraries were constructed from a symptomatic grapevine and a symptomless grapevine, respectively Deep sequencing of the two cDNA libraries showed that the most abundant viral small RNAs align with the genomes of viruses in the genus Badnavirus, the family Caulimoviridae Amplification of the viral DNA by polymerase chain reaction allowed the assembly of the whole genome sequence of a grapevine DNA virus, which shared the highest homology with the Badnavirus sequences This is the first report of a DNA virus in grapevines The new DNA virus is closely associated with the vein-clearing symptom, and thus has been given a provisional name Grapevine vein clearing virus (GVCV) GVCV was detected in six grapevine cultivars showing vein-clearing and vine decline syndrome in Missouri, Illinois, and Indiana, suggesting its wide distribution in the Midwest region of the United States Discovery of DNA viruses in grapevines merits further studies on their epidemics and economic impact on grape production worldwide

107 citations


Journal ArticleDOI
TL;DR: These experiments demonstrate that certain biological control agents are mechanistically incompatible, in that one strain interferes with the mechanism by which a second strain suppresses plant disease.
Abstract: Mixtures of biological control agents can be superior to individual agents in suppressing plant disease, providing enhanced efficacy and reliability from field to field relative to single biocontrol strains. Nonetheless, the efficacy of combinations of Pseudomonas fluorescens A506, a commercial biological control agent for fire blight of pear, and Pantoea vagans strain C9-1 or Pantoea agglomerans strain Eh252 rarely exceeds that of individual strains. A506 suppresses growth of the pathogen on floral colonization and infection sites through preemptive exclusion. C9-1 and Eh252 produce peptide antibiotics that contribute to disease control. In culture, A506 produces an extracellular protease that degrades the peptide antibiotics of C9-1 and Eh252. We hypothesized that strain A506 diminishes the biological control activity of C9-1 and Eh252, thereby reducing the efficacy of biocontrol mixtures. This hypothesis was tested in five replicated field trials comparing biological control of fire blight using strain A506 and A506 aprX::Tn5, an extracellular protease-deficient mutant, as individuals and combined with C9-1 or Eh252. On average, mixtures containing A506 aprX::Tn5 were superior to those containing the wild-type strain, confirming that the extracellular protease of A506 diminished the biological control activity of C9-1 and Eh252 in situ. Mixtures of A506 aprX::Tn5 and C9-1 or Eh252 were superior to oxytetracycline or single biocontrol strains in suppressing fire blight of pear. These experiments demonstrate that certain biological control agents are mechanistically incompatible, in that one strain interferes with the mechanism by which a second strain suppresses plant disease. Mixtures composed of mechanistically compatible strains of biological control agents can suppress disease more effectively than individual biological control agents.

Journal ArticleDOI
TL;DR: Investigation of genotypic diversity of P. ramorum in Canadian nurseries andimation of migration rates between Europe and North America indicated that migration was higher from Europe to North America than vice versa, and that unidirectional migration from Europeto North America was more likely than bidirectional Migration.
Abstract: Phytophthora ramorum, the cause of sudden oak death on oak and ramorum blight on woody ornamentals, has been reported in ornamental nurseries on the West Coast of North America from British Columbia to California. Long-distance migration of P. ramorum has occurred via the nursery trade, and shipments of host plants are known to have crossed the U.S.-Canadian border. We investigated the genotypic diversity of P. ramorum in Canadian nurseries and compared the Canadian population with U.S. and European nursery isolates for evidence of migration among populations. All three of the P. ramorum clonal lineages were found in Canada but, unexpectedly, the most common was the NA2 lineage. The NA1 clonal lineage, which has been the most common lineage in U.S. nurseries, was found relatively infrequently in Canada, and these isolates may have been the result of migration from the United States to Canada. The EU1 lineage was observed almost every year and shared multilocus genotypes with isolates from Europe and the United States. Estimation of migration rates between Europe and North America indicated that migration was higher from Europe to North America than vice versa, and that unidirectional migration from Europe to North America was more likely than bidirectional migration.

