scispace - formally typeset
Search or ask a question

Showing papers in "Polymers in 2018"


Journal ArticleDOI
05 Mar 2018-Polymers
TL;DR: This review has particularly focused on the effect of chemical derivatization on the mucoadhesive properties of chitosan, and other important properties including water-solubility, stability, controlled release, permeation enhancing effect, and in vivo performance are described.
Abstract: Mucoadhesive drug delivery systems are desirable as they can increase the residence time of drugs at the site of absorption/action, provide sustained drug release and minimize the degradation of drugs in various body sites. Chitosan is a cationic polysaccharide that exhibits mucoadhesive properties and it has been widely used in the design of mucoadhesive dosage forms. However, its limited mucoadhesive strength and limited water-solubility at neutral and basic pHs are considered as two major drawbacks of its use. Chemical modification of chitosan has been exploited to tackle these two issues. In this review, we highlight the up-to-date studies involving the synthetic approaches and description of mucoadhesive properties of chitosan and chitosan derivatives. These derivatives include trimethyl chitosan, carboxymethyl chitosan, thiolated chitosan, chitosan-enzyme inhibitors, chitosan-ethylenediaminetetraacetic acid (chitosan-EDTA), half-acetylated chitosan, acrylated chitosan, glycol chitosan, chitosan-catechol, methyl pyrrolidinone-chitosan, cyclodextrin-chitosan and oleoyl-quaternised chitosan. We have particularly focused on the effect of chemical derivatization on the mucoadhesive properties of chitosan. Additionally, other important properties including water-solubility, stability, controlled release, permeation enhancing effect, and in vivo performance are also described.

441 citations


Journal ArticleDOI
26 Feb 2018-Polymers
TL;DR: The basic knowledge and character methods for PVDF fabrication are discussed and an overview of recent advances on the phase modification and recent applications of the β phase PVDF are reported to provide an insight for the development and utilization of βphase PVDF nanofilms in future electronics.
Abstract: Poly(vinylidene fluoride), PVDF, as one of important polymeric materials with extensively scientific interests and technological applications, shows five crystalline polymorphs with α, β, γ, δ and e phases obtained by different processing methods. Among them, β phase PVDF presents outstanding electrical characteristics including piezo-, pyro-and ferroelectric properties. These electroactive properties are increasingly important in applications such as energy storage, spin valve devices, biomedicine, sensors and smart scaffolds. This article discusses the basic knowledge and character methods for PVDF fabrication and provides an overview of recent advances on the phase modification and recent applications of the β phase PVDF are reported. This study may provide an insight for the development and utilization for β phase PVDF nanofilms in future electronics.

396 citations


Journal ArticleDOI
25 Jun 2018-Polymers
TL;DR: The present review gives an overview regarding HA, describing its history, physico-chemical, structural and hydrodynamic properties and biology, roles, mechanisms of action and receptors, and both conventional and recently emerging methods developed for the industrial production of HA and its chemical derivatization are presented.
Abstract: Since its first isolation in 1934, hyaluronic acid (HA) has been studied across a variety of research areas. This unbranched glycosaminoglycan consisting of repeating disaccharide units of N-acetyl-d-glucosamine and d-glucuronic acid is almost ubiquitous in humans and in other vertebrates. HA is involved in many key processes, including cell signaling, wound reparation, tissue regeneration, morphogenesis, matrix organization and pathobiology, and has unique physico-chemical properties, such as biocompatibility, biodegradability, mucoadhesivity, hygroscopicity and viscoelasticity. For these reasons, exogenous HA has been investigated as a drug delivery system and treatment in cancer, ophthalmology, arthrology, pneumology, rhinology, urology, aesthetic medicine and cosmetics. To improve and customize its properties and applications, HA can be subjected to chemical modifications: conjugation and crosslinking. The present review gives an overview regarding HA, describing its history, physico-chemical, structural and hydrodynamic properties and biology (occurrence, biosynthesis (by hyaluronan synthases), degradation (by hyaluronidases and oxidative stress), roles, mechanisms of action and receptors). Furthermore, both conventional and recently emerging methods developed for the industrial production of HA and its chemical derivatization are presented. Finally, the medical, pharmaceutical and cosmetic applications of HA and its derivatives are reviewed, reporting examples of HA-based products that currently are on the market or are undergoing further investigations.

