scispace - formally typeset
Search or ask a question

Showing papers in "Theoretical and Applied Climatology in 2014"


Journal ArticleDOI
TL;DR: In this article, the Global Precipitation Climatology Centre (GPCC) at Deutscher Wetterdienst has calculated a precipitation climatology for the global land areas for the target period 1951-2000 by objective analysis of climatological normals of about 67,200 rain gauge stations from its data base.
Abstract: In 1989, the need for reliable gridded land surface precipitation data sets, in view of the large uncertainties in the assessment of the global energy and water cycle, has led to the establishment of the Global Precipitation Climatology Centre (GPCC) at Deutscher Wetterdienst on invitation of the WMO. The GPCC has calculated a precipitation climatology for the global land areas for the target period 1951–2000 by objective analysis of climatological normals of about 67,200 rain gauge stations from its data base. GPCC's new precipitation climatology is compared to several other station-based precipitation climatologies as well as to precipitation climatologies derived from the GPCP V2.2 data set and from ECMWF's model reanalyses ERA-40 and ERA-Interim. Finally, how GPCC's best estimate for terrestrial mean precipitation derived from the precipitation climatology of 786 mm per year (equivalent to a water transport of 117,000 km3) is fitting into the global water cycle context is discussed.

1,107 citations


Journal ArticleDOI
TL;DR: In this paper, it is shown that a universal description of drought requires reference to water supply, demand and management, and that the influence of human intervention through water management is intrinsic to the definition of drought in the universal sense and can only be eliminated in the case of purely meteorological drought.
Abstract: This paper demonstrates the impracticality of a comprehensive mathematical definition of the term ‘drought’ which formalises the general qualitative definition that drought is ‘a deficit of water relative to normal conditions’. Starting from the local water balance, it is shown that a universal description of drought requires reference to water supply, demand and management. The influence of human intervention through water management is shown to be intrinsic to the definition of drought in the universal sense and can only be eliminated in the case of purely meteorological drought. The state of drought is shown to be predicated on the existence of climatological norms for a multitude of process-specific terms. In general, these norms are either difficult to obtain or even non-existent in the non-stationary context of climate change. Such climatological considerations, in conjunction with the difficulty of quantifying human influence, lead to the conclusion that we cannot reasonably expect the existence of any workable generalised objective definition of drought.

218 citations


Journal ArticleDOI
TL;DR: In this paper, meteorological measurements in various local climate zones were performed to demonstrate the influence of evaporation surfaces and other factors on thermal comfort, as determined by the physiologically equivalent temperature (PET).
Abstract: Cities represent thermal load areas compared with their surrounding environments. Due to climate change, summer heat events will increase. Therefore, mitigation and adaptation are needed. In this study, meteorological measurements in various local climate zones were performed to demonstrate the influence of evaporation surfaces and other factors on thermal comfort, as determined by the physiologically equivalent temperature (PET). Furthermore, a quantification of the thermal effects of several adaptation measures and varying meteorological parameters was made using model simulations (ENVI-met) in an inner-city neighborhood (Oberhausen, Germany). The results show that the most effective adaptation measure was increased wind speed (maximal 15 K PET reduction). Moreover, vegetation areas show greater PET reductions by the combination of shading and evapotranspiration than water surfaces. The creation of park areas with sufficient water supply and tall, isolated, shade-providing trees that allow for adequate ventilation can be recommended for planning.

201 citations


Journal ArticleDOI
TL;DR: In this article, statistical downscaling models are used to generate the possible future values of local meteorological variables such as rainfall and temperature in the selected stations in Peninsular of Malaysia.
Abstract: Climate change is believed to have significant impacts on the water basin and region, such as in a runoff and hydrological system. However, impact studies on the water basin and region are difficult, since general circulation models (GCMs), which are widely used to simulate future climate scenarios, do not provide reliable hours of daily series rainfall and temperature for hydrological modeling. There is a technique named as “downscaling techniques”, which can derive reliable hour of daily series rainfall and temperature due to climate scenarios from the GCMs output. In this study, statistical downscaling models are used to generate the possible future values of local meteorological variables such as rainfall and temperature in the selected stations in Peninsular of Malaysia. The models are: (1) statistical downscaling model (SDSM) that utilized the regression models and stochastic weather generators and (2) Long Ashton research station weather generator (LARS-WG) that only utilized the stochastic weather generators. The LARS-WG and SDSM models obviously are feasible methods to be used as tools in quantifying effects of climate change condition in a local scale. SDSM yields a better performance compared to LARS-WG, except SDSM is slightly underestimated for the wet and dry spell lengths. Although both models do not provide identical results, the time series generated by both methods indicate a general increasing trend in the mean daily temperature values. Meanwhile, the trend of the daily rainfall is not similar to each other, with SDSM giving a relatively higher change of annual rainfall compared to LARS-WG.