Journal ArticleDOI
TL;DR: The results indicated that H272R/Y in BcSdhB were the dominant genotypes of mutants in field BosR isolates from apple, suggesting that the development of resistance to boscalid in B. cinerea likely is not totally random, and resistant populations may come from specific genetic groups.
Abstract: Botrytis cinerea isolates obtained from apple orchards were screened for resistance to boscalid. Boscalid-resistant (BosR) isolates were classified into four phenotypes based on the levels of the concentration that inhibited fungal growth by 50% relative to control. Of the 220 isolates tested, 42 were resistant to boscalid, with resistant phenotypes ranging from low to very high resistance. There was cross resistance between boscalid and carboxin. Analysis of partial sequences of the iron-sulfur subunit of succinate dehydrogenase gene in B. cinerea (BcSdhB) from 13 BosR and 9 boscalid-sensitive (BosS) isolates showed that point mutations in BcSdhB leading to amino acid substitutions at the codon position 272 from histidine to either tyrosine (H272Y) or arginine (H272R) were correlated with boscalid resistance. Allele-specific polymerase chain reaction (PCR) analysis of 66 BosR isolates (including 24 additional isolates obtained from decayed apple fruit) showed that 19 carried the point mutation H272Y and 46 had the point mutation H272R, but 1 BosR isolate gave no amplification product. Analysis of the BcSdhB sequence of this isolate revealed a different point mutation at codon 225, resulting in a substitution of proline (P) by phenylalanine (F) (P225F). The results indicated that H272R/Y in BcSdhB were the dominant genotypes of mutants in field BosR isolates from apple. A multiplex allele-specific PCR assay was developed to detect point mutations H272R/Y in a single PCR amplification. Levels of boscalid resistance ranged from low to very high within isolates carrying either the H272R or H272Y mutation, indicating that, among BosR isolates, different BosR phenotypes (levels of resistance) were not associated with particular types of point mutations (H272R versus H272Y) in BcSdhB. Analysis of genetic relationships between 39 BosR and 56 BosS isolates based on three microsatellite markers showed that 39 BosR isolates and 30 BosS isolates were clustered into two groups, and the third group consisted of only BosS isolates, suggesting that the development of resistance to boscalid in B. cinerea likely is not totally random, and resistant populations may come from specific genetic groups.

Journal ArticleDOI
TL;DR: The combination of penicillin and streptomycin was effective in eliminating or suppressing the 'Ca. L. asiaticus' bacterium in the HLB-affected citrus plants and may provide a useful tool for the management of citrus HLB and other Liberibacter-associated diseases.
Abstract: Zhang, M Q, Powell, C A, Zhou, L J, He, Z L, Stover, E, and Duan, Y P 2011 Chemical compounds effective against the citrus Huanglongbing bacterium ‘Candidatus Liberibacter asiaticus’ in planta Phytopathology 101:1097-1103 Citrus Huanglongbing (HLB) is one of the most destructive diseases of citrus worldwide and is threatening the survival of the Floridian citrus industry Currently, there is no established cure for this century-old and emerging disease As a possible control strategy for citrus HLB, therapeutic compounds were screened using a propagation test system with ‘Candidatus Liberibacter asiaticus’-infected periwinkle and citrus plants The results demonstrated that the combination of penicillin and streptomycin (PS) was effective in eliminating or suppressing the ‘Ca L asiaticus’ bacterium and provided a therapeutically effective level of control for a much longer period of time than when administering either antibiotic separately When treated with the PS, ‘Ca L asiaticus’infected periwinkle cuttings achieved 70% of regeneration rates versus <50% by other treatments The ‘Ca L asiaticus’ bacterial titers in the infected periwinkle plants, as measured by quantitative real-time polymerase chain reaction, decreased significantly following root soaking or foliar spraying with PS Application of the PS via trunk injection or root soaking also eliminated or suppressed the ‘Ca L asiaticus’ bacterium in the HLB-affected citrus plants This may provide a useful tool for the management of citrus HLB and other Liberibacter-associated diseases Additional keywords: 2,2-dibromo-3-nitrilopropionamide, oxytetracycline, penicillin G potassium

