scispace - formally typeset
Open AccessJournal ArticleDOI

A Double-Sided LCC Compensation Network and Its Tuning Method for Wireless Power Transfer

Reads0
Chats0
TLDR
With the proposed topology and its tuning method, the resonant frequency is irrelevant with the coupling coefficient between the two coils and is also independent of the load condition, which means that the system can work at a constant switching frequency.
Abstract
This paper proposes a double-sided LCC compensation network and its tuning method for wireless power transfer (WPT). With the proposed topology and its tuning method, the resonant frequency is irrelevant with the coupling coefficient between the two coils and is also independent of the load condition, which means that the system can work at a constant switching frequency. Analysis in frequency domain is given to show the characteristics of the proposed method. We also propose a method to tune the network to realize zero voltage switching (ZVS) for the Primary-side switches. Simulation and experimental results verified analysis and validity of the proposed compensation network and the tuning method. A wireless charging system with output power of up to 7.7 kW for electric vehicles was built, and 96% efficiency from dc power source to battery load is achieved.

read more

Citations
More filters
Journal ArticleDOI

Wireless Power Transfer for Electric Vehicle Applications

TL;DR: In this paper, the authors reviewed the technologies in the wireless power transfer (WPT) area applicable to electric vehicle (EV) wireless charging, and the obstacles of charging time, range, and cost can be easily mitigated.
Journal ArticleDOI

Wireless Power Transfer—An Overview

TL;DR: This paper presents an overview of WPT techniques with emphasis on working mechanisms, technical challenges, metamaterials, and classical applications, and discusses about future development trends.
Journal ArticleDOI

Compensation Topologies of High-Power Wireless Power Transfer Systems

TL;DR: This paper provides a comprehensive review of existing compensation topologies for the loosely coupled transformer and discusses the compensation requirements for achieving the maximum efficiency according to different WPT application areas.
Journal ArticleDOI

Wireless Power Transfer for Vehicular Applications: Overview and Challenges

TL;DR: In this paper, a comprehensive review of charging pad, power electronics configurations, compensation networks, controls, and standards is presented, along with a detailed analysis of the charging range of EVs.
Journal ArticleDOI

A Comprehensive Review of Wireless Charging Technologies for Electric Vehicles

TL;DR: This paper provides a comprehensive, state-of-the-art review of all the wireless charging technologies for electric vehicle (EVs), characteristics and standards available in the open literature, as well as sustainable implications and potential safety measures.
References
More filters
Book

Fundamentals of Power Electronics

TL;DR: Converters in Equilibrium, Steady-State Equivalent Circuit Modeling, Losses, and Efficiency, and Power and Harmonics in Nonsinusoidal Systems.
Journal ArticleDOI

Wireless Power Transfer via Strongly Coupled Magnetic Resonances

TL;DR: A quantitative model is presented describing the power transfer of self-resonant coils in a strongly coupled regime, which matches the experimental results to within 5%.
Journal ArticleDOI

Analysis, Experimental Results, and Range Adaptation of Magnetically Coupled Resonators for Wireless Power Transfer

TL;DR: A circuit model is presented along with a derivation of key system concepts, such as frequency splitting, the maximum operating distance (critical coupling), and the behavior of the system as it becomes undercoupled, including the introduction of key figures of merit.
Journal ArticleDOI

Design considerations for a contactless electric vehicle battery charger

TL;DR: This paper overviews theoretical and practical design issues related to inductive power transfer systems and verifies the developed theory using a practical electric vehicle battery charger.
Journal ArticleDOI

Magnetic Resonant Coupling As a Potential Means for Wireless Power Transfer to Multiple Small Receivers

TL;DR: In this paper, the magnetic resonance coupling between source and load coils is achieved with lumped capacitors terminating the coils, and a circuit model is developed to describe the system with a single receiver and extended to describe two receivers.
Related Papers (5)