384 citations


Journal ArticleDOI
Dongying Zhao1, Shuang Yu1, Beini Sun1, Shuang Gao1, Sihan Guo1, Kai Zhao1 
23 Apr 2018-Polymers
TL;DR: N nanoparticles based on chitosan have great potential for research and development of new nano vaccines and nano drugs in the future.
Abstract: Chitosan is a biodegradable natural polymer with many advantages such as nontoxicity, biocompatibility, and biodegradability. It can be applied in many fields, especially in medicine. As a delivery carrier, it has great potential and cannot be compared with other polymers. Chitosan is extremely difficult to solubilize in water, but it can be solubilized in acidic solution. Its insolubility in water is a major limitation for its use in medical applications. Chitosan derivatives can be obtained by chemical modification using such techniques as acylation, alkylation, sulfation, hydroxylation, quaternization, esterification, graft copolymerization, and etherification. Modified chitosan has chemical properties superior to unmodified chitosan. For example, nanoparticles produced from chitosan derivatives can be used to deliver drugs due to their stability and biocompatibility. This review mainly focuses on the properties of chitosan, chitosan derivatives, and the origin of chitosan-based nanoparticles. In addition, applications of chitosan-based nanoparticles in drug delivery, vaccine delivery, antimicrobial applications, and callus and tissue regeneration are also presented. In summary, nanoparticles based on chitosan have great potential for research and development of new nano vaccines and nano drugs in the future.

303 citations


Journal ArticleDOI
06 Jun 2018-Polymers
TL;DR: More than 200 articles were reviewed to summarize the properties of these three types of cellulose aerogels, as well as the technologies used in their preparation, such as the sol–gel process and gel drying.
Abstract: Due to its excellent performance, aerogel is considered to be an especially promising new material. Cellulose is a renewable and biodegradable natural polymer. Aerogel prepared using cellulose has the renewability, biocompatibility, and biodegradability of cellulose, while also having other advantages, such as low density, high porosity, and a large specific surface area. Thus, it can be applied for many purposes in the areas of adsorption and oil/water separation, thermal insulation, and biomedical applications, as well as many other fields. There are three types of cellulose aerogels: natural cellulose aerogels (nanocellulose aerogels and bacterial cellulose aerogels), regenerated cellulose aerogels, and aerogels made from cellulose derivatives. In this paper, more than 200 articles were reviewed to summarize the properties of these three types of cellulose aerogels, as well as the technologies used in their preparation, such as the sol–gel process and gel drying. In addition, the applications of different types of cellulose aerogels were also introduced.

268 citations


Journal ArticleDOI
22 Feb 2018-Polymers
TL;DR: The different functional roles of chitosan as a skin care and hair care ingredient, as an oral hygiene agent and as a carrier for active compounds, among others are explored.
Abstract: Marine resources are well recognized for their biologically active substances with great potential applications in the cosmeceutical industry. Among the different compounds with a marine origin, chitin and its deacetylated derivative—chitosan—are of great interest to the cosmeceutical industry due to their unique biological and technological properties. In this review, we explore the different functional roles of chitosan as a skin care and hair care ingredient, as an oral hygiene agent and as a carrier for active compounds, among others. The importance of the physico-chemical properties of the polymer in its use in cosmetics are particularly highlighted. Moreover, we analyse the market perspectives of this polymer and the presence in the market of chitosan-based products.

236 citations


Journal ArticleDOI
12 Dec 2018-Polymers
TL;DR: An overview of classification of these drug delivery devices; the mechanism of drug release; the materials used for manufacture; the various methods of manufacture; and examples of clinical applications of implantable drug Delivery devices are given.
Abstract: The oral route is a popular and convenient means of drug delivery. However, despite its advantages, it also has challenges. Many drugs are not suitable for oral delivery due to: first pass metabolism; less than ideal properties; and side-effects of treatment. Additionally, oral delivery relies heavily on patient compliance. Implantable drug delivery devices are an alternative system that can achieve effective delivery with lower drug concentrations, and as a result, minimise side-effects whilst increasing patient compliance. This article gives an overview of classification of these drug delivery devices; the mechanism of drug release; the materials used for manufacture; the various methods of manufacture; and examples of clinical applications of implantable drug delivery devices.