157 citations


Journal ArticleDOI
TL;DR: In this paper, the authors analyzed the observed spatiotemporal characteristics of drought in the Czech Republic during the growing season (April to September) as quantified using the Standardised Precipitation Evapotranspiration Index (SPEI) on various time scales.
Abstract: This paper analyses the observed spatiotemporal characteristics of drought in the Czech Republic during the growing season (April to September) as quantified using the Standardised Precipitation Evapotranspiration Index (SPEI) on various time scales. The SPEI was calculated for various lags (1, 3, 6, 12, and 24 months) from monthly records of mean temperature and precipitation totals using a dense network of 184 climatological stations for the period 1961–2010. The characteristics of drought were analysed in terms of the temporal evolution of the SPEI, the frequency distribution and duration of drought at the country level, and for three regions delimited by station altitude. The driest and the wettest years during the growing season were identified. The frequency distribution of the SPEI values for seven drought category classes (in per cent) indicates that normal moisture conditions represent approximately 65 % of the total SPEI values for all time scales in all three regions, whereas moderate drought and moderate wet conditions are almost equally distributed around 10.5 %. Differences in extremely dry conditions (5 %) compared with extremely wet conditions (1.5 %) were observed with increasing SPEI time scales. The results of the non-parametric Mann–Kendall trend test applied to the SPEI series indicate prevailing negative trends (drought) at the majority of the stations. The percentage of stations displaying a significant negative trend for the 90, 95, 99, and 99.9 % confidence levels is approximately 40 %. An Empirical Orthogonal Functions (EOF) analysis was used to identify the principal patterns of variability of the SPEI during the growing season that accounted for the highest amount of statistical variance. The variance explained by the leading EOF range 66 to 56 %, whereas for EOF2 and EOF3, the value is between 7 and 11 % and between 4 and 7 %, respectively, for the SPEI is calculated for 1- to 24-month lags.

143 citations


Journal ArticleDOI
TL;DR: In this paper, the authors analyzed changes in areas under droughts over the past three decades and altered our understanding of how amplitude and frequency of drough events differ in the Southern Hemisphere (SH) and Northern Hemisphere (NH) by using satellite gauge-adjusted precipitation observations.
Abstract: This paper analyzes changes in areas under droughts over the past three decades and alters our understanding of how amplitude and frequency of droughts differ in the Southern Hemisphere (SH) and Northern Hemisphere (NH) Unlike most previous global-scale studies that have been based on climate models, this study is based on satellite gauge-adjusted precipitation observations Here, we show that droughts in terms of both amplitude and frequency are more variable over land in the SH than in the NH The results reveal no significant trend in the areas under drought over land in the past three decades However, after investigating land in the NH and the SH separately, the results exhibit a significant positive trend in the area under drought over land in the SH, while no significant trend is observed over land in the NH We investigate the spatial patterns of the wetness and dryness over the past three decades, and we show that several regions, such as the southwestern United States, Texas, parts of the Amazon, the Horn of Africa, northern India, and parts of the Mediterranean region, exhibit a significant drying trend The global trend maps indicate that central Africa, parts of southwest Asia (eg, Thailand, Taiwan), Central America, northern Australia, and parts of eastern Europe show a wetting trend during the same time span The results of this satellite-based study disagree with several model-based studies which indicate that droughts have been increasing over land On the other hand, our findings concur with some of the observation-based studies

139 citations


Journal ArticleDOI
TL;DR: In this article, the transmissivity of total and direct solar radiation through crowns of single street trees in Goteborg, Sweden was examined, and the results confirmed the potential of a single urban tree to reduce heat stress in urban environment.
Abstract: Trees play an important role in mitigating heat stress on hot summer days, mainly due to their ability to provide shade. However, an important issue is also the reduction of solar radiation caused by trees in winter, in particular at high latitudes. In this study, we examine the transmissivity of total and direct solar radiation through crowns of single street trees in Goteborg, Sweden. One coniferous and four deciduous trees of species common in northern European cities were selected for case study. Radiation measurements were conducted on nine clear days in 2011–2012 in foliated and leafless tree conditions using two sunshine pyranometers—one located in shade of a tree and the other one on the roof of an adjacent building. The measurements showed a significant reduction of total and direct shortwave radiation in the shade of the studied trees, both foliated and leafless. Average transmissivity of direct solar radiation through the foliated and defoliated tree crowns ranged from 1.3 to 5.3 % and from 40.2 to 51.9 %, respectively. The results confirm the potential of a single urban tree to reduce heat stress in urban environment. However, the relatively low transmissivity through defoliated trees should be considered while planning street trees in high latitude cities, where the solar access in winter is limited. The results were used for parameterisation of SOLWEIG model for a better estimation of the mean radiant temperature (Tmrt). Measured values of transmissivity of solar radiation through both foliated and leafless trees were found to improve the model performance.

136 citations


Journal ArticleDOI
TL;DR: The relationship between five teleconnection patterns and the frequency of occurrence of days with extreme precipitation in the Euro-Mediterranean region is investigated with National Centers for Environmental Prediction-National Center for Atmospheric Research reanalysis data.
Abstract: The relationship between five teleconnection patterns (North Atlantic Oscillation (NAO), Arctic Oscillation (AO), East Atlantic/Western Russian (EAWR) pattern, Scandinavian (SCAND) pattern, and El Nino Southern Oscillation (ENSO)) and the frequency of occurrence of days (per month) with extreme precipitation in the Euro-Mediterranean region is investigated with National Centers for Environmental Prediction–National Center for Atmospheric Research reanalysis data. To quantify the teleconnection–precipitation relationships over the Euro-Mediterranean region, linear correlations are calculated between the monthly teleconnection indices for the five patterns and time series at each grid point of the monthly frequency of days with extreme precipitation, focusing on daily precipitation amounts that exceed a particular threshold value (a 90 % threshold is used). To evaluate dynamical processes, the teleconnection indices are also correlated with the frequencies of days with extreme values of dynamic tropopause pressure and precipitable water. The former quantity is used as a proxy for potential vorticity intrusions and the latter to identify regions of enhanced moisture. The results of this analysis indicates positive, statistically significant correlations between the NAO, AO, and SCAND indices and the frequency of extreme precipitation in the western Mediterranean; positive (negative) correlations between the EAWR index and the extreme precipitation frequency in the eastern (western) Mediterranean; and a positive correlation between the Nino3.4 index and the extreme precipitation frequency over the Iberian Peninsula and the Middle East. For all of the teleconnection patterns other than ENSO, the dynamic tropopause pressure correlation patterns resemble those for the precipitation. In contrast, similar precipitation and precipitable water correlation patterns are observed only for ENSO. These findings suggest that the teleconnections affect the interannual variation of the frequency of days with extreme precipitation over a large part of the Euro-Mediterranean region through their impact on the spatial distribution of regions with enhanced potential vorticity and air moisture.