Journal ArticleDOI
TL;DR: Results of preference bioassays with ABL 14-8 versus Moneymaker indicated that presence of type IV glandular trichomes and the production of acylsucrose deterred the landing and settling of B. tabaci on ABL14-8.
Abstract: Rodriguez-Lopez, M J, Garzo, E, Bonani, J P, Fereres, A, FernandezMunoz, R, and Moriones, E 2011 Whitefly resistance traits derived from the wild tomato Solanum pimpinellifolium affect the preference and feeding behavior of Bemisia tabaci and reduce the spread of Tomato yellow leaf curl virus Phytopathology 101:1191-1201 Breeding of tomato genotypes that limit whitefly (Bemisia tabaci) access and feeding might reduce the spread of Tomato yellow leaf curl virus (TYLCV), a begomovirus (genus Begomovirus, family Geminiviridae) that is the causal agent of tomato yellow leaf curl disease TYLCV is restricted to the phloem and is transmitted in a persistent manner by B tabaci The tomato breeding line ABL 14-8 was developed by introgressing type IV leaf glandular trichomes and secretion of acylsucroses from the wild tomato Solanum pimpinellifolium accession TO937 into the genetic background of the whitefly- and virus-susceptible tomato cultivar Moneymaker Results of preference bioassays with ABL 14-8 versus Moneymaker indicated that presence of type IV glandular trichomes and the production of acylsucrose deterred the landing and settling of B tabaci on ABL 14-8 Moreover, electrical penetration graph studies indicated that B tabaci adults spent more time in nonprobing activities and showed a reduced ability to start probing Such behavior resulted in a reduced ability to reach the phloem The superficial type of resistance observed in ABL 14-8 against B tabaci probing significantly reduced primary and secondary spread of TYLCV Additional keywords: acylsugars, disease control

Journal ArticleDOI
TL;DR: Results demonstrate the involvement of phenazines and CLPs during Pseudomonas CMR12a-mediated biocontrol of Rhizoctonia root rot of bean.
Abstract: Pseudomonas CMR12a was previously selected as an efficient biocontrol strain producing phenazines and cyclic lipopeptides (CLPs). In this study, biocontrol capacity of Pseudomonas CMR12a against Rhizoctonia root rot of bean and the involvement of phenazines and CLPs in this ability were tested. Two different anastomosis groups (AGs) of Rhizoctonia solani, the intermediately aggressive AG 2-2 and the highly aggressive AG 4 HGI, were included in growth-chamber experiments with bean plants. The wild-type strain CMR12a dramatically reduced disease severity caused by both R. solani AGs. A CLP-deficient and a phenazine-deficient mutant of CMR12a still protected bean plants, albeit to a lesser extent compared with the wild type. Two mutants deficient in both phenazine and CLP production completely lost their biocontrol activity. Disease-suppressive capacity of CMR12a decreased after washing bacteria before application to soil and thereby removing metabolites produced during growth on plate. In addition, microscopic observations revealed pronounced branching of hyphal tips of both R. solani AGs in the presence of CMR12a. More branched and denser mycelium was also observed for the phenazine-deficient mutant; however, neither the CLP-deficient mutant nor the mutants deficient in both CLPs and phenazines influenced hyphal growth. Together, results demonstrate the involvement of phenazines and CLPs during Pseudomonas CMR12a-mediated biocontrol of Rhizoctonia root rot of bean.

Journal ArticleDOI
TL;DR: The high p(loss) values found in most scenarios suggest that the use of these foliar fungicides is unlikely to be profitable when foliar disease severity is low and yield expectation is high.
Abstract: The use of foliar fungicides on field corn has increased greatly over the past 5 years in the United States in an attempt to increase yields, despite limited evidence that use of the fungi...