211 citations


Journal ArticleDOI
11 Jul 2018-Polymers
TL;DR: This review strongly recommends that pectin, as a natural biocomponent, should be the focus for both the food industry and the bioeconomy since pectins are abundant in fruits and may also be extracted from cell walls in a similar way to cellulose and hemicellulose.
Abstract: Pectins are polysaccharides present commonly in dicotyledonous and non-grass monocotyledonous plants Depending on the source, pectins may vary in molecular size, degrees of acetylation and methylation and contents of galacturonic acid and neutral sugar residues Therefore, pectins demonstrate versatile gelling properties and are capable of forming complexes with other natural compounds, and as a result, they are useful for designing food products This review focuses on the structure-related mechanisms of pectin gelling and linking with other natural compounds such as cellulose, hemicellulose, ferulic acid, proteins, starch, and chitosan For each system, optimal conditions for obtaining useful functionality for food design are described This review strongly recommends that pectins, as a natural biocomponent, should be the focus for both the food industry and the bioeconomy since pectins are abundant in fruits and may also be extracted from cell walls in a similar way to cellulose and hemicellulose However, due to the complexity of the pectin family and the dynamic structural changes during plant organ development, a more intensive study of their structure-related properties is necessary Fractioning using different solvents at well-defined development stages and an in-depth study of the molecular structure and properties within each fraction and stage, is one possible way to proceed with the investigation

207 citations


Journal ArticleDOI
02 Jan 2018-Polymers
TL;DR: Polymer-based nanomaterials have great potential for the development of novel vaccines and drug systems for certain needs, including single-dose and needle-free deliveries of vaccine antigens and drugs in the future.
Abstract: Nanotechnology plays a significant role in drug development. As carriers, polymeric nanoparticles can deliver vaccine antigens, proteins, and drugs to the desired site of action. Polymeric nanoparticles with lower cytotoxicity can protect the delivered antigens or drugs from degradation under unfavorable conditions via a mucosal administration route; further, the uptake of nanoparticles by antigen-presenting cells can increase and induce potent immune responses. Additionally, nanomaterials are widely used in vaccine delivery systems because nanomaterials can make the vaccine antigen long-acting. This review focuses on some biodegradable polymer materials such as natural polymeric nanomaterials, chemically synthesized polymer materials, and biosynthesized polymeric materials, and points out the advantages and the direction of research on degradable polymeric materials. The application and future perspectives of polymeric materials as delivery carriers and vaccine adjuvants in the field of drugs and vaccines are presented. With the increase of knowledge and fundamental understandings of polymer-based nanomaterials, means of integrating some other attractive properties, such as slow release, target delivery, and alternative administration methods and delivery pathways are feasible. Polymer-based nanomaterials have great potential for the development of novel vaccines and drug systems for certain needs, including single-dose and needle-free deliveries of vaccine antigens and drugs in the future.

200 citations


Journal ArticleDOI
26 Feb 2018-Polymers
TL;DR: The main approaches for preparing chitosan nanoparticles by self-assembly through both grafting and polyelectrolyte complexes with polyanions are reviewed, and the state of the art of their application in drug delivery is illustrated.
Abstract: Chitosan is a cationic polysaccharide that is usually obtained by alkaline deacetylation of chitin poly(N-acetylglucosamine). It is biocompatible, biodegradable, mucoadhesive, and non-toxic. These excellent biological properties make chitosan a good candidate for a platform in developing drug delivery systems having improved biodistribution, increased specificity and sensitivity, and reduced pharmacological toxicity. In particular, chitosan nanoparticles are found to be appropriate for non-invasive routes of drug administration: oral, nasal, pulmonary and ocular routes. These applications are facilitated by the absorption-enhancing effect of chitosan. Many procedures for obtaining chitosan nanoparticles have been proposed. Particularly, the introduction of hydrophobic moieties into chitosan molecules by grafting to generate a hydrophobic-hydrophilic balance promoting self-assembly is a current and appealing approach. The grafting agent can be a hydrophobic moiety forming micelles that can entrap lipophilic drugs or it can be the drug itself. Another suitable way to generate self-assembled chitosan nanoparticles is through the formation of polyelectrolyte complexes with polyanions. This paper reviews the main approaches for preparing chitosan nanoparticles by self-assembly through both procedures, and illustrates the state of the art of their application in drug delivery.

186 citations


Journal ArticleDOI
13 Mar 2018-Polymers
TL;DR: A significant influence of geometric process parameters on sample mesostructure, and consequently, on sample strength is detected, and a novel assessment method is proposed to assess print strength.
Abstract: The current paper studies the influence of geometrical parameters of the fused deposition modeling (FDM)—fused filament fabrication (FFF) 3D printing process on printed part strength for open source desktop 3D printers and the most popular material used for that purpose—i.e., polylactic acid (PLA). The study was conducted using a set of different nozzles (0.4, 0.6, and 0.8 mm) and a range of layer heights from the minimum to maximum physical limits of the machine. To assess print strength, a novel assessment method is proposed. A tubular sample is loaded in the weakest direction (across layers) in a three-point bending fixture. Mesostructure evaluation through scanning electronic microscopy (SEM) scans of the samples was used to explain the obtained results. We detected a significant influence of geometric process parameters on sample mesostructure, and consequently, on sample strength.