109 citations


Journal ArticleDOI
TL;DR: In this article, the authors investigated the relationship between rainfall and temperature and found no direct relationship between increasing rainfall and increasing maximum temperature when monthly or seasonal pattern is concerned over meteorological subdivisions of India.
Abstract: This study investigated the trends in rainfall and temperature and the possibility of any rational relationship between the trends over the homogeneous regions over India. Annual maximum temperature shows an increasing trend in all the homogeneous temperature regions and corresponding annual rainfall also follow the same pattern in all the regions, except North East. As far as monthly analysis is concerned, no definite pattern has been observed between trends in maximum and minimum temperature and rainfall, except during October. Increasing trends of maximum and minimum temperature during October accelerate the water vapor demand and most of the lakes, rivers, ponds and other water bodies with no limitation of water availability during this time fulfills the water vapor demand and shows an increasing trend of rainfall activity. This study shows there exists no direct relationship between increasing rainfall and increasing maximum temperature when monthly or seasonal pattern is concerned over meteorological subdivisions of India, however we can make a conclusion that the relation between the trends of rainfall and temperature have large scale spatial and temporal dependence.

107 citations


Journal ArticleDOI
TL;DR: In this article, the authors compared the performance of the six-direction radiation method, globe thermometer method, RayMan model, ENVI-met model, and SOLWEIG model.
Abstract: Mean radiant temperature (T mrt) based on two measurement methods and outputs from three models are compared in this study. They are the six direction radiation method, globe thermometer method, RayMan model, ENVI-met model and SOLWEIG model. The comparison shows that globe thermometer method may overestimate the T mrt since wind velocity is a key variable in the estimation based on this method. For better estimation, T mrt measured by the globe-thermometer method be corrected by the imported wind speed (stable, low and assuming wind speed) and validated by the six-direction radiation method. The comparison of models shows that the RayMan model’s evaluation of T mrt involving global radiation with fine time resolution was better than the corresponding evaluations under the other two models (ENVI-met and SOLWEIG) in this case. However, the RayMan model can only assess T mrt for a one-point one-time context, whereas the other two models can evaluate two-dimensional T mrt. For two-dimensional evaluations of T mrt, SOLWEIG have a better prediction of T mrt than ENVI-met, and ENVI-met can simulate several different variables, which are wind field, particle distribution, CO2 distribution and the other thermal parameters (T a, surface temperature and radiation fluxes), that SOLWEIG cannot.

100 citations


Journal ArticleDOI
TL;DR: In this paper, the authors evaluated the impact of recent climate change on the biodiversity and human inhabitants of the upper Mustang region of the Trans-Himalaya, Nepal, and found that the average annual temperature in the Upper Mustang region has increased by 0.13 °C per year over the last 23 years; a higher annual temperature increase than experienced in other parts of Himalaya.
Abstract: The Trans-Himalaya region boasts an immense biodiversity which includes several threatened species and supports the livelihood of local human populations. Our aim in this study was to evaluate the impact of recent climate change on the biodiversity and human inhabitants of the upper Mustang region of the Trans-Himalaya, Nepal. We found that the average annual temperature in the upper Mustang region has increased by 0.13 °C per year over the last 23 years; a higher annual temperature increase than experienced in other parts of Himalaya. A predictive model suggested that the mean annual temperature will double by 2161 to reach 20 °C in the upper Mustang region. The combined effects of increased temperature and diminished snowfall have resulted in a reduction in the area of land suitable for agriculture. Most seriously affected are Samjung village (at 4,100 m altitude) and Dhey village (at 3,800 m) in upper Mustang, where villagers have been forced to relocate to an area with better water availability. Concurrent with the recent change in climate, there have been substantial changes in vegetation communities. Between 1979 and 2009, grasslands and forests in the Mustang district have diminished by 11 and 42 %, respectively, with the tree line having shifted towards higher elevation. Further, grasses and many shrub species are no longer found in abundance at higher elevations and consequently blue sheep (Pseduois nayaur) move to forage at lower elevations where they encounter and raid human crops. The movement of blue sheep attracts snow leopard (Panthera uncia) from their higher-elevation habitats to lower sites, where they encounter and depredate livestock. Increased crop raiding by blue sheep and depredations of livestock by snow leopard have impacted adversely on the livelihoods of local people.