Journal ArticleDOI
TL;DR: A molecular study of PVy(O) and PVY(O)-O5 isolates from a North American collection of PVY through whole-genome sequencing and phylogenetic analysis suggests that PVY’s recombinants originated from two separate recombination events involving two different PVY (O) parental genomes.
Abstract: The ordinary strain of Potato virus Y (PVY), PVY(O), causes mild mosaic in tobacco and induces necrosis and severe stunting in potato cultivars carrying the Ny gene A novel substrain of PVY(O) was recently reported, PVY(O)-O5, which is spreading in the United States and is distinguished from other PVY(O) isolates serologically (ie, reacting to the otherwise PVY(N)-specific monoclonal antibody 1F5) To characterize this new PVY(O)-O5 subgroup and address possible reasons for its continued spread, we conducted a molecular study of PVY(O) and PVY(O)-O5 isolates from a North American collection of PVY through whole-genome sequencing and phylogenetic analysis In all, 44 PVY(O) isolates were sequenced, including 31 from the previously defined PVY(O)-O5 group, and subjected to whole-genome analysis PVY(O)-O5 isolates formed a separate lineage within the PVY(O) genome cluster in the whole-genome phylogenetic tree and represented a novel evolutionary lineage of PVY from potato On the other hand, the PVY(O) sequences separated into at least two distinct lineages on the whole-genome phylogenetic tree To shed light on the origin of the three most common PVY recombinants, a more detailed phylogenetic analysis of a sequence fragment, nucleotides 2,406 to 5,821, that is present in all recombinant and nonrecombinant PVY(O) genomes was conducted The analysis revealed that PVY(N:O) and PVY(N-Wi) recombinants acquired their PVY(O) segments from two separate PVY(O) lineages, whereas the PVY(NTN) recombinant acquired its PVY(O) segment from the same lineage as PVY(N:O) These data suggest that PVY(N:O) and PVY(N-Wi) recombinants originated from two separate recombination events involving two different PVY(O) parental genomes, whereas the PVY(NTN) recombinants likely originated from the PVY(N:O) genome via additional recombination events

Journal ArticleDOI
TL;DR: The data confirm the importance of kasugamycin as an alternate antibiotic for fire blight management and lay the groundwork for the development and incorporation of resistance management strategies.
Abstract: The emergence and spread of streptomycin-resistant strains of Erwinia amylovora in Michigan has necessitated the evaluation of new compounds effective for fire blight control. The aminoglycoside antibiotic kasugamycin (Ks) targets the bacterial ribosome and is particularly active against E. amylovora. The efficacy of Ks formulated as Kasumin 2L for control of fire blight was evaluated in six experiments conducted over four field seasons in our experimental orchards in East Lansing, MI. Blossom blight control was statistically equivalent to the industry standard streptomycin in all experiments. E. amylovora populations remained constant on apple flower stigmas pretreated with Kasumin and were ≈100-fold lower than on stigmas treated with water. Kasumin applied to apple trees in the field also resulted in a 100-fold reduced total culturable bacterial population compared with trees treated with water. We performed a prospective analysis of the potential for kasugamycin resistance (KsR) development in...

Journal ArticleDOI
TL;DR: This is the first demonstration that MLST can accurately allocate new pathogens directly to P. syringae sensu lato genomospecies and P. coriandricola, which cause leaf spot diseases on parsley, celery, and coriander or cilantro.
Abstract: Since 2002, severe leaf spotting on parsley (Petroselinum crispum) has occurred in Monterey County, CA. Either of two different pathovars of Pseudomonas syringae sensu lato were isolated from diseased leaves from eight distinct outbreaks and once from the same outbreak. Fragment analysis of DNA amplified between repetitive sequence polymerase chain reaction; 16S rDNA sequence analysis; and biochemical, physiological, and host range tests identified the pathogens as Pseudomonas syringae pv. apii and P. syringae pv. coriandricola. Koch's postulates were completed for the isolates from parsley, and host range tests with parsley isolates and pathotype strains demonstrated that P. syringae pv. apii and P. syringae pv. coriandricola cause leaf spot diseases on parsley, celery, and coriander or cilantro. In a multilocus sequence typing (MLST) approach, four housekeeping gene fragments were sequenced from 10 strains isolated from parsley and 56 pathotype strains of P. syringae. Allele sequences were uplo...

Journal ArticleDOI
TL;DR: This review discusses how network concepts can be applied in plant pathology from the molecular to the landscape and global level and provides an example of an emerging pathosystem (Phytophthora ramorum) where a theoretical network approach has proven particularly fruitful in analyzing the spread of disease in the UK plant trade.
Abstract: There is increasing use of networks in ecology and epidemiology, but still relatively little application in phytopathology. Networks are sets of elements (nodes) connected in various ways by links (edges). Network analysis aims to understand system dynamics and outcomes in relation to network characteristics. Many existing natural, social, and technological networks have been shown to have small-world (local connectivity with short-cuts) and scale-free (presence of super-connected nodes) properties. In this review, we discuss how network concepts can be applied in plant pathology from the molecular to the landscape and global level. Wherever disease spread occurs not just because of passive/natural dispersion but also due to artificial movements, it makes sense to superimpose realistic models of the trade in plants on spatially explicit models of epidemic development. We provide an example of an emerging pathosystem (Phytophthora ramorum) where a theoretical network approach has proven particularly fruitful in analyzing the spread of disease in the UK plant trade. These studies can help in assessing the future threat posed by similar emerging pathogens. Networks have much potential in plant epidemiology and should become part of the standard curriculum.

