scispace - formally typeset
Open AccessJournal Article

A gentle tutorial of the em algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models

Reads0
Chats0
TLDR
In this paper, the authors describe the EM algorithm for finding the parameters of a mixture of Gaussian densities and a hidden Markov model (HMM) for both discrete and Gaussian mixture observation models.
Abstract
We describe the maximum-likelihood parameter estimation problem and how the ExpectationMaximization (EM) algorithm can be used for its solution. We first describe the abstract form of the EM algorithm as it is often given in the literature. We then develop the EM parameter estimation procedure for two applications: 1) finding the parameters of a mixture of Gaussian densities, and 2) finding the parameters of a hidden Markov model (HMM) (i.e., the Baum-Welch algorithm) for both discrete and Gaussian mixture observation models. We derive the update equations in fairly explicit detail but we do not prove any convergence properties. We try to emphasize intuition rather than mathematical rigor.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Machine learning

TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Journal ArticleDOI

Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation

TL;DR: An expectation-maximization algorithm for simultaneous truth and performance level estimation (STAPLE), which considers a collection of segmentations and computes a probabilistic estimate of the true segmentation and a measure of the performance level represented by each segmentation.
Proceedings ArticleDOI

Clustering with Bregman Divergences

TL;DR: This paper proposes and analyzes parametric hard and soft clustering algorithms based on a large class of distortion functions known as Bregman divergences, and shows that there is a bijection between regular exponential families and a largeclass of BRegman diverGences, that is called regular Breg man divergence.
Journal ArticleDOI

Cooperative Localization in Wireless Networks

TL;DR: This paper describes several cooperative localization algorithms and quantify their performance, based on realistic UWB ranging models developed through an extensive measurement campaign using FCC-compliant UWB radios, and presents a powerful localization algorithm that is fully distributed, can cope with a wide variety of scenarios, and requires little communication overhead.
References
More filters

Numerical recipes in C

TL;DR: The Diskette v 2.06, 3.5''[1.44M] for IBM PC, PS/2 and compatibles [DOS] Reference Record created on 2004-09-07, modified on 2016-08-08.
Book

Neural networks for pattern recognition

TL;DR: This is the first comprehensive treatment of feed-forward neural networks from the perspective of statistical pattern recognition, and is designed as a text, with over 100 exercises, to benefit anyone involved in the fields of neural computation and pattern recognition.
Journal ArticleDOI

Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images

TL;DR: The analogy between images and statistical mechanics systems is made and the analogous operation under the posterior distribution yields the maximum a posteriori (MAP) estimate of the image given the degraded observations, creating a highly parallel ``relaxation'' algorithm for MAP estimation.
Book

Pattern classification and scene analysis

TL;DR: In this article, a unified, comprehensive and up-to-date treatment of both statistical and descriptive methods for pattern recognition is provided, including Bayesian decision theory, supervised and unsupervised learning, nonparametric techniques, discriminant analysis, clustering, preprosessing of pictorial data, spatial filtering, shape description techniques, perspective transformations, projective invariants, linguistic procedures, and artificial intelligence techniques for scene analysis.
Journal ArticleDOI

Generalized Additive Models.