Journal ArticleDOI
TL;DR: For investigating aridity in Vojvodina, two parameters were used: the De Martonne aridity index and the Pinna combinative index as mentioned in this paper, and these indices were calculated from data obtained from 10 meteorological stations for the period from 1949 to 2006.
Abstract: For investigating aridity in Vojvodina, two parameters were used: the De Martonne aridity index and the Pinna combinative index These indices were chosen as the most suitable for the analysis of climate in Vojvodina (a region in northern part of Serbia) Also, these indices were calculated from data obtained from 10 meteorological stations for the period from 1949 to 2006 The spatial distribution of the annual and seasonal De Martonne and the Pinna combinative indices as well as the mean monthly values of the De Martonne index and aridity trends of these indices are presented There were two, four, and five types of climate on a yearly, seasonal, and monthly basis in Vojvodina, according to the De Martonne climate classification which consists of a total of seven types In addition, semi-humid and humid climate types were represented in the region, on a yearly basis The winter season was dominated by wetter types of climate, while the summer season was characterized by drier ones During the spring and autumn seasons, there were types of climate which range between both aforementioned types Two out of three climate types, which can be identified using the Pinna combinative index, were registered in Vojvodina region The most dominant climate type was the semidry Mediterranean with formal Mediterranean vegetation, while the humid type was only identified in one small part of southwestern Vojvodina The calculated values of both aridity indices showed that there were no annual trends Therefore, it can be considered that there were no recent aridity changes during the observed period For paleoclimate, the general story is more complex The lack of aridity trends in the recent period from 1949 to 2006 supports the fact that Vojvodina has very well preserved loess–palaeosol sequences from the Middle and Late Pleistocene, which indicates that crucial point for their preservation was caused by the weak aridity variability in the region

Journal ArticleDOI
TL;DR: In this article, the reliability of four satellite precipitation products (CMORPH, PERSIANN, TRMM 3B42, and TRMM3B43) were evaluated through comparison with ground data or reported values on daily, monthly, and annual scales from 2003 to 2010.
Abstract: The arid region of northwest China is a large area with complex topography. Hydrological research is limited by scarcity and uneven distribution of rain gauges. Satellite precipitation products provide wide coverage and high spatial–temporal resolutions, but the accuracy needs to be evaluated before application. In this paper, the reliability of four satellite precipitation products (CMORPH [Climate Prediction Center’s morphing technique], PERSIANN [Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks], TRMM [Tropical Rainfall Measuring Mission] 3B42, and TRMM 3B43) were evaluated through comparison with ground data or reported values on daily, monthly, and annual scales from 2003 to 2010. Indices including frequency bias index, probability of detection, and false alarm ratio were used to evaluate recorded precipitation occurrences; relative mean bias, the correlation coefficient, and the Nash coefficient were used to assess precipitation amount. Satellite precipitation products were more accurate in the warm than in the cold season, and performed better in northern Xinjiang than in other regions during the cold season. CMORPH and PERSIANN tended to overestimate precipitation. TRMM 3B42 and TRMM 3B43 performed best because the former most accurately detected precipitation occurrences on a daily scale, and both produced accurate space–time distribution of precipitation and the best consistency with rain gauge observations. Only a few monthly precipitation values for TRMM 3B42 and TRMM 3B43, and annual precipitation values for TRMM 3B42 were with satisfactory precision. TRMM3B42 and TRMM 3B43 are therefore recommended, but correction will be needed before application. Factors including elevation, relative relief, longitude, and latitude had significant effects on the performance of satellite precipitation products, and these factors may be helpful in correcting satellite precipitation.

Journal ArticleDOI
TL;DR: In this article, the authors estimate the potential for added value in dynamical downscaling by increasing the spatial resolution of the regional climate model (RCM) over Korea, which is employed as the RCM.
Abstract: This study estimates the potential for added value in dynamical downscaling by increasing the spatial resolution of the regional climate model (RCM) over Korea. The Global/Regional Integrated Model System—Regional Model Program with two different resolutions is employed as the RCM. Large-scale forcing is given by a historical simulation of a global climate model, namely the Hadley Center Global Environmental Model version 2. As a standard procedure, the reproducibility of the RCM results for the present climate is evaluated against the reanalysis and observation datasets. It is confirmed that the RCM adequately reproduces the major characteristics of the observed atmospheric conditions and the increased resolution of the RCM contributes to the improvement of simulated surface variables including precipitation and temperature. For the added-value assessment, the interannual and daily variabilities of precipitation, temperature are compared between the different resolution RCM experiments. It is distinctly shown that variabilities are additionally described as the spatial resolution becomes higher. The increased resolution also contributes to capture the extreme weather conditions, such as heavy rainfall events and sweltering days. The enhanced added value is more evident for the precipitation than for the temperature, which stands for a usefulness of the high-resolution RCM especially for diagnosing potential hazard related to heavy rainfall. The results of this study assure the effectiveness of increasing spatial resolution of the RCM for detecting climate extremes and also provide credibility to the current climate simulation for future projection studies.

Journal ArticleDOI
TL;DR: In this article, a coupled AOGCM and AGCM model was used together to investigate a new mechanism describing how spring Arctic sea ice impacts the East Asian summer monsoon (EASM) on inter-annual timescales.
Abstract: Observational analysis and purposely designed coupled atmosphere–ocean (AOGCM) and atmosphere-only (AGCM) model simulations are used together to investigate a new mechanism describing how spring Arctic sea ice impacts the East Asian summer monsoon (EASM). Consistent with previous studies, analysis of observational data from 1979 to 2009 show that spring Arctic sea ice is significantly linked to the EASM on inter-annual timescales. Results of a multivariate Empirical Orthogonal Function analysis reveal that sea surface temperature (SST) changes in the North Pacific play a mediating role for the inter-seasonal connection between spring Arctic sea ice and the EASM. Large-scale atmospheric circulation and precipitation changes are consistent with the SST changes. The mechanism found in the observational data is confirmed by the numerical experiments and can be described as follows: spring Arctic sea ice anomalies cause atmospheric circulation anomalies, which, in turn, cause SST anomalies in the North Pacific. The SST anomalies can persist into summer and then impact the summer monsoon circulation and precipitation over East Asia. The mediating role of SST changes is highlighted by the result that only the AOGCM, but not the AGCM, reproduces the observed sea ice-EASM linkage.