Journal ArticleDOI
10 May 2018-Polymers
TL;DR: This review outlines the chemistry of the interaction between the nanocellulose and the polymer matrix, along with the extent of the reinforcement in their nanocomposites, to help in designing polymer/nanocellULose composites through the utilization of nano cellulose properties and the selection of functional polymers.
Abstract: In recent years, the research on nanocellulose composites with polymers has made significant contributions to the development of functional and sustainable materials. This review outlines the chemistry of the interaction between the nanocellulose and the polymer matrix, along with the extent of the reinforcement in their nanocomposites. In order to fabricate well-defined nanocomposites, the type of nanomaterial and the selection of the polymer matrix are always crucial from the viewpoint of polymer–filler compatibility for the desired reinforcement and specific application. In this review, recent articles on polymer/nanocellulose composites were taken into account to provide a clear understanding on how to use the surface functionalities of nanocellulose and to choose the polymer matrix in order to produce the nanocomposite. Here, we considered cellulose nanocrystal (CNC) and cellulose nanofiber (CNF) as the nanocellulosic materials. A brief discussion on their synthesis and properties was also incorporated. This review, overall, is a guide to help in designing polymer/nanocellulose composites through the utilization of nanocellulose properties and the selection of functional polymers, paving the way to specific polymer–filler interaction.

Journal ArticleDOI
08 Feb 2018-Polymers
TL;DR: This review summarizes the main characteristics, microstructures and biomedical applications of electroactive fluorinated polymers.
Abstract: Fluorinated polymers constitute a unique class of materials that exhibit a combination of suitable properties for a wide range of applications, which mainly arise from their outstanding chemical resistance, thermal stability, low friction coefficients and electrical properties. Furthermore, those presenting stimuli-responsive properties have found widespread industrial and commercial applications, based on their ability to change in a controlled fashion one or more of their physicochemical properties, in response to single or multiple external stimuli such as light, temperature, electrical and magnetic fields, pH and/or biological signals. In particular, some fluorinated polymers have been intensively investigated and applied due to their piezoelectric, pyroelectric and ferroelectric properties in biomedical applications including controlled drug delivery systems, tissue engineering, microfluidic and artificial muscle actuators, among others. This review summarizes the main characteristics, microstructures and biomedical applications of electroactive fluorinated polymers.

Journal ArticleDOI
03 Jul 2018-Polymers
TL;DR: This review summarises the main advances achieved in this field so far, addressing most of the chemical and physical strategies to modify PHBV and placing particular emphasis on the combination ofPHBV with other materials from a variety of different structures and properties, producing a wide range of composite biomaterials with increased potential applications.
Abstract: Poly(3-hydroxybutyrate-co-3-hydroxyvalerate), PHBV, is a microbial biopolymer with excellent biocompatible and biodegradable properties that make it a potential candidate for substituting petroleum-derived polymers. However, it lacks mechanical strength, water sorption and diffusion, electrical and/or thermal properties, antimicrobial activity, wettability, biological properties, and porosity, among others, limiting its application. For this reason, many researchers around the world are currently working on how to overcome the drawbacks of this promising material. This review summarises the main advances achieved in this field so far, addressing most of the chemical and physical strategies to modify PHBV and placing particular emphasis on the combination of PHBV with other materials from a variety of different structures and properties, such as other polymers, natural fibres, carbon nanomaterials, nanocellulose, nanoclays, and nanometals, producing a wide range of composite biomaterials with increased potential applications. Finally, the most important methods to fabricate porous PHBV scaffolds for tissue engineering applications are presented. Even though great advances have been achieved so far, much research needs to be conducted still, in order to find new alternative enhancement strategies able to produce advanced PHBV-based materials able to overcome many of these challenges.