Journal ArticleDOI
TL;DR: The effects of rater variability and rating scales on mapping QTL for northern leaf blight resistance in maize were evaluated in a recombinant inbred line population grown under field conditions and it was found that more experienced raters had higher precision and that using a direct percentage estimation of diseased leaf area produced higher precision than using an ordinal scale.
Abstract: The agronomic importance of developing durably resistant cultivars has led to substantial research in the field of quantitative disease resistance (QDR) and, in particular, mapping quantitative trait loci (QTL) for disease resistance. The assessment of QDR is typically conducted by visual estimation of disease severity, which raises concern over the accuracy and precision of visual estimates. Although previous studies have examined the factors affecting the accuracy and precision of visual disease assessment in relation to the true value of disease severity, the impact of this variability on the identification of disease resistance QTL has not been assessed. In this study, the effects of rater variability and rating scales on mapping QTL for northern leaf blight resistance in maize were evaluated in a recombinant inbred line population grown under field conditions. The population of 191 lines was evaluated by 22 different raters using a direct percentage estimate, a 0-to-9 ordinal rating scale, or both. It was found that more experienced raters had higher precision and that using a direct percentage estimation of diseased leaf area produced higher precision than using an ordinal scale. QTL mapping was then conducted using the disease estimates from each rater using stepwise general linear model selection (GLM) and inclusive composite interval mapping (ICIM). For GLM, the same QTL were largely found across raters, though some QTL were only identified by a subset of raters. The magnitudes of estimated allele effects at identified QTL varied drastically, sometimes by as much as threefold. ICIM produced highly consistent results across raters and for the different rating scales in identifying the location of QTL. We conclude that, despite variability between raters, the identification of QTL was largely consistent among raters, particularly when using ICIM. However, care should be taken in estimating QTL allele effects, because this was highly variable and rater dependent.

Journal ArticleDOI
TL;DR: The analyzed data indicate that systematic disruption of some specific parameters of evolving virus populations could lead to more efficient ways of disease prevention, eradication, or tolerable virus-plant coexistence.
Abstract: Recent studies in plant virus evolution are revealing that genetic structure and behavior of virus and viroid populations can explain important pathogenic properties of these agents, such as host resistance breakdown, disease severity, and host shifting, among others. Genetic variation is essential for the survival of organisms. The exploration of how these subcellular parasites generate and maintain a certain frequency of mutations at the intra- and inter-host levels is revealing novel molecular virus-plant interactions. They emphasize the role of host environment in the dynamic genetic composition of virus populations. Functional genomics has identified host factors that are transcriptionally altered after virus infections. The analyses of these data by means of systems biology approaches are uncovering critical plant genes specifically targeted by viruses during host adaptation. Also, a next-generation resequencing approach of a whole virus genome is opening new avenues to study virus recombination and the relationships between intra-host virus composition and pathogenesis. Altogether, the analyzed data indicate that systematic disruption of some specific parameters of evolving virus populations could lead to more efficient ways of disease prevention, eradication, or tolerable virus-plant coexistence.

Journal ArticleDOI
TL;DR: First evidence for E325 antibiosis involved in E. amylovora growth suppression on apple flower stigmas is provided, indicating that acidification, which was previously reported as a possible mechanism of pathogen inhibition onStigmas, is not directly related to antibiosis.
Abstract: Pantoea agglomerans E325, the active ingredient in a commercial product for fire blight control, was previously shown in vitro to produce a unique alkaline- and phosphate-sensitive antibio...