Journal ArticleDOI
TL;DR: In this article, the authors compared two widely used high-resolution SPPs, the Tropical Rainfall Measuring Mission (TRMM) and Precipitation Estimation from Remote Sensing Information using Artificial Neural Network (PERSIANN) in Poyang Lake basin which is located in the middle reach of the Yangtze River in China.
Abstract: Satellite-based precipitation products (SPPs) have greatly improved their applicability and are expected to offer an alternative to ground-based precipitation estimates in the present and the foreseeable future. There is a strong need for a quantitative evaluation of the usefulness and limitations of SPPs in operational meteorology and hydrology. This study compared two widely used high-resolution SPPs, the Tropical Rainfall Measuring Mission (TRMM) and Precipitation Estimation from Remote Sensing Information using Artificial Neural Network (PERSIANN) in Poyang Lake basin which is located in the middle reach of the Yangtze River in China. The bias of rainfall amount and occurrence frequency under different rainfall intensities and the dependence of SPPs performance on elevation and slope were investigated using different statistical indices. The results revealed that (1) TRMM 3B42 usually underestimates the rainy days and overestimates the average rainfall as well as annual rainfall, while the PERSIANN data were markedly lower than rain gauge data; (2) the rainfall contribution rates were underestimated by TRMM 3B42 in the middle rainfall class but overestimated in the heavy rainfall class, while the opposite trend was observed for PERSIANN; (3) although the temporal distribution characteristics of monthly rainfall were correctly described by both SPPs, PERSIANN tended to suffer a systematic underestimation of rainfall in every month; and (4) the performances of both SPPs had clear dependence on elevation and slope, and their relationships can be fitted using quadratic equations.

Journal ArticleDOI
TL;DR: In this paper, eleven indices of precipitation extremes were evaluated using RClimDex and daily time series data for analysis period of 1981-2010 from five representative cities across Punjab province of Pakistan.
Abstract: Asymmetrical monsoons during the recent past have resulted into spatially variable and devastating floods in South Asia. Analysis of historic precipitation extremes record may help in formulating mitigation strategies at local level. Eleven indices of precipitation extremes were evaluated using RClimDex and daily time series data for analysis period of 1981–2010 from five representative cities across Punjab province of Pakistan. The indices include consecutive dry days, consecutive wet days, number of days above daily average precipitation, number of days with precipitation ≥10 mm, number of days with precipitation ≥20 mm, very wet days, extremely wet days, simple daily intensity index, maximum 1-day precipitation quantity, maximum 5 consecutive day precipitation quantity, and annual total wet-day precipitation. Mann-Kendall test and Sen’s slope extremes were used to detect trends in indices. Droughts and excessive precipitation were dictated by elevation from mean sea level with prolonged dry spells in southern Punjab and vice versa confirming spatial trends for precipitation extremes. However, no temporal trend was observed for any of the indices. Summer in the region is the wettest season depicting contribution of monsoons during June through August toward devastating floods in the region.

Journal ArticleDOI
TL;DR: In this article, the authors developed data-driven models, including multilayer perceptron (MLP) and adaptive neuro-fuzzy inference system (ANFIS), for estimating daily soil temperature at Champaign and Springfield stations in Illinois.
Abstract: The objective of this study is to develop data-driven models, including multilayer perceptron (MLP) and adaptive neuro–fuzzy inference system (ANFIS), for estimating daily soil temperature at Champaign and Springfield stations in Illinois. The best input combinations (one, two, and three inputs) can be identified using MLP. The ANFIS is used to estimate daily soil temperature using the best input combinations (one, two, and three inputs). From the performance evaluation and scatter diagrams of MLP and ANFIS models, MLP 3 produces the best results for both stations at different depths (10 and 20 cm), and ANFIS 3 produces the best results for both stations at two different depths except for Champaign station at the 20 cm depth. Results of MLP are better than those of ANFIS for both stations at different depths. The MLP-based spatial distribution is used to estimate daily soil temperature using the best input combinations (one, two, and three inputs) at different depths below the ground. The MLP-based spatial distribution estimates daily soil temperature with high accuracy, but the results of MLP and ANFIS are better than those of the MLP-based spatial distribution for both stations at different depths. Data-driven models can estimate daily soil temperature successfully in this study.