Journal ArticleDOI
07 Jun 2018-Polymers
TL;DR: The current state-of-the-art 3D printing technologies and their applications in tactile sensors for wearable electronics and electronic skin are summarized and the advantages and limitations of various 3D printers and printable materials are discussed.
Abstract: 3D printing has attracted a lot of attention in recent years. Over the past three decades, various 3D printing technologies have been developed including photopolymerization-based, materials extrusion-based, sheet lamination-based, binder jetting-based, power bed fusion-based and direct energy deposition-based processes. 3D printing offers unparalleled flexibility and simplicity in the fabrication of highly complex 3D objects. Tactile sensors that emulate human tactile perceptions are used to translate mechanical signals such as force, pressure, strain, shear, torsion, bend, vibration, etc. into electrical signals and play a crucial role toward the realization of wearable electronics and electronic skin. To date, many types of 3D printing technologies have been applied in the manufacturing of various types of tactile sensors including piezoresistive, capacitive and piezoelectric sensors. This review attempts to summarize the current state-of-the-art 3D printing technologies and their applications in tactile sensors for wearable electronics and electronic skin. The applications are categorized into five aspects: 3D-printed molds for microstructuring substrate, electrodes and sensing element; 3D-printed flexible sensor substrate and sensor body for tactile sensors; 3D-printed sensing element; 3D-printed flexible and stretchable electrodes for tactile sensors; and fully 3D-printed tactile sensors. Latest advances in the fabrication of tactile sensors by 3D printing are reviewed and the advantages and limitations of various 3D printing technologies and printable materials are discussed. Finally, future development of 3D-printed tactile sensors is discussed.

Journal ArticleDOI
08 Apr 2018-Polymers
TL;DR: This work shows that glycerol can strongly affect the functional properties of starch-based coatings and films, presenting as a viable alternative to polymers derived from petrol.
Abstract: As starch is an inexpensive, filmogenic, easily processable and a widely available material, it is a material that can be utilized in the creation of biodegradable films and containers, presenting as a viable alternative to polymers derived from petrol. Moreover, starch could also be used to create edible coatings for fresh foods in order to extend shelf life. As such, wheat starch films with two glycerol contents were formulated to mimic the effects of compounds currently used to coat fruit. Their structural and functional properties were characterized. This study found that the transfer properties of starch films containing 33% of plasticizer was less effective than film comprised of 50% glycerol. Water diffusivity, oxygen permeability, and water vapor permeability at two different humidity gradients, surface tension, works of surface adhesion and cohesion, and moisture sorption were tested. Glycerol content does not play a significant role on the color or mechanical properties. This work shows that glycerol can strongly affect the functional properties of starch-based coatings and films.

Journal ArticleDOI
21 Nov 2018-Polymers
TL;DR: Different approaches to synthesize GelMA were introduced and the typical method using UV light to crosslink the gelatin-methacrylic anhydride (MA) precursor was introduced in detail, followed by concluding remarks.
Abstract: Photocrosslinked gelatin methacryloyl (GelMA) hydrogels have attracted great concern in the biomedical field because of their good biocompatibility and tunable physicochemical properties. Herein, different approaches to synthesize GelMA were introduced, especially, the typical method using UV light to crosslink the gelatin-methacrylic anhydride (MA) precursor was introduced in detail. In addition, the traditional and cutting-edge technologies to characterize the properties of GelMA hydrogels and GelMA prepolymer were also overviewed and compared. Furthermore, the applications of GelMA hydrogels in cell culture and tissue engineering especially in the load-bearing tissue (bone and cartilage) were summarized, followed by concluding remarks.

Journal ArticleDOI
03 Jun 2018-Polymers
TL;DR: The results confirmed that fracture toughness and flexural modulus of the composites monotonically increased with fiber length and content, however, for all samples, composites showed negligible difference on the flexural strength.
Abstract: Bamboo fibers demonstrate enormous potential as the reinforcement phase in composite materials. In this study, in order to find suitable NaOH concentration for bamboo fiber treatment, bamboo fibers were treated with 2 wt.%, 6 wt.% and 10 wt.% NaOH solutions for 12 h, respectively. We determined that 6 wt.% NaOH treated bamboo fibers were optimal for the fabrication of bamboo fiber composites by single fiber tensile test, single fiber pull-out test, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The short length bamboo fibers treated with 6 wt.% NaOH solutions were well dispersed in the epoxy matrix by a new preparation method. The effect of fiber content and fiber length on the mechanical behavior of bamboo fiber reinforced epoxy composites was investigated. The results confirmed that fracture toughness and flexural modulus of the composites monotonically increased with fiber length and content. However, for all samples, composites showed negligible difference on the flexural strength. The fracture surfaces of the composites were observed by SEM, revealing that fiber breakage, matrix cracking, debonding, and fiber pull out were major failure types. In addition, thermogravimetric analysis (TGA) was carried out to investigate the thermal behavior of both bamboo fibers and composites.