Journal ArticleDOI
TL;DR: In this study, addition of Phenolic acids with greater antioxidant properties resulted in a higher toxin accumulation, indicating that the modulation of toxin accumulation may be linked to the antioxidant properties of the phenolic acids.
Abstract: The impact of five phenolic acids (ferulic, coumaric, caffeic, syringic, and p-hydroxybenzoic acids) on fungal growth and type B trichothecene production by four strains of Fusarium graminearum was investigated. All five phenolic acids inhibited growth but the degree of inhibition varied between strains. Our results suggested that the more lipophilic phenolic acids are, the higher is the effect they have on growth. Toxin accumulation in phenolic acid-supplemented liquid glucose, yeast extract, and peptone cultures was enhanced in the presence of ferulic and coumaric acids but was reduced in the presence of p-hydroxybenzoic acid. This modulation was shown to correlate with a regulation of TRI5 transcription. In this study, addition of phenolic acids with greater antioxidant properties resulted in a higher toxin accumulation, indicating that the modulation of toxin accumulation may be linked to the antioxidant properties of the phenolic acids. These data suggest that, in planta, different compositions in phenolic acids of kernels from various cultivars may reflect different degrees of sensitivity to "mycotoxinogenesis."

Journal ArticleDOI
TL;DR: A new framework is discussed that has the subjective probability of disease and the cost of decision errors as its central features, which might allow a better integration of social science and epidemiology, to the benefit of plant disease management.
Abstract: Many factors influence how people form risk perceptions. Farmers' perceptions of risk and levels of risk aversion impact on decision-making about such things as technology adoption and disease management practices. Irrespective of the underlying factors that affect risk perceptions, those perceptions can be summarized by variables capturing impact and uncertainty components of risk. We discuss a new framework that has the subjective probability of disease and the cost of decision errors as its central features, which might allow a better integration of social science and epidemiology, to the benefit of plant disease management. By focusing on the probability and cost (or impact) dimensions of risk, the framework integrates research from the social sciences, economics, decision theory, and epidemiology. In particular, we review some useful properties of expected regret and skill value, two measures of expected cost that are particularly useful in the evaluation of decision tools. We highlight decision-theoretic constraints on the usefulness of decision tools that may partly explain cases of failure of adoption. We extend this analysis by considering information-theoretic criteria that link model complexity and relative performance and which might explain why users reject forecasters that impose even moderate increases in the complexity of decision making despite improvements in performance or accept very simple decision tools that have relatively poor performance.

Journal ArticleDOI
TL;DR: Results establish that, for improved detection, samples should include newly developing leaves and consider that, under low insect pressure, the pathogen may be undetectable by PCR until 3 weeks after infestation, and that bacterial titers were frequently low in tomato and potato samples.
Abstract: Zebra Chip disease is a serious threat to potato production. The pathogen, the phloem-limited bacterium ‘Candidatus Liberibacter solanacearum,’ is vectored by the potato and tomato psyllid Bactericerca cockerelli to potato and tomato. Patterns of pathogen translocation through phloem in potato and tomato plants were examined to determine whether rate or direction of translocation vary by host species or potato cultivars. Two insects were given a 7-day inoculation access period on a single leaf. Weekly, leaves from upper-, middle-, and lower-tier branches were tested for the presence of ‘Ca. L. solanacearum’ by polymerase chain reaction (PCR). In tomato and potato, ‘Ca. L. solanacearum’ was detected 2 to 3 weeks after infestation, most frequently in upper- and middle-tier leaves. In potato, the pathogen was detected in leaves on a second, noninfested stem when the stems remained joined via the tuber. Although rates of pathogen movement were similar among potato cultivars, symptoms developed earlie...

Journal ArticleDOI
TL;DR: It is suggested that an appropriate measure of the value and impact of decision support systems is grower education that enables more skillful and informed management decisions independent of consultation of the support tool outputs.
Abstract: Rational management of plant diseases, both economically and environmentally, involves assessing risks and the costs associated with both correct and incorrect tactical management decisions to determine when control measures are warranted. Decision support systems can help to inform users of plant disease risk and thus assist in accurately targeting events critical for management. However, in many instances adoption of these systems for use in routine disease management has been perceived as slow. The under-utilization of some decision support systems is likely due to both technical and perception constraints that have not been addressed adequately during development and implementation phases. Growers' perceptions of risk and their aversion to these perceived risks can be reasons for the “slow” uptake of decision support systems and, more broadly, integrated pest management (IPM). Decision theory provides some tools that may assist in quantifying and incorporating subjective and/or measured proba...