Journal ArticleDOI
TL;DR: In this paper, the effect of slope aspect on the response of snowpack to climate warming in the Pyrenees was analyzed using the cold regions hydrological modelling platform (CRHM).
Abstract: The aim of this study was to analyse the effect of slope aspect on the response of snowpack to climate warming in the Pyrenees. For this purpose, data available from five automatic weather stations were used to simulate the energy and mass balance of snowpack, assuming different magnitudes of an idealized climate warming (upward shifting of 1, 2 and 3 °C the temperature series). Snow energy and mass balance were simulated using the Cold Regions Hydrological Modelling platform (CRHM). CRHM was used to create a model that enabled correction of the all-wave incoming radiation fluxes from the observation sites for various slope aspects (N, NE, E, SE, S, SW,W,NW and flat areas), which enabled assessment of the differential impact of climate warming on snow processes on mountain slopes. The results showed that slope aspect was responsible for substantial variability in snow accumulation and the duration of the snowpack. Simulated variability markedly increased with warmer temperature conditions. Annual maximum snow accumulation (MSA) and annual snowpack duration (ASD) showed marked sensitivity to a warming of 1 °C. Thus, the sensitivity of the MSA in flat areas ranged from 11 to 17 % per degree C amongst the weather stations, and the ASD ranged from 11 to 20 days per degree C. There was a clear increase in the sensitivity of the snowpack to climate warming on those slopes that received intense solar radiation (S, SE and SW slopes) compared with those slopes where the incident radiation was more limited (N, NE and NW slopes). The sensitivity of the MSA and the ASD increased as the temperature increased, particularly on the most irradiated slopes. Large interannual variability was also observed. Thus, with more snow accumulation and longer duration the sensitivity of the snowpack to temperature decreased, especially on south-facing slopes.

Journal ArticleDOI
TL;DR: In this article, trend analyses of historic past climatic variables were investigated for the Betwa basin located in Central India, where the Mann-Kendall test (MK test) was applied to the original sample data.
Abstract: In this study, trend analyses of historic past climatic variables were investigated for the Betwa basin located in Central India. In the serially independent climatic variables, Mann–Kendall test (MK test) was applied to the original sample data. However, in the serially correlated series, pre-whitening is used before employing the MK test. The long-term trend analysis showed several of the meteorological stations to exhibit a decreasing trend in annual and seasonal precipitation in the study area. Seasonal and yearly numbers of rainy days are decreased. However, onset of effective monsoon (except for Shivpuri and Tikamgarh stations) did not show any trend during the study period. For maximum temperature, five out of 12 stations showed a decreasing trend in monsoon season whereas almost all other stations showed an increasing trend in winter and no trend in summer season. For minimum temperature, only two stations of the basin showed a decreasing trend in monsoon and all other stations exhibited a significant increase in winter and summer season. The increase of winter temperature may adversely affect the growth of Rabi crop (wheat and mustard) in the study area. Potential evopotranspiration (PET) did not show any trend in monsoon, except for Jalaun and Jhansi stations, showing decreasing trends. Raisen and Vidisha stations showed an increasing trend in winter only, and the trend for other stations were random in nature. In summer, five out of 12 stations showed an increasing trend in PET. Results of this study can be employed in preparation of water resources development and management plan in the Betwa Basin.

Journal ArticleDOI
TL;DR: In this article, the agricultural production systems sIMulator (APSIM)-wheat model was used to examine the impact of climate change on wheat yields across key wheat growing regions in New South Wales (NSW) of Australia.
Abstract: Conceptions encompassing climate change are irreversible rise of atmospheric carbon dioxide (CO2) concentration, increased temperature, and changes in rainfall both in spatial- and temporal-scales worldwide. This will have a major impact on wheat production, particularly if crops are frequently exposed to a sequence, frequency, and intensity of specific weather events like high temperature during growth period. However, the process of wheat response to climate change is complex and compounded by interactions among atmospheric CO2 concentration, climate variables, soil, nutrition, and agronomic management. In this study, we use the Agricultural Production Systems sIMulator (APSIM)-wheat model, driven by statistically downscaled climate projections of 18 global circulation models (GCMs) under the 2007 Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES) A2 CO2 emission scenario to examine impact on future wheat yields across key wheat growing regions considering different soil types in New South Wales (NSW) of Australia. The response of wheat yield, yield components, and phenology vary across sites and soil types, but yield is closely related to plant available water capacity (PAWC). Results show a decreasing yield trend during the period of 2021–2040 compared to the baseline period of 1961–1990. Across different wheat-growing regions in NSW, grain yield difference in the future period (2021–2040) over the baseline (1961–1990) varies from +3.4 to −14.7 %, and in most sites, grain number is decreased, while grain size is increased in future climate. Reduction of wheat yield is mainly due to shorter growth duration, where average flowering and maturing time are advanced by an average of 11 and 12 days, respectively. In general, larger negative impacts of climate change are exhibited in those sites with higher PAWC. Current wheat cultivars with shorter growing season properties are viable in the future climate, but breading for early sowing wheat varieties with longer growing duration will be a desirable adaptation strategy for mitigating the impact of changing climate on wheat yield.

Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper proposed a spring composite index (s-CI) that involves slightly altering the use of the accumulated precipitation from the composite index, comparing the value with other three commonly used indices (standardized precipitation index, SPI; self-calibrated Palmer drought severity index, sc-PDSI; and CI).
Abstract: A spring-composite index (s-CI) is proposed in this study that involves slightly altering the use of the accumulated precipitation from the composite index (CI) comparing the value with other three commonly used indices (standardized precipitation index, SPI; self-calibrated Palmer drought severity index, sc-PDSI; and CI). In addition, the spatial–temporal variation of the s-CI in the Songnen Plain (SNP) was investigated using the Mann–Kendall test and empirical orthogonal function (EOF) methods. The results indicated that the proposed s-CI could identify most drought events in 1990s and 2000s and performed relatively better than SPI, sc-PDSI, and CI in this region. Compared with the other three indices, the s-CI had a higher correlation with relative soil moisture in April and May. The recent spring droughts (2000s) were the most severe in April or May. The weather was drier in May compared with April in the 1980s, whereas the weather was wetter in May than in April in the 1960s and 1970s. Moreover, the spatial patterns of the first EOFs for both April and May indicated an obviously east–west gradient in the SNP, whereas the second EOFs displayed north–south drought patterns. The proposed index is particularly suitable for detecting, monitoring, and exploring spring droughts in the Songnen Plain under global warming.