Journal ArticleDOI
07 Nov 2018-Polymers
TL;DR: This review mainly encompasses on the synthetic development of PEO-based SPEs (PSPEs), and the potential application of the resulting PSPEs for high performance, all-solid-state lithium ion batteries.
Abstract: Solid polymer electrolytes (SPEs) have attracted considerable attention due to the rapid development of the need for more safety and powerful lithium ion batteries. The prime requirements of solid polymer electrolytes are high ion conductivity, low glass transition temperature, excellent solubility to the conductive lithium salt, and good interface stability against Li anode, which makes PEO and its derivatives potential candidate polymer matrixes. This review mainly encompasses on the synthetic development of PEO-based SPEs (PSPEs), and the potential application of the resulting PSPEs for high performance, all-solid-state lithium ion batteries.

Journal ArticleDOI
19 Dec 2018-Polymers
TL;DR: The results of a study of the bioactivity of pectic polysaccharides, including its various pharmacological applications, such as its immunoregulatory, anti-inflammatory, hypoglycemic, antibacterial, antioxidant and antitumor activities, have been summarized.
Abstract: Pectin is a polymer with a core of alternating α-1,4-linked d-galacturonic acid and α-1,2-l-rhamnose units, as well as a variety of neutral sugars such as arabinose, galactose, and lesser amounts of other sugars. Currently, native pectins have been compared to modified ones due to the development of natural medicines and health products. In this review, the results of a study of the bioactivity of pectic polysaccharides, including its various pharmacological applications, such as its immunoregulatory, anti-inflammatory, hypoglycemic, antibacterial, antioxidant and antitumor activities, have been summarized. The potential of pectins to contribute to the enhancement of drug delivery systems has been observed.

Journal ArticleDOI
18 Jan 2018-Polymers
TL;DR: In the context of biomedical applications, polyzwitterions are widely used as they exhibit antifouling properties and thus can lead to minimized protein adsorption and also long circulation times.
Abstract: Throughout the last decades, magnetic nanoparticles (MNP) have gained tremendous interest in different fields of applications like biomedicine (eg, magnetic resonance imaging (MRI), drug delivery, hyperthermia), but also more technical applications (eg, catalysis, waste water treatment) have been pursued Different surfactants and polymers are extensively used for surface coating of MNP to passivate the surface and avoid or decrease agglomeration, decrease or modulate biomolecule absorption, and in most cases increase dispersion stability For this purpose, electrostatic or steric repulsion can be exploited and, in that regard, surface charge is the most important (hybrid) particle property Therefore, polyelectrolytes are of great interest for nanoparticle coating, as they are able to stabilize the particles in dispersion by electrostatic repulsion due to their high charge densities In this review article, we focus on polyzwitterions as a subclass of polyelectrolytes and their use as coating materials for MNP In the context of biomedical applications, polyzwitterions are widely used as they exhibit antifouling properties and thus can lead to minimized protein adsorption and also long circulation times

Journal ArticleDOI
26 Jan 2018-Polymers
TL;DR: This review has summarized the latest researches of the application of CHT on plant productivity, plant protection against the attack of pathogens and extension of the commercial life of detached fruits.
Abstract: In recent years, the search for biological methods to avoid the application of chemical products in agriculture has led to investigating the use of biopolymers-based materials. Among the tested biomaterials, the best results were obtained from those based on the biopolymer chitosan (CHT). CHT, available in large quantities from the deacetylation of chitin, has multiple advantages: it is safe, inexpensive and can be easily associated with other compounds to achieve better performance. In this review, we have summarized the latest researches of the application of CHT on plant productivity, plant protection against the attack of pathogens and extension of the commercial life of detached fruits.

Journal ArticleDOI
20 Dec 2018-Polymers
TL;DR: The developmental and biological aspects of scaffolds prepared from four polysaccharides, viz. alginic acid (ALG), chitosan (CHI), hyaluronic acid (HA), and dextran (DEX), are discussed and clinical studies on these scaffolds are also discussed.
Abstract: Soft tissue reconstructs require materials that form three-dimensional (3-D) structures supportive to cell proliferation and regenerative processes. Polysaccharides, due to their hydrophilicity, biocompatibility, biodegradability, abundance, and presence of derivatizable functional groups, are distinctive scaffold materials. Superior mechanical properties, physiological signaling, and tunable tissue response have been achieved through chemical modification of polysaccharides. Moreover, an appropriate formulation strategy enables spatial placement of the scaffold to a targeted site. With the advent of newer technologies, these preparations can be tailor-made for responding to alterations in temperature, pH, or other physiological stimuli. In this review, we discuss the developmental and biological aspects of scaffolds prepared from four polysaccharides, viz. alginic acid (ALG), chitosan (CHI), hyaluronic acid (HA), and dextran (DEX). Clinical studies on these scaffolds are also discussed.