Journal ArticleDOI
TL;DR: The results support the observation in companion studies that cool temperatures result in slower development of clubroot symptoms in brassica crops, and demonstrate that the temperature has a consistent pattern of effect throughout the life cycle of the pathogen.
Abstract: A study was conducted to assess the effect of temperature on infection and development of Plasmodiophora brassicae in the root cortex of Shanghai pak choy (Brassica rapa subsp. chinensis) and on subsequent clubroot severity. Ten-day-old seedlings were grown individually, inoculated with resting spores, and maintained in growth cabinets at 10, 15, 20, 25, and 30?C. Seedlings were harvested at 2-day intervals, starting 8 days after inoculation (DAI) and continuing until 42 DAI. Roots were assessed at 4-day intervals for the incidence of cortical infection and stage of infection (young plasmodia, mature plasmodia, and resting spores), at 2-day intervals for symptom development and clubroot severity, and at 8-day intervals for the number of spores per gram of gall. Temperature affected every stage of clubroot development. Cortical infection was highest and symptoms were observed earliest at 25?C, intermediate at 20 and 30?C, and lowest and latest at 15?C. No cortical infection or symptoms were observed at 42 DAI in plants grown at 10?C. A substantial delay in the development of the pathogen was observed at 15?C. Resting spores were first observed at 38 DAI in plants at 15?C, 26 DAI at 20 and 30?C, and 22 DAI at 25?C. The yield of resting spores from galls was higher in galls that developed at 20 to 30?C than those that developed at 15?C over 42 days of assessment. These results support the observation in companion studies that cool temperatures result in slower development of clubroot symptoms in brassica crops, and demonstrate that the temperature has a consistent pattern of effect throughout the life cycle of the pathogen.

Journal ArticleDOI
TL;DR: Log-linear analysis revealed that irrigation management, source of irrigation water, sources of planting stock, and cropping history of soil were significantly associated with the prevalence of VCG1A compared with that ofVCG2A, and development of a discriminant model for predicting the occurrence of D and ND pathotypes in the area of the study was developed.
Abstract: Severity of Verticillium wilt in olive trees in Andalusia, southern Spain is associated with the spread of a highly virulent, defoliating (D) Verticillium dahliae pathotype of vegetative compatibility group 1A (VCG1A) but the extent of this spread and the diversity of the pathogen population have never been documented. VCG typing of 637 V. dahliae isolates from 433 trees in 65 orchards from five olive-growing provinces in Andalusia indicated that 78.1% were of VCG1A, 19.8% of VCG2A, 0.6% of VCG2B, 1.4% of VCG4B, and one isolate was heterokaryon self-incompatible. A single VCG prevailed among isolates within most orchards but two and three VCGs were identified in 12 and 3 orchards, respectively, with VCG1A+VCG2A occurring in 10 orchards. VCG1A was the predominant VCG in the three most important olive-growing provinces, and was almost as prevalent as VCG2A in another one. Molecular pathotyping of the 637 isolates using specific polymerase chain reaction assays indicated that VCG1A isolates were of the D pathotype whereas isolates of VCG2A, -2B, and -4B were of the less virulent nondefoliating (ND) pathotype. The pathotype of isolates correlated with the disease syndrome affecting sampled trees. Only three (seq1, seq2, and seq4) of the seven known sequences of the V. dahliae-specific 539- or 523-bp amplicon were identified among the 637 isolates. Distribution and prevalence of VCGs and seq sequences among orchards indicated that genetic diversity within olive V. dahliae in Andalusia is higher in provinces where VCG1A is not prevalent. Log-linear analysis revealed that irrigation management, source of irrigation water, source of planting stock, and cropping history of soil were significantly associated with the prevalence of VCG1A compared with that of VCG2A. Multivariate analyses using a selected set of agricultural factors as variables allowed development of a discriminant model for predicting the occurrence of D and ND pathotypes in the area of the study. Blind tests using this model correctly indentified the V. dahliae pathotype occurring in an orchard. The widespread occurrence and high prevalence of VCG1A/D pathotype in Andalusia have strong implications for the management of the disease.