Journal ArticleDOI
TL;DR: In this paper, turbulent fluxes were measured over wet grassland and a shallow lake with a single eddy-covariance complex at the shoreline in the Nam Co basin in summer 2009.
Abstract: The Tibetan Plateau plays an important role in the global water cycle and is strongly influenced by climate change. While energy and matter fluxes have been more intensely studied over land surfaces, a large proportion of lakes have either been neglected or parameterised with simple bulk approaches. Therefore, turbulent fluxes were measured over wet grassland and a shallow lake with a single eddy-covariance complex at the shoreline in the Nam Co basin in summer 2009. Footprint analysis was used to split observations according to the underlying surface, and two sophisticated surface models were utilised to derive gap-free time series. Results were then compared with observations and simulations from a nearby eddy-covariance station over dry grassland, yielding pronounced differences. Observations and footprint integrated simulations compared well, even for situations with flux contributions including grassland and lake. The accessibility problem for EC measurements on lakes can be overcome by combining standard meteorological measurements at the shoreline with model simulations, only requiring representative estimates of lake surface temperature.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the spatial patterns of monthly, seasonal and annual precipitation over Iran and the corresponding long-term trends for the period 1951-2009 using the Global Precipitation Climatology Centre gridded dataset.
Abstract: Spatial patterns of monthly, seasonal and annual precipitation over Iran and the corresponding long-term trends for the period 1951–2009 are investigated using the Global Precipitation Climatology Centre gridded dataset. Results suggest that the spatial patterns of annual, winter and spring precipitation and the associated coefficients of variation reflect the role of orography and latitudinal extent between central-southern arid and semi-arid regions and northern and western mountainous areas. It is also shown that precipitation occurrence is almost regularly distributed within the year in northern areas while it is more concentrated in a few months in southern Iran. The spatial distribution of Mann–Kendal trend test (Z statistics) for annual precipitation showed downward trend in north-western and south-eastern Iran, whereas western, central and north-eastern exhibited upward trend, though not statistically significant in most regions. Results for winter and autumn revealed upward trend in most parts of the country, with the exception of north-western and south-eastern where a downward trend is observed; in spring and summer, a downward trend seems to prevail in most of Iran. However, for all seasons the areas where the detected trend is statistically significant are limited to a few spot regions. The overall results suggest that the precipitation is decreasing in spring and summer and increasing in autumn and winter in most of Iran, i.e. less precipitation during the warm season with a consequent intensification of seasonality and dryness of the country. However, since the detected trends are often not statistically significant, any stringent conclusion cannot be done on the future tendencies.

Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors presented the method of solar radiation estimation using support vector machine (SVM), which significantly outperformed the empirical models with an average 14 % higher accuracy when sunshine duration data are available, model SVM2 using sunshine ratio and air temperature range.
Abstract: Solar radiation is an essential and important variable to many models. However, it is measured at a very limited number of meteorological stations in the world. Developing method for accurate estimation of solar radiation from measured meteorological variables has been a focus and challenging task. This paper presents the method of solar radiation estimation using support vector machine (SVM). The main objective of this work is to examine the feasibility of SVM and explore its potential in solar radiation estimation. A total of 20 SVM models using different combinations of sunshine ratio, maximum and minimum air temperature, relative humidity, and atmospheric water vapor pressure as input attributes are explored using meteorological data at 15 stations in China. These models significantly outperform the empirical models with an average 14 % higher accuracy. When sunshine duration data are available, model SVM2 using sunshine ratio and air temperature range is proposed. It significantly outperforms the empirical models with an average 26 % higher accuracy. When sunshine duration data are not available, model SVM19 using maximum temperature, minimum temperature and atmospheric water vapor pressure is proposed. It significantly outperforms the temperature-based empirical models with an average of 18 % higher accuracy. The remarkable improvement indicates that the SVM method would be a promising alternative over traditional approaches for estimation of solar radiation at any locations.

Journal ArticleDOI
TL;DR: In this paper, basinwide future hydrology is simulated by using downscaled temperature and precipitation outputs from the Hadley Centre Coupled Model, version 3 (HadCM3), and the Hydrologic Engineering Center's hydrologic modeling system (HEC-HMS) for both A2 and B2 Special Report on Emissions Scenarios (SRES) scenarios.
Abstract: This paper characterizes potential hydrological impact of future climate in the Bagmati River Basin, Nepal. For this research, basinwide future hydrology is simulated by using downscaled temperature and precipitation outputs from the Hadley Centre Coupled Model, version 3 (HadCM3), and the Hydrologic Engineering Center's Hydrologic Modeling System (HEC-HMS). It is predicted that temperature may rise maximally during the summer rather than winter for both A2 and B2 Special Report on Emissions Scenarios (SRES) scenarios. Precipitation may increase during the wet season, but it may decrease during other seasons for A2 scenario. For B2 scenario, precipitation may increase during all the seasons. Under the A2 scenario, premonsoon water availability may decrease more in the upper than the middle basin. During monsoons, both upper and middle basins show increased water availability. During the postmonsoon season, water availability may decrease in the upper part, while the middle part shows a mixed trend. Under the B2 scenario, water availability is expected to increase in the entire basin. The analysis of the projected hydrologic impact of climate change is expected to support informed decision-making for sustainable water management.