Journal ArticleDOI
27 Dec 2018-Polymers
TL;DR: This study provides the guidelines to verify the surface free energy decrease with the fiber fraction for the meshes, to validate the changes in wetting contact angles and suggested that meshes could maintain the entrapped air between fibers, decreasing surface free energies for polymers.
Abstract: Wettability of electrospun fibers is one of the key parameters in the biomedical and filtration industry. Within this comprehensive study of contact angles on three-dimensional (3D) meshes made of electrospun fibers and films, from seven types of polymers, we clearly indicated the importance of roughness analysis. Surface chemistry was analyzed with X-ray photoelectron microscopy (XPS) and it showed no significant difference between fibers and films, confirming that the hydrophobic properties of the surfaces can be enhanced by just roughness without any chemical treatment. The surface geometry was determining factor in wetting contact angle analysis on electrospun meshes. We noted that it was very important how the geometry of electrospun surfaces was validated. The commonly used fiber diameter was not necessarily a convincing parameter unless it was correlated with the surface roughness or fraction of fibers or pores. Importantly, this study provides the guidelines to verify the surface free energy decrease with the fiber fraction for the meshes, to validate the changes in wetting contact angles. Eventually, the analysis suggested that meshes could maintain the entrapped air between fibers, decreasing surface free energies for polymers, which increased the contact angle for liquids with surface tension above the critical Wenzel level to maintain the Cassie-Baxter regime for hydrophobic surfaces.

Journal ArticleDOI
08 Mar 2018-Polymers
TL;DR: This review will focus on the use of two manufacturing techniques, namely electrospinning and 3D printing, that present promise in the fabrication of complex composite gels for cartilage and bone tissue engineering applications.
Abstract: Injuries of bone and cartilage constitute important health issues costing the National Health Service billions of pounds annually, in the UK only. Moreover, these damages can become cause of disability and loss of function for the patients with associated social costs and diminished quality of life. The biomechanical properties of these two tissues are massively different from each other and they are not uniform within the same tissue due to the specific anatomic location and function. In this perspective, tissue engineering (TE) has emerged as a promising approach to address the complexities associated with bone and cartilage regeneration. Tissue engineering aims at developing temporary three-dimensional multicomponent constructs to promote the natural healing process. Biomaterials, such as hydrogels, are currently extensively studied for their ability to reproduce both the ideal 3D extracellular environment for tissue growth and to have adequate mechanical properties for load bearing. This review will focus on the use of two manufacturing techniques, namely electrospinning and 3D printing, that present promise in the fabrication of complex composite gels for cartilage and bone tissue engineering applications.

Journal ArticleDOI
30 Aug 2018-Polymers
TL;DR: The physical, chemical, and biological properties of gold nanoparticle, which can promote PTT and PDT efficiency, are briefly demonstrated, and recent progression in the development of PS-containing gold nanocomposites for effective cancer therapy is highlighted.
Abstract: Rapid growth of nanotechnology is one of the most quickly emerging tendencies in cancer therapy. Gold nanoparticles roused a distinctive interest in the field, due to their incomparable light-to-thermal energy conversion efficiency, and their ability to load and deliver a variety of anticancer drugs. Therefore, simultaneous photothermal (PTT) and photodynamic (PDT) cancer therapy is available by the role of the thermal agent of the gold nanoparticle itself and the drug delivery carrier for photosensitizer (PS) transport. In this review, the physical, chemical, and biological properties of gold nanoparticle, which can promote PTT and PDT efficiency, are briefly demonstrated, and we highlight recent progression in the development of PS-containing gold nanocomposites for effective cancer therapy.

