scispace - formally typeset
Open AccessJournal ArticleDOI

A Lithium-Sulfur Battery using a 2D Current Collector Architecture with a Large-Sized Sulfur Host Operated under High Areal Loading and Low E/S Ratio.

TLDR
A spray-dried sulfur composite with large intrinsic internal pores, ensuring adequate local electrolyte availability, and evidence is provided that the high-frequency semicircle is mainly responsible for the often observed bypassing of the second plateau in lean electrolyte discharges.
Abstract
While backless freestanding 3D electrode architectures for batteries with high loading sulfur have flourished in the recent years, the more traditional and industrially turnkey 2D architecture has not received the same amount of attention. This work reports a spray-dried sulfur composite with large intrinsic internal pores, ensuring adequate local electrolyte availability. This material offers good performance with a electrolyte content of 7 µL mg-1 at high areal loadings (5-8 mg cm-2 ), while also offering the first reported 2.8 µL mg-1 (8 mg cm-2 ) to enter into the second plateau of discharge and continue to operate for 20 cycles. Moreover, evidence is provided that the high-frequency semicircle (i.e., interfacial resistance) is mainly responsible for the often observed bypassing of the second plateau in lean electrolyte discharges.

read more

Citations
More filters

Nitrogen-Doped Mesoporous Carbon Promoted Chemical Adsorption of Sulfur and Fabrication of High-Areal-Capacity Sulfur Cathode with Exceptional Cycling Stability for Lithium-Sulfur Batteries

TL;DR: In this article, a mesoporous nitrogen-doped carbon (MPNC)-sulfur nanocomposite is reported as a novel cathode for advanced Li-S batteries.
Journal ArticleDOI

Lithium-Sulfur Batteries under Lean Electrolyte Conditions: Challenges and Opportunities.

TL;DR: In this article, the impact of the electrolyte/sulfur ratio on the actual energy density and the economic cost of Li-S batteries is addressed, and challenges and recent progress are presented in terms of the sulfur electrochemical processes: the dissolution-precipitation conversion and the solid-solid multi-phasic transition.
Journal ArticleDOI

Current Status and Future Prospects of Metal–Sulfur Batteries

TL;DR: The current state of the research indicates that lithium-sulfur cells are now at the point of transitioning from laboratory-scale devices to a more practical energy-storage application, and over 450 research articles are summarized to analyze the research progress and explore the electrochemical characteristics, cell-assembly parameters, cell -testing conditions, and materials design.
Journal ArticleDOI

Bridging the academic and industrial metrics for next-generation practical batteries.

TL;DR: This Perspective discussed the best practices for reporting lab-scale performance metrics in battery papers, and explained metrics such as anode energy density, voltage hysteresis, mass of non-active cell components and anode/cathode mass ratio.
References
More filters
Journal ArticleDOI

The Dynamics of Capillary Flow

TL;DR: In this article, the rate of penetration into a small cylindrical capillary of radius $r$ was shown to be: ρ(r}^{2}+4\ensuremath{\epsilon}r)
Journal ArticleDOI

A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries

TL;DR: In this paper, the authors report the feasibility to approach such capacities by creating highly ordered interwoven composites, where conductive mesoporous carbon framework precisely constrains sulphur nanofiller growth within its channels and generates essential electrical contact to the insulating sulphur.
Journal ArticleDOI

Advances in Li–S batteries

TL;DR: Li-S batteries have received everincreasing attention recently due to their high theoretical specific energy density, which is 3 to 5 times higher than that of Li ion batteries based on intercalation reactions as discussed by the authors.
Journal ArticleDOI

Review on High-Loading and High-Energy Lithium–Sulfur Batteries

TL;DR: In this paper, the authors highlight the recent progress in high-sulfur-loading Li-S batteries enabled by hierarchical design principles at multiscale, particularly, basic insights into the interfacial reactions, strategies for mesoscale assembly, unique architectures, and configurational innovation in the cathode, anode, and separator.
Related Papers (5)