Journal ArticleDOI
TL;DR: In this article, the authors quantified changes in thermal comfort due to typical urban canyon configurations in Campinas, Brazil, and presented urban guidelines concerning height-to-width ratio (H/W) and green spaces to adapt urban climate change.
Abstract: Among several urban design parameters, the height-to-width ratio (H/W) and orientation are important parameters strongly affecting thermal conditions in cities. This paper quantifies changes in thermal comfort due to typical urban canyon configurations in Campinas, Brazil, and presents urban guidelines concerning H/W ratios and green spaces to adapt urban climate change. The study focuses on thermal comfort issues of humans in urban areas and performs evaluation in terms of physiologically equivalent temperature (PET), based on long-term data. Meteorological data of air temperature, relative humidity, wind speed and solar radiation over a 7-year period (2003–2010) were used. A 3D street canyon model was designed with RayMan Pro software to simulate the influence of urban configuration on urban thermal climate. The following configurations and setups were used. The model canyon was 500 m in length, with widths 9, 21, and 44 m. Its height varied in steps of 2.5 m, from 5 to 40 m. The canyon could be rotated in steps of 15°. The results show that urban design parameters such as width, height, and orientation modify thermal conditions within street canyons. A northeast–southwest orientation can reduce PET during daytime more than other scenarios. Forestry management and green areas are recommended to promote shade on pedestrian areas and on facades, and to improve bioclimate thermal stress, in particular for H/W ratio less than 0.5. The method and results can be applied by architects and urban planners interested in developing responsive guidelines for urban climate issues.

Journal ArticleDOI
TL;DR: In this article, the authors evaluated the ability of Weather Research and Forecasting (WRF) multi-physics ensembles to simulate storm systems known as East Coast Low (ECLs).
Abstract: This study evaluated the ability of Weather Research and Forecasting (WRF) multi-physics ensembles to simulate storm systems known as East Coast Lows (ECLs). ECLs are intense low-pressure systems that develop off the eastern coast of Australia. These systems can cause significant damage to the region. On the other hand, the systems are also beneficial as they generate the majority of high inflow to coastal reservoirs. It is the common interest of both hazard control and water management to correctly capture the ECL features in modeling, in particular, to reproduce the observed spatial rainfall patterns. We simulated eight ECL events using WRF with 36 model configurations, each comprising physics scheme combinations of two planetary boundary layer (pbl), two cumulus (cu), three microphysics (mp), and three radiation (ra) schemes. The performance of each physics scheme combination and the ensembles of multiple physics scheme combinations were evaluated separately. Results show that using the ensemble average gives higher skill than the median performer within the ensemble. More importantly, choosing a composite average of the better performing pbl and cu schemes can substantially improve the representation of high rainfall both spatially and quantitatively.

Journal ArticleDOI
TL;DR: In this paper, the relative role of North Atlantic Oscillation (NAO)/Arctic Oscillations (AO) and ENSO in modulating the Asian jet stream in the Northern Hemisphere winter and their relative impact on the precipitation variability over the region have been estimated through analysis of observed data.
Abstract: The role of El Nino/Southern Oscillation (ENSO) and the mechanism through which ENSO influences the precipitation variability over northwest India and the adjoining (NWIA) region is well documented In this study, the relative role of North Atlantic Oscillation (NAO)/Arctic Oscillation (AO) and ENSO in modulating the Asian jet stream in the Northern Hemisphere winter and their relative impact on the precipitation variability over the region have been estimated through analysis of observed data It is seen that interannual variations of NWIA precipitation are largely influenced by ENSO An empirical orthogonal function (EOF) analysis has been carried out to understand dominant modes of interannual variability of zonal wind at 200 hPa of the Northern Hemisphere The EOF-1 pattern in the tropical region is similar to that of an ENSO pattern, and the principal component (PC) time series corresponds to the ENSO time series The EOF-2 spatial pattern resembles that of NAO/AO with correlation of PC time series with AO and NAO being 074 and 062, respectively The precipitation anomaly time series over the region of interest has marginally higher correlation with the PC-2 time series as compared to that of PC-1 Regression analysis of precipitation and circulation parameters indicates a larger contribution of the second mode to variability of winds and precipitation over the NWIA Moisture transport from the Arabian Sea during the active phase of NAO/AO and the presence of a cyclonic anomaly lead to higher precipitation over the NWIA region

Journal ArticleDOI
TL;DR: In this article, the best models to estimate daytime downward longwave radiation from meteorological data in the sub-humid Pampean region were tested under clear and cloudy sky conditions.
Abstract: Downward longwave radiation (LW ↓ ) is a relevant variable for meteorological and climatic studies. Good estimates of this term are vitally important in correct determining of the net radiation, which, in turn, modulates the magnitude of the terms in the surface energy budget (e.g., evaporation). In remote sensing applications, the determination of daytime LW↓ is required for estimation of the net radiation using satellite data. LW↓ is not directly measured in weather stations and then is estimated using models with surface air temperature and humidity as input. In this paper, we identify the best models to estimate daytime downward longwave radiation from meteorological data in the sub-humid Pampean region. Several well-known models to estimate LW↓ under clear and cloudy skies were tested. We use downward radiation components and meteorological data registered at Tandil (Argentina) from 2006 to 2010 (840 days). In addition, we propose two multiple linear regression models (MLRM-1 and MLRM-2) to estimate LW↓ at the surface for all sky conditions. The new equations show better performance than the others models tested with root mean square errors between 12 and 16 W m−2, bias close to zero and best agreements with measured data (r 2 ≥ 0.85).