Journal ArticleDOI
07 May 2018-Polymers
TL;DR: A broad review on recent advances in the research and development of nanofiller reinforced biodegradable polymer composites that are used in various applications, including electronics, packing materials, and biomedical uses, is presented.
Abstract: The increasing demand for environmental protection has led to the rapid development of greener and biodegradable polymers, whose creation provided new challenges and opportunities for the advancement of nanomaterial science. Biodegradable polymer materials and even nanofillers (e.g., natural fibers) are important because of their application in greener industries. Polymers that can be degraded naturally play an important role in solving public hazards of polymer materials and maintaining ecological balance. The inherent shortcomings of some biodegradable polymers such as weak mechanical properties, narrow processing windows, and low electrical and thermal properties can be overcome by composites reinforced with various nanofillers. These biodegradable polymer composites have wide-ranging applications in different areas based on their large surface area and greater aspect ratio. Moreover, the polymer composites that exploit the synergistic effect between the nanofiller and the biodegradable polymer matrix can lead to enhanced properties while still meeting the environmental requirement. In this paper, a broad review on recent advances in the research and development of nanofiller reinforced biodegradable polymer composites that are used in various applications, including electronics, packing materials, and biomedical uses, is presented. We further present information about different kinds of nanofillers, biodegradable polymer matrixes, and their composites with specific concern to our daily applications.

Journal ArticleDOI
14 Jun 2018-Polymers
TL;DR: Human adipose derived stem cells (hASCs) adhered to the 3D printed AlCh PIC hydrogels and proliferated with time, which indicated that the obtained hydrogel were biocompatible and could potentially be used as scaffolds for tissue engineering.
Abstract: Three-dimensional (3D) printing holds great potential for preparing sophisticated scaffolds for tissue engineering. As a result of the shear thinning properties of an alginate solution, it is often used as 3D printing ink. However, it is difficult to prepare scaffolds with complexity structure and high fidelity, because the alginate solution has a low viscosity and alginate hydrogels prepared with Ca2+ crosslinking are mechanically weak. In this work, chitosan powders were dispersed and swelled in an alginate solution, which could effectively improve the viscosity of an alginate solution by 1.5⁻4 times. With the increase of chitosan content, the shape fidelity of the 3D printed alginate⁻chitosan polyion complex (AlCh PIC) hydrogels were improved. Scanning electron microscope (SEM) photographs showed that the lateral pore structure of 3D printed hydrogels was becoming more obvious. As a result of the increased reaction ion pairs in comparison to the alginate hydrogels that were prepared with Ca2+ crosslinking, AlCh PIC hydrogels were mechanically strong, and the compression stress of hydrogels at a 90% strain could achieve 1.4 MPa without breaking. In addition, human adipose derived stem cells (hASCs) adhered to the 3D printed AlCh PIC hydrogels and proliferated with time, which indicated that the obtained hydrogels were biocompatible and could potentially be used as scaffolds for tissue engineering.

Journal ArticleDOI
25 Dec 2018-Polymers
TL;DR: The various methods that have been used to insert POSS nanoparticles into PI matrices, through covalent chemical bonding and physical blending, as well as the influence of the POSS units on the physical properties of thePIs are discussed.
Abstract: The preparation of hybrid nanocomposite materials derived from polyhedral oligomeric silsesquioxane (POSS) nanoparticles and polyimide (PI) has recently attracted much attention from both academia and industry, because such materials can display low water absorption, high thermal stability, good mechanical characteristics, low dielectric constant, flame retardance, chemical resistance, thermo-redox stability, surface hydrophobicity, and excellent electrical properties. Herein, we discussed the various methods that have been used to insert POSS nanoparticles into PI matrices, through covalent chemical bonding and physical blending, as well as the influence of the POSS units on the physical properties of the PIs.

Journal ArticleDOI
28 Sep 2018-Polymers
TL;DR: The strengths and weaknesses of the generation of conductive hydrogels using various conductive materials such as metal nanoparticles, carbons, and conductive polymers are examined.
Abstract: In the field of tissue engineering, conductive hydrogels have been the most effective biomaterials to mimic the biological and electrical properties of tissues in the human body. The main advantages of conductive hydrogels include not only their physical properties but also their adequate electrical properties, which provide electrical signals to cells efficiently. However, when introducing a conductive material into a non-conductive hydrogel, a conflicting relationship between the electrical and mechanical properties may develop. This review examines the strengths and weaknesses of the generation of conductive hydrogels using various conductive materials such as metal nanoparticles, carbons, and conductive polymers. The fabrication method of blending, coating, and in situ polymerization is also added. Furthermore, the applications of conductive hydrogel in cardiac tissue engineering, nerve tissue engineering, and bone tissue engineering and skin regeneration are discussed in detail.